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Abstract: The synthesis of a high gain observer for the on-line estimation of the rotor fluxes, the motor
speed and the load torque of the induction motor from the current and voltage measurements is presented.
The synthesis of the observer is preceded by an observability analysis of the induction motor leading thereby
to a sufficient condition. The obtained condition is discussed and it is shown that it is generally satisfied in
practice when considering the usual operating conditions of the motor. Of particular interest, an implementation
procedure is proposed to deal with the observation singularities. The proposed observer has been validated in
simulation using the reference trajectories of a realistic proposed benchmark where the induction motor model
remains in an unobservable region and not just go across.

Keywords: Nonlinear system, observability, high gain observer, induction motor.

1. INTRODUCTION

It is well-known that most control systems for the Induction Motor
(IM) require the knowledge of the rotor fluxes as well as that of
the angular speed (Leonard [2001]). Since these measurements, in
particular those of the fluxes, are not easily accessible, many research
efforts have been focused on their estimation in the past few years.
Indeed, many alternatives have been studied in order to design ob-
servers for IM using Luenberger-like observer (Verghese and Sanders
[1988], Martin and Rouchon [2000]), nonlinear observers (Busawon
et al. [2001], Lubineau et al. [2000]), sliding mode-based observer
(Benchaib et al. [1999]), LMI-based observer (Darengosse et al.
[1999]). However, in most of these works, the speed measurement
has been supposed to be available and the objective of these works
was to provide on-line estimates of the rotor fluxes only. Notice
that, in the work of (Ortega et al. [1998]), the authors proposed
passivity-based control of IMs which does not make use of the rotor
fluxes but the angular speed still be assumed measured. Many other
works deal with sensorless control of AC motors drives (Holtz [1996],
Tajima and Hori [1993]). Most of these works are based on open
loop estimation models which performance reduces as the mechanical
speed reduces. Moreover, this performance depends on how precisely
the model parameters can be matched to the corresponding param-
eters in the controlled machine. In order to improve the robustness
against parameters mismatch and signal noise, some authors have
proposed adaptive observers where the fluxes are estimated using
closed loop observers while the angular speed and load torque are
treated as time-varying parameters which are adapted through open
loop models based on the machine equations (Lascu et al. [2009],
Guzinski et al. [2010]). In (Ghanes and Zheng [2009]), the authors
proposed a sliding mode like-observer for the on-line estimation of
the fluxes as well as the speed and the load torque. The main
drawback of the observer lies in the fact that this observer is not
easy to implement since its gain involves the signum function and
some others design parameters whose values are to be updated when
singularities, that are not known a priori, occur. Another observer
that provides the estimates of all the states of the IM has also been
proposed in (Ghanes et al. [2010]). Again, the main drawback of this
observer lies in its implementation which requires the resolution of
eighteen differential equations: six equations are associated to the
state estimates and the other twelve equations are used to update
the observer gain. In (Rossignol et al. [2003]), the authors proposed

a high gain observer for the on-line estimation of all the IM states.
The fluxes and the motor speed are firstly estimated. Then,the so
obtained speed estimate is used as real measurements to estimate
the load torque.
In this paper, an observability analysis with an observer synthesis
for the IM system is carried out. The considered model accounts for
six state variables, namely the two stator currents, the two rotor
fluxes, the motor speed and the load torque. The objective of the
observability analysis consists in deriving a condition under which
all the six states of the motor can be estimated from the current
measurements. Then, an appropriate state observer that provides
the estimates of the full state is synthesized.
This paper is organized as follows. In the next section, the state
space model of the IM which will be the basis of the observability
analysis and the observer synthesis is introduced. In section 3, the
observability analysis of the IM is carried out and it leads to a
sufficient condition ensuring the observability of the IM. Section
4 is devoted to the observer synthesis. In a first step, a class of
nonlinear systems including the IM model is introduced and an
appropriate high gain observer is synthesized. A full convergence
analysis of the observation error is provided. In a second step, the
equations of the observer used for the IM are given. Along the
observer synthesis procedure, a particular attention has been paid
to the implementation aspect. Many simplifications in the observer
gain expression have been pointed out and solutions to cope with
some singularities in the observer gain are proposed. In section
5, the performances of the proposed observer are highlighted in
simulation by taking into account the unobservability phenomena.
Finally, concluding comments are given in section 6.

2. PROBLEM FORMULATION

The electrical behavior of an IM can be described in the (�, �)
coordinates system in stationary reference frame fixed with the
stator. Under the assumption that the dynamics of the load torque is
bounded, the IM model is given by the following set of state variables
equations (Leonard [2001]):

⎧









⎨









⎩

i̇ = NF (!) − 
i+
1

�Ls
u

 ̇ = −F (!) +
M

Tr
i

!̇ =
pM

JLr
iT J2 −

1

J
TL

ṪL = "(t)

(1)
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where i = (i1, i2)T ,  = ( 1,  2)T , u = (u1, u2)T are respectively
the stator currents, the rotor fluxes and the voltages; ! and TL
respectively denote the motor speed and the load torque; " is an
unknown bounded function; F (!) = 1

Tr
I2 − p!J2, I2 is the 2 × 2

identity matrix and J2 =

(

0 −1
1 0

)

; J is the motor moment of

inertia; p is the number of pairs of poles. The parameters Tr, �,
N and 
 are defined as follows:

Tr =
Lr

Rr
, � = 1−

M2

LsLr
,N =

M

�LsLr
, 
 =

Rs

�Ls
+
RrM

2

�LsL2
r

where Rs,

Rr are stator (resp. rotor) per-phase resistances, Ls, Lr are stator
(resp. rotor) per-phase inductances and M is the mutual inductance.

Notice that the time derivative of the load torque is described by
an unknown bounded function. The objective is to determine under
what conditions all the state of the motor, i,  , ! and TL can be
determined from the output and input measurements, namely the
current and the voltage measurements i and u, respectively. This
leads us to study the observability of system (1) by considering
y = i as output. For clarity purposes, one introduces the following
notations:

x =

(

x1

x2

x3

)

with x1 =

(

x11
x12

)

, x2 =

(

x21
x22

)

, x3 =

(

x31
x32

)

x11 = i1, x
1
2 = i2, x

2
1 =  1, x

2
2 =  2, x

3
1 = !, x32 = TL (2)

In the sequel, the notation Ik and 0k shall be used to denote the
k × k identity matrix and the k × k null matrix, respectively. The
rectangular k ×m null matrix shall be denoted by 0k×m.
System (1) can then be written under the following condensed form:

{

ẋ = f(u, x) +B1"(t)

y = x1
(3)

where

f(u, x) =

⎛

⎜

⎜

⎜

⎜

⎝

NF (x31)x
2 − 
x1 +

1

�Ls
u

−F (x31)x
2 +

M

Tr
x1

pM

JLr
x1T J2x

2 −
1

J
x32

0

⎞

⎟

⎟

⎟

⎟

⎠

, BT1 = [01×5 1]

3. OBSERVABILITY ANALYSIS OF THE IM MODEL

In this section, one shall introduce a classical state transformation
that puts system (1) under a known observable canonical form.
Then, one shall look for a sufficient condition under which the
considered state transformation is a diffeomorphism. In particular,
this analysis shall give rise to a condition under which the jacobian
of the considered transformation is of full rank almost everywhere.
Please notice that the observability of the induction model has been
fully treated in (Wit et al. [2000]) and (Ibarra-Rojas et al. [2004]).
But no observer has been proposed in either of these papers. In
(Wit et al. [2000]), the authors give a sufficient condition ensuring
the observability of the IM. A nice characterization of the motor
(un)observability is provided in (Ibarra-Rojas et al. [2004]) where
it was shown that the indistinguishable dynamics of the IMs are
governed by an Algebraic Differential Equations system. In what
follows, an observability analysis is fully carried out with view to
observer synthesis. Most of the developments detailed through this
analysis are used when synthesizing the observer.

Now, let us consider the following change of variables

Φ : IR6 → IR6, x 7→ z =

(

z1

z2

z3

)

= Φ(x) =

(

Φ1(x)

Φ2(x)

Φ3(x)

)

(4)

where the Φk’s, k = 1, 2, 3, are defined as follows:

⎧

















⎨

















⎩

z1 = Φ1(x) = x1

z2 = Φ2(x) = NF (x31)x
2

= N

(

1

Tr
I2 − px31J2

)

x2

z3 = Φ3(x) = −pNJ2
(

ẋ31x
2 + x31ẋ

2
)

= −pNJ2

(

1

J
(
pM

Lr
x1T J2x

2 − x32)x
2

+x31(−F (x31)x
2 +

M

Tr
x1)

)

(5)

with

F (x31) =
1

Tr
I2 − px31J2 =

⎡

⎣

1

Tr
px31

−px31
1

Tr

⎤

⎦ (6)

One can show that the above state transformation puts system (1)
under the following form:

⎧



⎨



⎩

ż1 = z2 + '1(u, z1)

ż2 = z3 + '2(z1, z2)

ż3 = '3(z) + b(z)"(t)

y = Cz = z1

(7)

with z =

(

z1

z2

z3

)

; zk =

(

zk1
zk2

)

for k = 1, 2, 3; "(t) is given by

system (1) and the nonlinear functions b and 'k ∈ IR2, k = 1, 2, 3
are defined as follows:

⎧





















⎨





















⎩

'1(u, z1) = −
z1 +
1

�Ls
u

'2(z1, z2) =
1

Tr

(

−z2 +
MN

Tr
z1
)

'3(z)
Δ
=

∂Φ3

∂x1
(u, x)ẋ1 +

∂Φ3

∂x2
(u, x)ẋ2

+
∂Φ3

∂x31
(u, x)ẋ31

b(z)
Δ
=

∂Φ3

∂x32
(u, x)

Please notice that, system (7) is observable for any input u. As a
result, system (1) shall be observable in the rank sense on IR6 as
soon as the transformation Φ exists and is regular almost everywhere
(Hermann and Krener [1977]). Indeed one shall exhibit a sufficient
condition under which the jacobian of this transformation is of full
rank almost everywhere.

Let JΦ be the jacobian of Φ. According to (5), one has

JΦ(x) =

⎡

⎢

⎣

I2 02 02

02
∂Φ2

∂x2
(x)

∂Φ2

∂x3
(x)

∂Φ3

∂x1
(x)

∂Φ3

∂x2
(x)

∂Φ3

∂x3
(x)

⎤

⎥

⎦

(8)

It is clear that the matrix JΦ(x) is of full rank if and only if the
following square matrix is also of full rank:

GΦ(x) =

⎡

⎣

∂Φ2

∂x2
(x)

∂Φ2

∂x3
(x)

∂Φ3

∂x2
(x)

∂Φ3

∂x3
(x)

⎤

⎦

Δ
=

[

G1(x) G2(x)
G3(x) G4(x)

]

(9)

In what following, one shall focus on the matrix GΦ in order to
exhibit a sufficient condition under which this matrix, or equivalently
JΦ, is of full rank almost everywhere. To this end, one shall compute
each entry of GΦ(x). Again, according to (5), one has:
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⎧





















⎨





















⎩

G1(x)
Δ
=

∂Φ2

∂x2
(x) = NF (x31)

G2(x)
Δ
=

∂Φ2

∂x3
(x) = [

∂Φ2

∂x31
(x)

∂Φ2

∂x32
(x)]

= [−pNJ2x
2 02×1]

G3(x)
Δ
=

∂Φ3

∂x2
(x) = −pNJ2

(

ẋ31I2 +
pM

JLr
x2x1T J2

)

+pNJ2x
3
1F (x31)

G4(x)
Δ
=

∂Φ3

∂x3
(x) = −pNJ2

[

ẋ2 + px31J2x
2 −

1

J
x2
]

(10)

It is clear from (6) that G1(x) is a square invertible matrix for all
x ∈ IR6. As a result, the matrix GΦ(x) can be factorized as follows:

GΦ(x) = L(x)U(x)

L(x) =

[

I2 02
G3(x)G

−1
1 (x) G4(x)−G3(x)G

−1
1 (x)G2(x)

]

U(x) =

[

G1(x) G2(x)
02 I2

]

(11)

From the structures of L and U , one can deduce that the matrix
GΦ(x) is of full rank if and only if the block triangular lower matrix
L(x) is also of full rank. According to its triangular structure, the
full rank condition of L(x) is obtained as soon as the matrix

L2(x)
Δ
= G4(x)−G3(x)G

−1
1 (x)G2(x) (12)

is of full rank. In order to check the full rank condition of the matrix
L2(x), we shall check the linear dependence of its two columns.

Indeed, set L2(x) =
[

L21(x) L22(x)
]

and let us firstly derive the

expression of L21 and L22. Using (10), one gets:

L21(x) = −pNJ2
(

ẋ2 +
(

ẋ31F
−1
1 (x31)

+
pM

JLr
x2x1T J2F

−1
1 (x31)

)

pJ2x
2
)

Δ
= −pNJ2M(x) (13)

L22(x) = pNJ2
1

J
x2

Now, the columns L21(x) and L22(x) are linearly dependent if and
only ifM(x) and x2 are so. This is also equivalent to x2T J2M(x) = 0.
This condition can be expressed under the following more explicit
form:

x2T J2M(x) = x2T J2ẋ
2 −

p

Tr

ẋ31
(

1
Tr

)2
+ (px31)

2
x2T x2 (14)

To summarize, the considered transformation has a full rank (i.e.
system (1) is observable) in each x as soon as

x2T J2ẋ
2 −

p

Tr

ẋ31
(

1
Tr

)2
+ (px31)

2
x2T x2 ∕= 0 a.e. (15)

Condition (15) can be explained by using the original motor variables
as follows:

 T J2 ̇ −
p

Tr

!̇
(

1
Tr

)2
+ (p!)2

 T ∕= 0 a.e. (16)

Condition (16) can be expressed in different equivalent forms. Indeed,
one shall exhibit such equivalent forms and comment them. Let us
define the flux angle rotor as follows: � = arctan  2

 1

. From the motor

model (1), one has �̇ = − T J2 ̇

 T 
and by excluding the uninteresting

case of  = 0, condition (16) can be explained as follows:

�̇(t) ∕=
p

Tr

!̇(t)
(

1
Tr

)2
+ (p!(t))2

a.e. (17)

or equivalently by taking the integral of both sides

(

arctan
 2(t)

 1(t)
− arctan(pTr!(t))

)

is not constant a.e.

(18)

Notice that conditions (16) and (17) are similar to those given in
(Wit et al. [2000]).

4. OBSERVER DESIGN

The aim of this section is to propose a state observer for system (1).
Such observer has to provide on-line estimation of i,  , ! and TL
from the sole measurements of the stator currents i and the voltages
u without making use of the time derivatives of these measurements
since they are unavailable. To this end, one shall focus on a class of
systems that includes the motor state model with a view of observer
synthesis. Then the proposed result shall be applied to the IM model
in order to derive a state observer that provides full state estimates.

4.1 Observer design for a class of nonlinear systems

Consider the following dynamical system:

{

ẋ(t) = f(u, x) +B1"(t)

y(t) = Cx(t) = x1(t)
(19)

where the state x =

⎛

⎜

⎜

⎝

x1

x2

..

.
xq

⎞

⎟

⎟

⎠

∈ IRn, xk ∈ IRp, k = 1, . . . , q;

f(u, x) =

⎛

⎜

⎜

⎜

⎝

f1(u, x)

f2(u, x)
.
..

fq−1(u, x)
fq(u, x)

⎞

⎟

⎟

⎟

⎠

; the input u ∈ Ω a compact subset of

IRs; the output y ∈ IRp; the matrix C is p × n and is defined as
follows:

C = [Ip, 0p, . . . , 0p] (20)

Finally, B1 = [0 . . . 0, 1]T ∈ IRn and "(t) ∈ IR is an unknown
bounded function, i.e. ∃� > 0; ∀t ≥ 0 : ∥"(t)∥ ≤ �.

One assumes that there exists a Lipschitzian diffeomorphism Φ :
IRn −→ IRn, x 7→ z = Φ(x) that puts system (19) under the following
form:

{

ż = Az + '(u, z) +Bb(z)"(t)

y = Cz = z1
(21)

where the state z =

⎛

⎜

⎜

⎝

z1

z2

.

..
zq

⎞

⎟

⎟

⎠

∈ IRn with zk ∈ IRp , k =

1, . . . , q (i.e. n = pq), b(z) is p × p bounded matrix, the function
'(u, z) has a triangular structure with respect to z, i.e. '(u, z) =
⎛

⎜

⎜

⎜

⎝

'1(u, z1)

'2(u, z1, z2)
..
.

'q−1(u, z1, . . . , zq−1)
'q(u, z)

⎞

⎟

⎟

⎟

⎠

∈ IRn; the matrix A is the following anti-

shift block matrix
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A =

[

0 I(q−1)p

0 0

]

(22)

and finally the matrix B is defined as follows:

BT = [0p, . . . , 0p, Ip] (23)

Notice that, if an observer is synthesized for system (21), then its
implementation in the original coordinates requires to compute the
inverse of the jacobian transformation. This could be time consuming
and could constitutes an obstacle for the real time implementation of
such observer. According to this, one shall synthesize an observer for
system (21) such that its implementation in the original coordinates
does not systematically require the computation of all the entries
of the jacobian inverse. To this end, one introduces the following
decomposition of the jacobian inverse:

(

∂Φ

∂x
(x̂)

)

−1

= ΛU (x̂) + ΛL(x̂) (24)

where ΛU (x̂) is an upper triangular block matrix and ΛL(x̂) is a lower
triangular block matrix satisfying the following structure condition:

Γ(x̂)
Δ
=

(

∂Φ

∂x
(x̂)

)

ΛL(x̂) (25)

(25) is a lower triangular matrix with zeros on the main diagonal.

Before giving the equations of the candidate observer, one introduces
the following definitions and notations:

∙ Let Δ� be the (block) diagonal matrix defined as follows:

Δ� = diag

(

Ip,
1

�
Ip, . . . ,

1

�q−1
Ip

)

(26)

where � > 0 is a design parameter.

∙ Let K be a pq×p rectangular matrix such that A−KC is Hurwitz.
The choice of such matrix is of course always possible since the pair
(A,C) is observable.

The design of the proposed observer requires the following technical
assumption which is usually used when designing high gain observers:

(H) The function ' is globally Lipschitz with respect to z uniformly
in u.

Now, consider the following dynamical system:

˙̂x = f(u, x̂)− �ΛU (x̂)Δ
−1
�
K(Cx̂− y) (27)

where x̂ =

⎛

⎜

⎜

⎝

x̂1

x̂2

..

.
x̂q

⎞

⎟

⎟

⎠

∈ IRn with x̂k ∈ IRp; u and y are respectively

the input and output of system (19).

One states the following:

Theorem Under assumption (H), system (27) is an observer for
system (19) with the following property: in the absence of uncertain-
ties (i.e. " = � = 0), the observation error converges exponentially to
zero. In the case where "(t) ∕= 0, the observation error is ultimately
bounded and the corresponding ultimate bound can be made as small
as desired by choosing values of � high enough.

Proof of the theorem: the proof of the theorem is similar to that
given in (Farza et al. [2004]) and is omitted due to the lack of place.

4.2 Observer design for the IM

In this section, one assumes that the state transformation defined by
(4)-(5) is regular almost everywhere. Such condition is satisfied by
assuming that one from the two equivalent conditions given by (17)
or (18) is satisfied. Indeed, this shall be assumed. According to (8)
and (9), the jacobian JΦ of the state transformation can be written
as follows:

JΦ(x) =

[

I2 02×4

HΦ(x) GΦ(x)

]

(28)

where GΦ(x) is given by (9) and HΦ(x) =

[

02×2

∂Φ3

∂x1
(u, x)

]

. It is clear

that under condition (17), JΦ(x) is invertible almost everywhere. At
this step, one assumes that JΦ(x) is invertible everywhere. Then,
one shall show how to deal with singular points, i.e. isolated points
where the jacobian is singular. According to (8), the inverse of JΦ(x)
is:

J−1
Φ (x) =

[

I2 02×4

−G−1
Φ (x)HΦ(x) G

−1
Φ (x)

]

(29)

The matrix J−1
Φ (x) can be partitioned as follows:

J−1
Φ (x) = ΛL(x) + ΛU (x)

with: ΛL(x) =

[

02 02×4

−G−1
Φ (x)HΦ(x) 04×4

]

ΛU (x) =

[

I2 02×4

04×2 G−1
Φ (x)

]

(30)

One clearly has

JΦ(x)ΛL(x) =

[

02 02×4

−GΦ(x)G
−1
Φ (x)HΦ(x) 04×4

]

(31)

As a result, ΛL(x) given by (30) satisfies condition (25) and the
following dynamical system is an observer for the IM represented by
its model (3):

˙̂x = f(u, x̂)− �ΛU (x̂)Δ
−1
�
K(Cx̂− x1) (32)

where ΛU (x̂) is given by (30) and K is a matrix such that A−KC

is Hurwitz where A, C and Δ� are respectively given by (22), (20)
and (26) with p = 2.

Some problems may occur if no precaution are taken when im-
plementing observer (32). Indeed, the transformation jacobian (or
equivalently the matrix GΦ(x̂) is assumed to be regular almost
everywhere. This condition does not prevent it from being singular at
some isolated points where the inverse of the matrix (or equivalently
ΛU (x̂)) cannot be computed. In order to prevent this problem,
one shall implement observer (32) by judiciously approximating the
matrix ΛU (x̂). One proposes in what follows to describe and discuss
the approximation of ΛU (x̂).

In fact, according to the structure of JΦ(x̂), the approximation of
ΛU (x̂) is reduced to look for an approximation of GΦ(x̂). To this end,
let us consider the factorization of GΦ(x̂) under form (11). It is clear
from the structures of L(x̂) and U(x̂) and from the fact that U(x̂) is
invertible everywhere that the matrices GΦ(x̂) and L2(x̂) given by
(12) have the same singular points. As a result, it suffices to look for
an approximation for the inverse of L2(x̂) in order to approximate
GΦ(x̂). The inverse of L2(x̂) shall be approximated by a generalized
inverse, denoted L+

2 (x̂), that can be expressed as follows:

L+
2 (x̂) =

(

LT2 (x̂)L2(x̂) + �I2
)

−1
LT2 (x̂) (33)
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where � > 0 is chosen arbitrarily small. Equation (33) can be written
in a more explicit form useful for real time implementation. To derive
such expression and for notation convenience, one shall rename the
entries of the matrix L2(x̂) given by (13) as follows:

L2(x̂) =

[

l1(x̂) l2(x̂)
l3(x̂) l4(x̂)

]

(34)

With L2(x̂) described by (34), equation (33) specializes as follows:

L+
2 (x̂) =

det(L2(x̂))adjL2(x̂) + �L2(x̂)

(det(L2(x̂)))
2 + �

4
∑

i=1

l2i (x̂) + �2

(35)

where det(L2(x̂)) = l1(x̂)l4(x̂) − l2(x̂)l3(x̂) is the determinant of

L2(x̂) and adjL2(x̂) =

[

l4(x̂) −l2(x̂)
−l3(x̂) l1(x̂)

]

is the adjoint of matrix

L2(x̂). From equation (35), one notices that:

∙ In all the points x̂ where the matrix L2(x̂) is invertible, or more
precisely where det(L2(x̂)) >> �, � being an arbitrarily small

positive number, one has L+
2 (x̂)#

adjL2(x̂)

det(L2(x̂))
= L−1

2 (x̂).

∙ When the matrix L2(x̂) is singular, L+
2 (x̂) is a normalized

version of L2(x̂) .

According to the above developments and using the decomposition of
GΦ(x̂) under form (11), the approximation of the inverse of GΦ(x̂),
denoted by G+

Φ(x̂), can be written as follows:

G+
Φ(x̂) = U−1(x̂)L+(x̂) (36)

=

[

G−1
1 (x̂) −G−1

1 (x̂)G2(x̂)
02 I2

]

×

[

I2 02
−L+

2 (x̂)G3(x̂)G
−1
1 (x) L+

2 (x̂)

]

Δ
=

[

Υ1 Υ2

Υ3 Υ4

]

where

Υ1 = G−1
1 (x̂) +G−1

1 (x̂)G2(x̂)L
+
2 (x̂)G3(x)G

−1
1 (x)

Υ2 = −G−1
1 (x̂)G2(x̂)L

+
2 (x̂)

Υ3 = −L+
2 (x̂)G3(x̂)G

−1
1 (x) and Υ4 = L+

2 (x̂) (37)

Using (37), the matrix ΛU (x̂) intervening in the equation of observer
(32) can then be computed as follows:

ΛU (x̂) =

[

I2 02×4

04×2 G+
Φ(x̂)

]

To summarize, the observer (27) for the IM specializes as follows:

⎧





















⎨





















⎩

˙̂
i = NF (!̂) ̂ − 
î+

1

�Ls
u− k1�ĩ

˙̂
 = −F (!̂) ̂ +

M

Tr
î− �2

(

k2(G
−1
1 (x̂)

+G−1
1 (x̂)G2(x̂)L

+
2 (x̂)G3(x)G

−1
1 (x))

−k3�G
−1
1 (x̂)G2(x̂)L

+
2 (x̂)

)

ĩ
(

˙̂!
˙̂
TL

)

=

(

pM

JLr
îT J2 ̂ −

1

J
T̂L

0

)

−�2
(

k2L
+
2 (x̂)G3(x̂)G

−1
1 (x)− k3�L

+
2 (x̂)

)

ĩ

(38)

where ĩ = î − i, i being the available current measurements. Notice
that the gain matrix K in observer (38) has been chosen as: KT =
(k1I2 k2I2 k3I2).

5. SIMULATION RESULTS

The performances of the proposed observer shall be illustrated in
simulation in this section. To this end, a dedicated benchmark has
been defined. It particularly allows to test the observer performances
in open loop around the unobservability region defined in the above
section. The dedicated benchmark is defined by specifying the fol-
lowing operating conditions during simulation which started at 0s
and ended at 11s (Ghanes and Zheng [2009]):

∙ Low speed with nominal load from 1s to 3s.
∙ High speed with nominal load from 4s to 6s.
∙ Very low speed (zero frequency, the IM is unobservable) with
nominal load from 7s to 9s.
∙ The norm of the fluxes vector, ∥ (t)∥, is constant and equal to 0.6
Wb along the experiment i.e. from 0s to 11s.

In order to obtain the desired trajectory of the speed, !̄, a signal
satisfying the above requirements, namely !in has been considered
as the input of a filter with a pole of order three placed in (-30). The
three states of the filter are then the motor desired speed, z̄1 and
its first and second time derivatives that shall be denoted by ˙̄z1 and
¨̄z1, respectively. Similarly, the desired trajectory of the load torque,
T̄L is obtained as the output of a filter with a double pole in (-30)
to which the piecewise constant signal, TLin, satisfying the above
requirements, is applied. The two states of the second filter are then
the applied load torque, T̄L and its first time derivative that shall be

denoted by ˙̄TL.

The voltage, ū allowing the obtaining of the above desired state
trajectories is computed as in (Hajji et al. [2008]) where the authors
proposed a high gain control law for the induction model. One
emphasizes that the model is not controlled during simulation but
is in an open loop. The above expressions of the inputs only allow
to obtain the desired trajectories. The parameters values used to
simulate model (1) and observer (38) correspond to a 1.5kW IM.
These are:

p = 2; Ls = 0.105H; M = 0.094H; J = 0.0077Kg.m2

Lr = 0.094H; Rs = 1.47Ω; Rr = 0.79Ω

The initial values for the non measured states,  ̂(0), !̂(0) and T̂L(0)
are arbitrarily set to zero which give rise to a non zero initial
observation error. Notice that, and as stated above, the reference
trajectories have been chosen such that the IM becomes unobservable
between 7s and 9s. In order to put forward the performance of
the observer, the inputs of the IM model have been corrupted
by an additive constant between 8s and 8.5s i.e. when the IM
is unobservable. This perturbation is unknown by the observer.
Estimation results are reported in Figure 1 that clearly shows the
good performance of the observer in providing accurate estimate even
in the case where the unobservability region is met. The obtained
results suggest the following comments:

- At the beginning of the simulation, the IM model is observable
and the estimates provided by the observer quickly converge
to the unknown trajectories in spite of the erroneous state
observer initial conditions.

- At the time 7s, the IM model becomes unobservable but
each state of the observer coincide at that moment with the
corresponding state of the IM model. So, there is no error on the
initial conditions at the entry of the unobservability region and
the provided estimates still coincide with the true trajectories.

- Between 8s and 8.5s the IM model has been corrupted by a
disturbance which is unknown by the observer. Since the IM
model still be unobservable, the provided estimates deviated
from the real values. But as soon as the IM model becomes
observable (at 9s), these estimates quickly converge to the true
trajectories.
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Fig. 1. Estimation results for ∥ ∥, ! and TL

Recall that, the time evolution of the load torque as well as the
moments when the IM model becomes unobservable are not known
by the observer which still run with the same value of the tuning
parameters: � = 100, k1 = k2 = 3, k3 = 1. The value of the
parameter � has been fixed to 10−8.

6. CONCLUSION

In this paper, a simple observer is derived to estimate the full state of
the IM from the current and voltage measurements. The simplicity
of the proposed observer lies in the ease of its implementation and
calibration. Indeed, the gain of the observer does not necessitate
the resolution of any dynamical system and is explicitly given. The
observer synthesis was preceded by an observability analysis that
allowed to derive a sufficient condition ensuring the observability of
the IM model. Simulation experiments around the unobservability
neighborhood have been carried out and the obtained results clearly
demonstrated the good ability of the proposed observer in providing
accurate estimates of the missing states. The use of the proposed

observer in sensorless feedback control scheme is under study and
will be presented in forthcoming works.
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