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MEAN-FIELD LIMIT VERSUS SMALL-NOISE LIMIT FOR

SOME INTERACTING PARTICLE SYSTEMS

SAMUEL HERRMANN AND JULIAN TUGAUT

Abstract. In the nonlinear diffusion framework, stochastic processes of

McKean-Vlasov type play an important role. Such diffusions can be ob-

tained by taking the hydrodymamic limit in a huge system of linear diffu-
sions in interaction. In both cases, for the linear and the nonlinear processes,

small-noise asymptotics have been emphasized by specific large deviation phe-

nomenons. The natural question, therefore, is: is it possible to interchange
the mean-field limit with the small-noise limit ? The aim here is to consider

this question by proving that the rate function of the first particle in a mean-
field system converges to the rate function of the hydrodynamic limit as the

number of particles becomes large.

1. Introduction

In the stochastic convergence framework, the large deviation theory plays an
essential role for describing the rate at which the probability of certain rare events
decays. Each convergence result therefore leads to find the large deviation rate
associated with. In suitable cases, the knowledge of the so-called large deviation
principle (LDP) even permits to obtain information about the convergence itself
(see the central limit theorem [3]).

This paper is concerned with the convergence of continuous stochastic processes
defined as small random perturbations of dynamical systems. In the classical dif-
fusion case, the stochastic process converges in the small-noise limit to the deter-
ministic solution of the dynamical system and the large deviation theory developed
by Freidlin and Wentzell [11] emphasizes the behaviour of the rare event proba-
bilities. More recently, Herrmann, Imkeller and Peithmann [14] studied the large
deviation phenomenon associated with the McKean-Vlasov process, a particular
nonlinear diffusion which is attracted by its own law (the so-called self-stabilizing
effect). This process appears for instance in the probabilistic interpretation of
the granular media equation. They presented the explicit expression of the rate
function J∞ and the Kramers’ rate which is related to the time needed by the
diffusion to exit a given bounded domain.

The aim of this paper is to better understand the link between the large de-
viation principle of the nonlinear diffusion and the classical theory developed by
Freidlin and Wentzell. More precisely, the McKean-Vlasov equation describes the
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behaviour of one particle in a huge system of particles in interaction, as a result of
the hydrodynamic limit in a mean-field system. The natural question, therefore,
is to emphasize the link between the rate function (or entropy function) J∞ of the
nonlinear diffusion and the Freidlin-Wentzell rate function JN associated to one
particle in a mean-field system of size N . Our approach is essentially based on
functional analysis tools.

The material is organized as follows: first we discuss and recall different no-
tions associated with the large deviation theory. Secondly we present the model
and point out the link between nonlinear diffusion and high dimensional classical
diffusions: the so-called mean-field effect. The third section will be devoted to the
main result: the convergence of the rate functions JN → J∞ as N becomes large.
Finally, we present some immediate consequences and a generalization result.

1.1. A large deviation principle. In this paper, the framework concerns con-
tinuous time processes depending on a parameter σ and we describe the behaviour
of this family in the small-parameter limit. We need to find out a rate function (en-
tropy) which describes the probability of a trajectory to be far away from typical
paths.

Let us consider a family of continuous stochastic processes Xσ := (Xσ
t )t∈[0,T ]

with T < ∞. In the following, the family of processes (Xσ)σ>0 is said to satisfy

a large deviation principle with speed σ2

2 if there exists a lower semi-continuous

mapping (called rate function) I from C
(
[0, T ];Rd

)
to R+ such that

lim sup
σ→0

σ2

2
log [P {Xσ ∈ F}] ≤ − inf

ϕ∈F
I(ϕ)

for any closed subset F ⊂ C
(
[0, T ];Rd

)
equipped with the uniform topology and

lim inf
σ→0

σ2

2
log [P {Xσ ∈ G}] ≥ − inf

ϕ∈G
I(ϕ)

for any open subset G ⊂ C
(
[0, T ];Rd

)
. I is a good rate function if its level sets are

compact subsets of C
(
[0, T ];Rd

)
.

We now focus our attention to stochastic differential equations driven by a Brow-
nian motion. Schilder’s theorem deals with the LDP of Xσ := (σBt)t∈[0,T ], where

B is a standard d-dimensional Wiener process (see Theorem 5.2.3 in [10]). The
associated good rate function is given by

I0(ϕ) :=
1

4

∫ T

0

‖ϕ̇(t)‖2dt ,

if ϕ belongs to the set of absolutely continuous functions starting in 0, denoted by
H0. If ϕ /∈ H0, we set I0(ϕ) := +∞. Here ‖ · ‖ stands for the euclidean norm in
Rd. The study elaborated by Schilder permits us to go further in the description
of LDP for diffusions as presented by Freidlin and Wentzell. If Xσ satisfies the
stochastic differential equation:

Xσ
t = x+ σBt −

∫ t

0

b(s,Xσ
s )ds ,
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where the drift term b(t, x) is a continuous function with respect to the time
variable and locally Lipschitz with respect to the space variable; then the family
(Xσ)σ>0 admits a LDP with the good rate function

Ib(ϕ) :=
1

4

∫ T

0

‖ϕ̇(t) + b(t, ϕ(t))‖2 dt

for ϕ ∈ Hx (the set of absolutely continuous functions starting in x). For ϕ /∈ Hx,
Ib(ϕ) := +∞. Let us focus our attention to the typical paths of such a diffusion.
In fact, in the particular case of a deterministic equation

Ψt(x) = x−
∫ t

0

b(s,Ψs(x)) ds (1.1)

admitting a unique solution, the diffusion Xσ starting in x converges in probability
towards the deterministic trajectory Ψ(x) in the small-noise limit. The Freidlin-
Wentzell LDP estimates the rate of convergence: introducing

F :=
{
ϕ ∈ C

(
[0, T ];Rd

)
: ‖ϕ−Ψ(x)‖∞ ≥ δ

}
,

where ‖ · ‖∞ stands for the uniform norm, we obtain

lim sup
σ→0

σ2

2
logP (Xσ ∈ F) ≤ − inf

ϕ∈F
Ib(ϕ) < 0 .

Let us finally note that the precise description of the deviation phenomenon per-
mits us to deal with the small-noise asymptotics of exit times τD from a domain of
attraction D. Namely if the drift term of the diffusion is in the so-called gradient
case, that is b(t, x) = ∇V (x), if moreover V reaches a local minimum for x = a
and D is a bounded domain of attraction associated to a, then a Kramers’ type
law can be observed. A weak version of this result is the following asymptotic
expression:

lim
σ→0

σ2

2
logE[τD] = inf

T>0
inf

ϕ(0)=a,
ϕ(T )∈∂D

I∇V (ϕ) = inf
y∈∂D

V (y)− V (a)

In other words, not only is the rate function a key tool for the description of
the diffusion deviation from typical trajectories (linked to a study on a fixed time
interval [0, T ]), but it is also involved in the description of exit times from a domain
(a study developed on the whole time axis).

The aim of our paper, therefore, is to describe some nice properties of the
rate function, not in the classical diffusion case just described above, but for self-
stabilizing diffusions of the McKean-Vlasov type, diffusions attracted by their
own law. Let us finally note that for other applications of large deviations to
communication, optic and biology, we refer the reader to [10].

1.2. The self-stabilizing model. From now on, we restrict the study to the
McKean-Vlasov model: for x ∈ Rd, the process satisfies the following stochastic
differential equation: {

Xσ
t = x+ σBt −

∫ t
0
∇Wσ

s (Xσ
s ) ds

Wσ
t := V + F ∗ uσt .

(1.2)
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The ∗ symbol stands for the convolution product and uσt denotes the density of
the probability distribution PXσt . Since the law of the solution plays an important
role in the structure of the drift term, this equation is nonlinear, in the sense of
McKean, see for instance [21, 20]. Three terms contribute to the infinitesimal
dynamics.

• The first one is the noise generated by the d-dimensional Brownian motion
(Bt, t ≥ 0).
• The second force is related to the attraction between any fixed trajectory
t 7→ Xσ

t (ω0), ω0 ∈ Ω, and the entire set of trajectories. Indeed, we observe:

∇F ∗ uσt (Xσ
t (ω0)) =

∫
ω∈Ω

∇F (Xσ
t (ω0)−Xσ

t (ω)) dP (ω) .

Consequently, F is called the interaction potential. The interaction only
depends on the difference Xσ

t (ω0)−Xσ
t (ω) and therefore can be associated

to the convolution product. Let us note that other dependences have been
studied e.g. the quantile case: the drift is then a continuous function of
the quantile of the distribution PXσt , see [18].
• The last term corresponds to the function V , the so-called confining po-

tential. The solution Xσ
t roughly represents the motion of a Brownian

particle living in a landscape V and whose inertia is characterized by F
(if F is large then the solution moves with difficulty since it is strongly
attracted by its law). Therefore it is easy to imagine that the minimizers
of the potential V attract the diffusion if F (0) = 0. Indeed Xσ

t converges
in probability towards one of them as σ tends to 0.

Let us now present the hypotheses concerning the functions F and V . The con-
fining potential V satisfies:

(V1) V is a C2-continuous function.
(V2) ∇2 V (x) ≥ 0 for all x /∈ K where K is a compact subset of Rd.

Combining (V1) and (V2) ensures the existence of a solution to (1.2). The inter-
action function satisfies:

(F1) There exists a function G : R+ → R+ such that F (x) = G(‖x‖).
(F2) G is an even polynomial function with deg(G) ≥ 2 and G(0) = 0.
(F3) The following asymptotic property holds lim

r→+∞
G(r) = +∞.

Let us now complete the description of this McKean-Vlasov model by briefly
recalling several already known results concerning (1.2).

• Probabilistic interpretation of PDEs. In fact, the self-stabilizing diffusion
corresponds to the probabilistic interpretation of the granular media equa-
tion. The probability density function of Xσ

t , starting at x, is represented
by (t, x) 7→ uσt (x) and satisfies the following partial differential equation

∂

∂t
uσt = div

{
σ2

2
∇xuσt + uσt (V + F ∗ uσt )

}
. (1.3)

This equation is strongly nonlinear since it contains a quadratic term of
the form uσt (F ∗uσt ). This link between the granular media equation (1.3)
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and the McKean-Vlasov diffusion (1.2) permits us to study the PDE by
probabilistic methods [4, 19, 12].
• Existence and uniqueness. The existence and the uniqueness of a strong

solution Xσ to (1.2) defined on R+ has been proven in [14] (Theorem
2.13). Moreover the long-time asymptotic behaviour of the probability
distribution PXσt has been studied in [4, 2] (for convex functions V ) and
in [25, 26] for the non-convex case. In this second case, the key of the
proofs essentially consists in using the results of [15, 16, 17] about the non-
uniqueness of the invariant measures (that means in particular that there
exist several positive stationary solutions of the granular media equation
(1.3) which have a total mass equal to 1).
• Large deviation principle. The noise intensity appearing in the equation

(1.2) is parametrized by σ. The aim of the large deviation principle is to
describe precisely the behaviour of the paths in the small-noise limit. For
any T > 0, we can prove, see [14], that the family of processes (Xσ)σ>0

satisfies a large deviation principle with the following good rate function
J∞:

J∞(f) :=
1

4

∫ T

0

‖ḟ(t) +∇V (f(t)) +∇F (f(t)−Ψx
∞(t)) ‖2 dt, (1.4)

if f ∈ Hx and otherwise J∞(f) := +∞. Here the function Ψx
∞ is indepen-

dent of F and satisfies the following ordinary differential equation:

Ψx
∞(t) = x−

∫ t

0

∇V (Ψx
∞(s)) ds, x ∈ Rd . (1.5)

In other words, the diffusion process (Xσ
t , t ≥ 0) converges exponentially

fast towards the deterministic solution Ψx
∞ as σ tends to 0. The limit

function for a classical diffusion Y σt defined by

Y σt = x+ σBt −
∫ t

0

∇V (Y σs ) ds

is exactly the same: the self-stabilizing phenomenon does not change the
limit, it only changes the speed of convergence. Indeed the rate function
J∞ clearly depends on F . If the function F is convex, the trajectories of
the McKean-Vlasov diffusion Xσ are closer to Ψx

∞ than the ones of the
diffusion Y σ.

Since the asymptotic behaviour has been described on a fixed-time in-
terval [0, T ], the next step is to describe the asymptotic behaviour on the
whole time interval and namely the study of exit problems: the first time
the self-stabilizing diffusion exits from a given bounded domain. This
problem has already been solved if both V and F are uniformly strictly
convex functions, see [14, 24] by the use of large deviation techniques. In
[24], the method is based on the exit problem for an associated mean-field
system of particles.

1.3. An interacting particle system. The McKean-Vlasov diffusion Xσ, de-
scribed in the previous section, corresponds to the movement of a particle in a
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continuous mean-field system in the so-called hydrodynamical limit, that is, as
the number of particles tends to infinity. The mean-field system associated to
the self-stabilizing process (1.2) is a N dimensional random dynamical system
(Xi,N,σ)1≤i≤N ∈ ⊗NC([0, T ];Rd) satisfying

dXi,N,σ
t = σ dBit −∇V (Xi,N,σ

t ) dt− 1

N

N∑
j=1

∇F (Xi,N,σ
t −Xj,N,σ

t ) dt (1.6)

and Xi,N,σ
0 := x.

Here, (Bit)t∈R+
stands for a family of N independent d-dimensional Brownian

motions. We also assume B1 = B, in other words, both diffusions X1,N,σ and Xσ

(see (1.2)) are defined with respect to the same Wiener process (this is possible
due to the existence of a strong solution).

The propagation of chaos then permits us to link (1.2) and (1.6). It is essentially
based on the following intuitive remark. The larger N is, the less influence a given
particle Xj,N,σ has on the first particle X1,N,σ. Consequently, it is reasonable to
consider that the particles become less and less dependent as the number of par-

ticles becomes large. The empirical measure 1
N

∑N
j=1 δXj,N,σt

therefore converges

towards a measure µσt which corresponds to the own distribution of X1,∞,σ
t . In fact

this law corresponds to PXσt . For a rigorous proof of this statement, see [23, 22].
A large deviations principle which permits us to describe the weak convergence
speed of the empirical measure towards µσt (in the McKean-Vlasov limit) can be
obtained from a generalization of the theory of Freidlin and Wentzell, see [5]. It
is also possible to adapt a coupling result developed for instance in [1] in order to
obtain the following convergence:

lim
N→∞

E
{

sup
0≤t≤T

‖X1,N,σ
t −Xσ

t ‖2
}

= 0.

Large deviation principle. For N large, the diffusion Xσ defined in (1.2) is close
to the diffusion X1,N,σ defined in (1.6). Then it is of particular interest to know
if these two diffusions have the same small-noise asymptotic behaviour. The large
deviations associated with (1.6) are quite classical since the system of particles is
a Kolmogorov diffusion of the form

dXi,N,σ
t = σdBit −N ×∇xiΥN (X1,N,σ

t , . . . , XN,N,σ
t ) dt, Xi,N,σ

0 = x, (1.7)

with the following potential:

ΥN (z1, · · · , zN ) :=

∫
Rd
V (x)µN (dx) +

1

2

∫
Rd×Rd

F (x− y)µN (dx)µN (dy).

Here µN := 1
N

∑N
j=1 δzj . This approach is directly linked to the particular form

of the interaction function F which only depends on the norm, see hypothesis
(F1) and (F2). The good rate function, associated with the uniform topology, is
a functional defined by

IN (Φ) :=
1

4

∫ T

0

‖Φ̇(t) +N∇ΥN (Φ(t)) ‖2dt,
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if Φ : [0, T ]→
(
Rd
)N

is an absolutely continuous function with the initial condition

Φ(0) = x := (x, . . . , x) and IN (Φ) := +∞ otherwise. The rate function IN can
therefore be rewritten in this way: if Φ := (f1, · · · , fN ), we obtain

IN (Φ) =
1

4

N∑
i=1

∫ T

0

‖ḟi(t) +∇V (fi(t)) +
1

N

N∑
k=1

∇F (fi(t)− fk(t)) ‖2dt (1.8)

if fi ∈ Hx for any 1 ≤ i ≤ N . If one function of the family (fi)1≤i≤N does not
belong to Hx, then we set IN (f1, · · · , fN ) := +∞. Let us just note that this LDP
leads to the description of the exit problem for the McKean-Vlasov system [24].
Since a LDP holds for the whole particle system, a LDP in particular holds for
the first particle (X1,N,σ) with the good rate function JN obtained by projection:

JN (f) := inf
f2,··· ,fN∈Hx

IN (f, f2, · · · , fN ) . (1.9)

Since X1,N,σ is close to the self-stabilizing process Xσ, solution of (1.2), ‘our
objective is to establish that the functional JN converges towards J∞, the entropy
function of the mean-field diffusion, as N becomes large.

In other words, we show that it is possible to interchange the limiting operations
concerning the asymptotic small noise σ and the number of particles N i.e. the
hydrodynamic limit.

2. Convergence of the rate functions

In this section, we emphasize the main result of this study. We prove that
the large deviation rate function JN associated to the first particle in the huge
McKean-Vlasov system of particles in interaction is close to the rate function of
the self-stabilizing (nonlinear) diffusion.

Theorem 2.1. Let x ∈ Rd. Under Hypotheses (V1)–(V2) and (F1)–(F3), the rate
function JN defined by (1.9) converges towards J∞ defined by (1.4), as N tends
to infinity. Let f be an absolutely continuous function from [0, T ] to Rd such that
f(0) = x, then

lim
N→+∞

JN (f) = J∞(f).

Moreover the convergence is uniform with respect to f on any compact subset of
C([0, T ],Rd) endowed with the uniform topology.

Proof. Step 1. Let us first prove (easiest part) the upper-bound

lim sup
N→+∞

JN (f) ≤ J∞(f) . (2.1)

By definition, JN (f) ≤ IN (f, f2, · · · , fN ) for any f2, · · · , fN ∈ Hx where IN is
defined by (1.8). Hence, we can choose fk := Ψx

∞ for all 2 ≤ k ≤ N . Let us remind
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the reader that Ψx
∞ is the solution of (1.5). Thus we obtain:

JN (f) ≤ IN (f,Ψx
∞, · · · ,Ψx

∞)

≤ 1

4

∫ T

0

‖ḟ(t) +∇V (f(t)) +
(

1− 1

N

)
∇F (f(t)−Ψx

∞(t)) ‖2 dt

+
N − 1

4

∫ T

0

‖Ψ̇x
∞(t) +∇V (Ψx

∞(t)) +
1

N
∇F (Ψx

∞(t)− f(t)) ‖2 dt .

By definition of Ψx
∞, we have Ψ̇x

∞+∇V (Ψx
∞) = 0. The previous inequality yields:

JN (f) ≤ 1

4

∫ T

0

‖ḟ(t) +∇V (f(t)) +
(

1− 1

N

)
∇F (f(t)−Ψx

∞(t)) ‖2 dt

+
1

4N

∫ T

0

‖∇F (Ψx
∞(t)− f(t)) ‖2 dt.

Taking the limit as N goes to infinity in the previous inequality leads to the
announced upper-bound (2.1). Let us just note that, due to the local Lipschitz
property of the interaction function ∇F , this convergence is uniform with respect
to f on any compact set for the uniform topology.

Step 2. Let us focus our attention to the lower bound:

lim inf
N→+∞

JN (f) ≥ J∞(f) . (2.2)

Step 2.1 Let us recall that JN is defined as a minimum (1.9) and let us prove
that it is reached: there exists (f∗2 , . . . , f

∗
N ) ∈ HN−1

x such that

JN (f) = IN (f, f∗2 , . . . , f
∗
N ).

If we consider a function g ∈ Hx then the function g defined by g(t) := g(t) − x
for all t ∈ [0, T ] belongs to H0 which is an Hilbert space endowed with the usual

norm ‖g‖2H :=
∫ T

0
‖ġ(t)‖2 dt. Let us introduce now the Hilbert space HN−1

0 with

the norm ‖(g2, . . . , gN )‖2 :=
∑N
k=2 ‖gk‖2H . Due to the regularity of both the

interaction potential F and the confining potential V , it is quite simple to prove
that

(g2, . . . , gN ) 7→ IN (f, g2, . . . , gN )

is a continuous function in the Hilbert space HN−1
0 (the details are left to the

reader).
Since JN (f) is the minimum, then for any ε > 0, there exist f ε2 , · · · , f εN belong-

ing to Hx such that

IN (f, f ε2 , · · · , f εN ) ≤ JN (f) + ε .

Let us consider the set Sxf ⊂ H
N−1
0 of functions (g2, · · · , gN ) satisfying

IN (f, g2, · · · , gN ) ≤ 2J∞ (f) . (2.3)

By (2.1), for N large enough and ε small enough, we obtain that (f ε2 , · · · , f εN ) ∈ Sxf .

Moreover let us prove that the subset Sxf is included in a closed ball of HN−1
0 .
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Indeed the following inequality holds

IN (f, g2, · · · , gN ) ≥ 1

4

N∑
i=1

∫ T

0

‖ġi(t)‖2 dt+R1(f, g,N) +R2(f, g,N) (2.4)

with 
R1(f, g,N) :=

1

2

N∑
i=1

∫ T

0

〈ġi(t),∇V (gi(t))〉 dt

R2(f, g,N) :=
1

2N

N∑
i=1

N∑
k=1

∫ T

0

〈ġi(t),∇F (gi(t)− gk(t))〉 dt,

and the convention g1 := f . Here 〈·, ·〉 stands for the Euclidean scalar product in
Rd. We first observe that Hypothesis (F1) leads to

R2(f, g,N) =
1

4N

N∑
i=1

N∑
k=1

∫ T

0

〈ġi(t)− ġk(t),∇F (gi(t)− gk(t))〉 dt.

=
1

4N

N∑
i=1

N∑
k=1

F (gi(T )− gk(T )) ≥ N

4
inf
z∈Rd

F (z).

Due to the hypothesis on the interaction function F the right hand side of the
previous inequality is finite. With similar arguments, we get

R1(f, g,N) =
1

2

N∑
i=1

(
V (gi(T ))− V (x)

)
≥ N

2
inf
z∈Rd

V (z)− N

2
V (x).

These two previous inequalities combined with (2.4) and (2.3) permit to prove the
existence of a constant C(N, x, f) only depending on f , x and N such that

N∑
i=2

∫ T

0

‖ġi(t)‖2 dt ≤ C(N, x, f). (2.5)

We immediately deduce that the subset Sxf is included in a closed ball of the Hilbert

space HN−1
0 . Since (f ε2 , . . . , f

ε
N ) ∈ Sxf , it is possible to extract a subsequence

(f εn2 , . . . , f εnN )n≥0 which converges in the weak topology towards a limiting function

(f∗2 , . . . , f
∗
N ) ∈ HN−1

0 . Finally, due to the lower semicontinuity of the function IN
we deduce that:

IN (f, f∗2 , . . . , f
∗
N ) = lim

n→∞
IN (f, f εn2 , . . . , f εnN ) ≤ JN (f) + lim

n→∞
εn = JN (f).

The minimum JN is then reached for (f∗2 , . . . , f
∗
N ) ∈ HN−1

x .

Step 2.2 In order to compute JN , let us point out particular properties of the
functions (f∗2 , . . . , f

∗
N ). Since the minimum is reached, we are going to compute

the derivative of IN with respect to each coordinate. Since we restrict ourselves
to the functional space Hx, we take an absolutely continuous function g ∈ H0 and
we consider the following limit

D2I
N (f, f2, . . . , fN ) (g) := lim

δ→0

IN (f, f2 + δg, f3, . . . , fN )− IN (f, f2, . . . , fN )

δ
.
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That defines the derivative of IN with respect to the second argument. In a similar
way, we can define DiI

N for any 2 ≤ i ≤ N . Let us compute explicitly D2I
N . For

any 1 ≤ i ≤ N , we set

ξi := ḟi +∇V (fi) +
1

N

N∑
k=1

∇F (fi − fk) , (2.6)

with f1 := f by convention. So we note that

IN (f, f2, . . . , fN ) =
1

4

N∑
i=1

∫ T

0

‖ξi(t)‖2 dt. (2.7)

We now observe the derivative of the quantity ξi with respect to the second func-

tion. In other words, introducing fδ2 := f2 + δg, and defining ξ2,δ
i like ξi just by

replacing f2 by fδ2 in (2.6), we get

lim
δ→0

ξ2,δ
i − ξi
δ

= − 1

N
H(F )(fi − f2)g , for i 6= 2,

and, for i = 2:

lim
δ→0

ξ2,δ
2 − ξ2
δ

= ġ +H(V )(f2)g +
1

N

∑
1≤k≤N
k 6=2

H(F )(f2 − fk)g .

Here H(F )(x) represents the Hessian matrix of the function F at the point x ∈ Rd.
From now on, we simplify the notation D2I

N (f, f2, . . . , fN )(g) and replace it by
D2I

N . By (2.7) and the polarization identity, we obtain

D2I
N = lim

δ→0

1

4δ

N∑
i=1

∫ T

0

‖ξ2,δ
i (t)‖2 − ‖ξi(t)‖2 dt

= lim
δ→0

1

4δ

N∑
i=1

∫ T

0

(
‖ξ2,δ
i (t)− ξi(t)‖2 + 2〈ξi(t), ξ2,δ

i (t)− ξi(t)〉
)
dt

= − 1

2N

N∑
i=1

∫ T

0

〈ξi(t), H(F )(fi − f2)g(t)〉 dt

+
1

2

∫ T

0

〈ξ2(t), ġ(t) +Rf2g(t)〉 dt, (2.8)

with

Rf2 := H(V )(f2) +
1

N

N∑
i=1

H(F )(f2 − fi). (2.9)

Let us assume that ξ2 is regular (let us say continuously differentiable), then by
an integration by parts and since g(0) = 0, we obtain

D2I
N = −1

2

∫ T

0

〈Ef2 (ξ2, . . . , ξN )(t), g(t)〉dt+
1

2
〈ξ2(T ), g(T )〉,
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where the function Ef2 is defined by

Ef2 (ξ2, · · · , ξN )(t) := ξ̇2(t)−Rf2ξ2(t) +
1

N

N∑
i=1

H(F )(f2 − fi)ξi(t) . (2.10)

We proceed in the same way for DjI
N (f1, f2, · · · , fN )(g) for any 2 ≤ j ≤ N , just

replacing 2 by j in (2.9) and (2.10). Since the minimum JN (f) is reached, that
is JN (f) = IN (f, f∗2 , . . . , f

∗
N ) for some functions (f∗2 , . . . , f

∗
N ) ∈ HN−1

x (see Step
2.1), the following expression vanishes: DjI

N (f, f∗2 , . . . , f
∗
N )(g) = 0 for 2 ≤ j ≤ N

and any function g, and therefore (ξ∗2 , . . . , ξ
∗
N ) is solution to the system{

Ef
∗

j (ξ∗2 , . . . , ξ
∗
N ) = 0,

ξ∗j (T ) = 0 for any 2 ≤ j ≤ N.
(2.11)

where the functions Ef
∗

j are defined like Efj in (2.10) (respectively ξ∗j like ξj in

(2.6)), we need just to replace (f, f2, . . . , fN ) by (f, f∗1 , . . . , f
∗
N ).

In fact we do not know if ξ∗j , 2 ≤ j ≤ N , are regular functions as assumed. We
deduce therefore that (ξ∗2 , . . . , ξ

∗
N ) is a generalized solution of the system (2.11).

Step 2.3 In Step 2.1, we proved that (f∗2 , . . . , f
∗
N ) minimizes the function IN and,

by Step 2.2, that (ξ∗2 , . . . , ξ
∗
N ) which can be expressed as a function of (f∗2 , . . . , f

∗
N )

– see (2.6) – satisfies a particular system of differential equations, in a general-
ized sense, namely (2.11). Of course (ξ∗2(t), . . . , ξ∗N (t)) = (0, . . . , 0) is a classical
solution (and consequently a generalized solution) of (2.11). By uniqueness of the
generalized solutions, we shall obtain that

ξ∗j (t) = 0 for a.e. 0 ≤ t ≤ T and for 2 ≤ j ≤ N.
Let us prove this uniqueness property. Let us consider a function h = (h2, . . . , hN )
belonging to ⊗N−1C([0, T ],Rd), then using the Cauchy-Lipschitz theorem (see for
instance Theorem 3.1 in [13]), there exists a C1-solution (g2, . . . , gN ) of the follow-
ing system of equations:

ġj(t) = −Rf
∗

j gj(t)−
1

N

N∑
k=1

H(F )(f∗j − f∗k )gk(t) + hj(t), 2 ≤ j ≤ N, (2.12)

with the initial condition gj(0) = 0 for any 2 ≤ j ≤ N . Here f∗1 stands for f for

notational convenience. In particular g ∈ HN−1
0 . Using results developed in Step

2.2, the function IN reaches its minimal value for the arguments (f∗2 , . . . , f
∗
N ) and

consequently:
N∑
j=2

DjI
N (f, f∗2 , . . . , f

∗
N )(gj) = 0,

where gj are solutions of (2.12). Combining the expression (2.8) and (2.12) leads
to

N∑
j=2

∫ T

0

〈ξ∗j (t), hj(t)〉 dt = 0, (2.13)

for any continuous functions (hj , 2 ≤ j ≤ N). Since f∗ is in the function space
HN−1
x and since ξ∗j is related to f∗ by (2.6), we know that ξj is square integrable
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function. Using Carleson’s theorem (see for instance Theorem 1.9 in [9]) and (2.13)
we deduce that ξ∗j (t) = 0 for a.e. t ∈ [0, T ] and for any 2 ≤ j ≤ N .

Step 2.4 Using the definition of ξ∗j , the previous step permits to obtain that, for
any 2 ≤ j ≤ N ,

ḟ∗j (t) +∇V (f∗j )(t) +
1

N

N∑
k=1

∇F
(
f∗j − f∗k

)
(t) = 0 for a.e. t ∈ [0, T ], (2.14)

with the boundary condition f∗j (0) = x. Applying once again the arguments
presented in Step 2.3 leads to the uniqueness of the solutions for (2.14). Since the

system is symmetric, we get the existence of a C1-function Ψf
N satisfying

f∗2 (t) = . . . = f∗N (t) = Ψf
N (t) for a.e. t ∈ [0, T ],

and, on the time interval [0, T ],

Ψ̇f
N (t) +∇V (Ψf

N )(t) +
1

N
∇F (Ψf

N − f)(t) = 0, with Ψf
N (0) = x. (2.15)

We just recall that f∗1 = f for notational convenience. Using the definition of
JN (f), we get

JN (f) = IN (f, f∗2 , . . . , f
∗
N )

=

∫ T

0

‖ḟ(t) +∇V (f(t)) +
(

1− 1

N

)
∇F (f(t)−Ψf

N (t))‖2 dt . (2.16)

Since the first order differential equation (2.15) can be associated to a Lipschitz

constant which does not depend on the parameter 1/N , the unique solution Ψf
N (t)

depends continuously on both the parameter 1/N and the time variable (see, for
instance, Theorem 3.2 p. 20 in [13]). Here we consider that (t, 1/N) belongs to the

compact set [0, T ]× [0, 1], consequently (t, 1/N) 7→ Ψf
N (t) is uniformly continuous.

Moreover, Ψf
∞ = Ψx

∞. Hence (2.16) implies

lim
N→∞

JN (f) = J∞(f),

where J∞ is defined by (1.4) and (1.5). The proof of the lower-bound (2.2) is then
achieved. It is quite easy to prove that the convergence is uniform with respect to
the function f on any compact set for the uniform topology. �

We could provide the precise rate of convergence because we give better than
a simple lower-bound in the previous proof. Indeed, we have obtained the exact
expression of JN (f).

3. Immediate consequences and further results

Theorem 2.1 emphasizes the link between the large deviation rate function of
the self-stabilizing diffusion (1.2) and the rate function associated to the mean-
field system (1.6). This result is of particular interest since one of the diffusion
is nonlinear whereas the second one is linear and therefore well-known. In this
section, we present a coupling result concerning these two diffusions and extend
Theorem 2.1 to a more general nonlinear model.
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Let us first recall the large deviation principle already presented in the intro-
duction. A family of continuous stochastic processes (Xσ)σ>0 is said to satisfy a
large deviation principle for the uniform topology with good rate function I if the
level sets of I are compact subsets of C

(
[0, T ];Rd

)
and if

lim sup
σ→0

σ2

2
logP (Xσ ∈ F) ≤ − inf

ϕ∈F
I(ϕ)

for any closed subset F ⊂ C
(
[0, T ];Rd

)
equipped with the uniform topology and

lim inf
σ→0

σ2

2
logP (Xσ ∈ G) ≥ − inf

ϕ∈G
I(ϕ)

for any open subset G ⊂ C
(
[0, T ];Rd

)
.

Theorem 2.1 ensures the convergence of JN (f) to J∞(f) for any continuous
function f . In order to point out the large deviation principle, we need to precise
this convergence on open and closed subsets of continuous functions.

Corollary 3.1. For any open or closed subset O ⊂ C([0, T ];Rd) (for the uniform
topology) the following convergence holds

lim
N→∞

inf
ϕ∈O

JN (ϕ) = inf
ϕ∈O

J∞(ϕ). (3.1)

Proof. Let O be a non empty set. If inf
ϕ∈O

J∞(ϕ) = +∞ then O ⊂ Hc where Hc

is the complementary of the set of absolutely continuous functions. Therefore
JN (ϕ) = +∞ for any function ϕ ∈ O and (3.1) is obviously satisfied. Let us
assume now that inf

ϕ∈O
J∞(ϕ) = α <∞. Denoting by

κλ = {ϕ ∈ C([0, T ],Rd) : J∞(ϕ) ≤ λ}
which is a compact set since J∞ is a good rate function (see [14]), we obtain

inf
ϕ∈O

J∞(ϕ) = inf
ϕ∈O∩κ2α

J∞(ϕ).

In order to conclude the proof, it suffices to apply the convergence of JN towards
J∞ developed in Theorem 2.1, which is in fact uniform with respect to ϕ on any
compact subset, in particular on the subset κ2α. �

This first corollary concerns the rate functions. Let us now focus our attention
on the associated processes. A nice coupling property can be obtained describing
the link between the self-stabilizing diffusion (Xσ

t , t ≥ 0) defined by (1.2) and the

linear diffusion (X1,N,σ
t , t ≥ 0) defined by (1.6). Since there exists a unique strong

solution to each of these two equations, we can construct Xσ and X1,N,σ on the
same probability space (Ω,B,Px).

Corollary 3.2. Under Hypotheses (V1)–(V2) and (F1)–(F3), for any x ∈ Rd,
each element of the family (X1,N,σ)N converges in probability towards the diffusion
Xσ as σ → 0, uniformly with respect to the parameter N . In particular let δ > 0,
then for N sufficiently large (resp. σ small), there exists a constant Kδ(T ) > 0
such that

P
(

sup
0≤t≤T

‖X1,N,σ
t −Xσ

t ‖ ≥ δ
)
≤ e−

Kδ(T )

σ2 .
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Let us just note that this result implies the convergence in distribution of the
first particle – first coordinate – of the linear mean-field system (1.6) towards the
self-stabilizing process. Combining Corollary 3.1 and Corollary 3.2 leads to the
following statement: for any closed set F,

lim
N→∞

lim sup
σ→0

σ2

2
logP(X1,N,σ ∈ F) and lim sup

σ→0
lim
N→∞

σ2

2
logP(X1,N,σ ∈ F)

have the same upper bound namely: − inf
ϕ∈F

J∞(ϕ). A similar result holds for open

sets G, replacing both the limit inferior by the limit superior and the upper bound
by a lower one.

A second remark: Large deviation principles can sometimes be proven directly
by the use of coupling bounds. Nevertheless the coupling bound developed in
Corollary 3.2 is not strong enough for such implications. Indeed, the family
(X1,N,σ)N is called an exponentially good approximation of Xσ if, for any δ > 0,

lim
N→∞

lim sup
σ→0

σ2 logPx
(

sup
0≤t≤T

‖X1,N,σ
t −Xσ

t ‖ ≥ δ
)

= −∞ (3.2)

(such a large deviation notion has been for instance developed in [10], Definition
4.2.14). For such approximations, the rate function of the limiting process (as N
tends to ∞) can be obtain as follows:

J∞(ϕ) := sup
δ>0

lim inf
N→∞

inf
z∈B(ϕ,δ)

JN (z),

where B(ϕ, δ) = {z : sup
0≤t≤T

‖z(t)− ϕ(t)‖ < δ}. In practice, (3.2) is quite difficult

to obtain. Such techniques were used in order to prove the Freidlin-Wentzell large
deviation result for classical diffusions: the process is approximated by an other
stochastic process with piecewise constant diffusion and drift terms (see Theorem
5.6.7 in [10]). For the large deviation principle associated with the self-stabilizing
diffusion developed in [14], an argument of exponentially good approximation is
used but it does not concern the approximation of the non linear process by the
first particle of the mean field linear system and therefore it does not use (3.2).

Proof. By definition, the family of processes (Xσ)σ>0 satisfies a large deviation
principle associated with the good rate function J∞. So, for any closed subset F
of Hx, we have on one hand

lim sup
σ→0

σ2

2
log [P {Xσ ∈ F}] ≤ − inf

ϕ∈F
J∞(ϕ) .

On the second hand, by Corollary 3.1 and for N large enough, we obtain

lim sup
σ→0

σ2

2
log
[
P
{
X1,N,σ ∈ F

}]
≤ − inf

ϕ∈F
JN (ϕ) ≤ −3

4
inf
ϕ∈F

J∞(ϕ) .

Introducing the particular subset:

F :=
{
ϕ ∈ Hx : ∃t0 ∈ [0, T ] s.t. ‖ϕ(t0)−Ψx

∞(t0)‖ ≥ δ

4

}
,
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where Ψx
∞ is defined in (1.5) that is Ψx

∞(t) := x−
∫ t

0
∇V (Ψx

∞(s)) ds , we observe
that, for N large and σ small,

P
(

sup
0≤t≤T

‖X1,N,σ
t −Xσ

t ‖ ≥ δ
)
≤ P

(
X1,N,σ ∈ F

)
+ P (Xσ ∈ F) ≤ e−

Kδ(T )

σ2 ,

where Kδ(T ) := C inf
ϕ∈F

J∞(ϕ) > 0 with 0 < C < 3/4. �

In Theorem 2.1, we only deal with the gradient case of the so-called McKean-
Vlasov diffusion starting from initial position x. Let us now discuss a more general
setting by considering the following nonlinear diffusion:

Y σt = x+ σBt −
∫ t

0

∇V (Y σs ) ds−
∫ t

0

∫
Rd
A(Y σs , y) νσs (dy) ds− l(t).

Here A is a general two variables Rd-valued function being a vector flow, non
necessary gradient and l is a C1-continuous function from R+ to Rd. Finally the
probability measure νσs stands for the distribution PY σs . The aim of this discussion
does not concern the existence and uniqueness of such equation, so we assume that
V , A and l satisfy suitable conditions for the unique solution to exist. Then, it is
possible to adapt the arguments developed in [14] in order to prove that (Y σ)σ>0

satisfies a large deviation principle with the associated rate function:

J∞(f) :=
1

4

∫ T

0

‖ḟ(t) +∇V (f(t)) +A(f(t),Ψx(t)) + l̇(t)‖2 dt (3.3)

for any function f ∈ Hx and J∞(f) := +∞ otherwise. Here, the function Ψx is
defined as the unique solution of the ordinary differential equation:

Ψx(t) = x−
∫ t

0

∇V (Ψx(s)) ds−
∫ t

0

A(Ψx(s),Ψx(s)) ds− l(t).

The stochastic model (Y σt ) can also be approximated by a system of interacting
particles. In this context, we can develop a statement similar to Theorem 2.1. The
functional J∞ is effectively the limit as N goes to infinity of the functional JN (f)
defined by

inf
f2,...,fN∈Hx

1

4

N∑
i=1

∫ T

0

‖ḟi(t) +∇V (fi(t)) +
1

N

N∑
j=1

A(fi(t), fj(t)) + l̇(t)‖2 dt (3.4)

with the convention f1 = f . Such a result can be proven under suitable assump-
tions:

• the confining potential V satisfies Hypotheses (V1)–(V2).
• there exists a lower bounded C∞-function A : Rd × Rd → R such that

A(x, y) = ∇xA(x, y) and inf
(x,y)∈Rd×Rd

A(x, y) > −∞.

• A satisfies a symmetry property: A(x, y) = −A(y, x)

The details of the proof are left to the reader, it suffices to apply the same ar-
guments. Let us just note that the assumptions, just formulated, concerning A
are sufficient in order to get the upper-bound (2.5), a crucial step for proving the
claimed statement.
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We end this study pointing out an example of such a diffusion:

dXt = σdBt −
(
∇W (Xt)−W t

)
dt− l̇(t)dt,

where W t := E {∇W (Xt)} and W is such that the required conditions are satis-
fied. This equation actually corresponds to the hydrodynamic limit of an equa-
tion characterizing the charge and the discharge of the cathode in a lithium
battery (see [6, 7]). In such a framework, A(x, y) := ∇W (x) − ∇W (y) and
A(x, y) := W (x) − 〈x,∇W (y)〉. Therefore, the rate function can be explicitly
computed:

J∞(f) =
1

4

∫ T

0

‖ḟ(t) +∇W (f(t))−∇W (x+ l(t)) + l̇(t)‖2 dt

and is obtained, as announced, as the limit for large N of the rate function:

inf
f2,...,fN∈Hx

1

4

N∑
i=1

∫ T

0

‖ḟi(t) +∇W (fi(t))−
1

N

N∑
j=1

∇W (fj(t)) + l̇(t)‖2 dt.
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E-mail address: tugaut@math.cnrs.fr


