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In this paper we present a new credal classification rule (CCR) based on belief functions to deal with the

uncertain data. CCR allows the objects to belong (with different masses of belief) not only to the specific

classes, but also to the sets of classes called meta-classes which correspond to the disjunction of several

specific classes. Each specific class is characterized by a class center (i.e. prototype), and consists of all the

objects that are sufficiently close to the center. The belief of the assignment of a given object to classify

with a specific class is determined from the Mahalanobis distance between the object and the center of

the corresponding class. The meta-classes are used to capture the imprecision in the classification of the

objects when they are difficult to correctly classify because of the poor quality of available attributes. The

selection of meta-classes depends on the application and the context, and a measure of the degree of

indistinguishability between classes is introduced. In this new CCR approach, the objects assigned to a

meta-class should be close to the center of this meta-class having similar distances to all the involved

specific classes' centers, and the objects too far from the others will be considered as outliers (noise). CCR

provides robust credal classification results with a relatively low computational burden. Several

experiments using both artificial and real data sets are presented at the end of this paper to evaluate

and compare the performances of this CCR method with respect to other classification methods.

1. Introduction

The classical methods of classification have been developed at

first in the probability theory framework. These methods compute

the probability assignments of the objects in different specific

classes. The final assignment (classification) of an object is deter-

mined by the class committed with the highest probability value.

In the classification of uncertain data, the different classes can partly

overlap, and the objects in the overlapped zones are really hard to be

correctly classified into a particular class due to the insufficient

attributes information. Probability theory framework are not well

adapted to characterize such uncertainty and imprecision [1–3].

The belief functions (BF) [4–8] introduced in Dempster–Shafer

theory (DST) have been widely used to model the uncertain and

imprecise information for data clustering [9–11], data classification

[12–17], image processing [18,19], and for information fusion [20–22].

A new concept, called credal partition, based on belief functions for the

unsupervised data clustering has been introduced by Denœux and

Masson in [10]. The credal partitioning allows the objects to belong to

the specific classes, and to the sets of classes with different belief mass

assignments. This provides a deeper insight in the data. An EVidential

CLUStering (EVCLUS) [10] algorithmworking with credal partition has

been developed for relational data. An Evidential C-Means (ECM) [9]

clustering method inspired from the Fuzzy C-Means (FCM) [23], and a

Noise-Clustering algorithm [24] have also been proposed for the credal

partition of object data. However, ECM can produce very unreasonable

results when the different classes' centers are sufficiently close. This

serious drawback has been clearly shown and discussed in [11]. In our

previous related works, we have developed a method called belief

C-means (BCM) [11] to overcome the limitation of ECM by adopting

another interpretation of the meta-class. An evidential EM algorithm

[25] has been recently proposed for the parameter estimation in

statistical models when the uncertainty on the data can be modeled

by belief functions. Some supervised data classification methods [15]

have been also developed based on DST. The model-based classifiers

[15] have been proposed by Denœux and Smets based on Smets'

transfer belief model (TBM) [6–8]. An evidential version of K-nearest

neighbors rule (EK-NN) is proposed in [13], and a neural network

classifier based on DST is presented in [26]. All these evidential

classifiers consider only as possible assignment solution the specific

classes, and one extra class (i.e. the ignorant class) which is defined by

the disjunction of all the specific classes. In these supervised methods,

the meta-classes1 (i.e. the partially ignorant classes) are not considered

as useful solutions of the credal classification.
n Corresponding author. Tel.: þ86 2988431366.

E-mail addresses: liuzhunga@gmail.com (Z.-g. Liu),
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(G. Mercier). 1 Defined by the disjunction of several specific classes.
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In our opinion, the meta-classes play an important role to

characterize the imprecision of classification of the objects. The

objects hard to classify should be reasonably committed to the

meta-class, which can well reflect the imprecision (ambiguity)

degree of the classification, and reduce the misclassification errors

as well. In our very recent work, a belief K-nearest neighbor (BK-

NN) classifier [14] working with credal classification has been

developed to deal with uncertain data by considering all possible

meta-classes in the process. Such method however requests a high

computational burden which is usually the main drawback of all

K-NN alike methods [27]. The purpose of this paper is to propose a

new straightforward and more simple mathematical solution,

called Credal Classification Rule (CCR), for computing the basic

belief assignments of uncertain data for their credal classification.

The interest of credal classification mainly resides in its ability

to commit objects to the meta-classes rather than to the specific

classes when the information is insufficient for making it correctly.

By doing so, we preserve the robustness of the result and we

reduce the risk of misclassification errors. Of course the price to

pay is the increase of the non-specificity of the classification. In

some applications, specially those related to defense and security,

like in target classification and tracking, it is very crucial to

maintain such robustness than to provide immediately (with high

risk of error) a precise classification. The credal classification can

be very helpful to manage external (possibly costly) complemen-

tary resources in order to reduce some particular ambiguities. Our

approach is very helpful for requesting (or not) a complementary

information sources (if possible and available) in order to get more

precise reliable classification results, and to reduce dramatic errors

in the final decision-making process.

In this new CCR approach, each specific class is characterized

by the corresponding class center (i.e. prototype) computed from

the training data. The center of a meta-class is calculated based on

the centers of specific classes included in the meta-class. In the

multi-class classification problem, there are usually only few (not

all) classes that partly overlap, and most classes that are in fact far

from each other can be well separated. The meta-class defined by

the union of the classes that are far from each other are not useful

in such applications. In order to reduce the computational com-

plexity, we just need to select the useful meta-classes according to

the context of the application under concern. The belief mass

assignment of the object to classify with each specific class is

determined based on the Mahalanobis distance between the

object and the corresponding specific class center. Intuitively, the

object committed to a specific class should be very close its center.

If the object to classify is assigned to a meta-class, it means that

the true class of the object is among the specific classes included

in the meta-class but we do not know which one precisely. The

ratio of the maximum distance of the object to the involved

specific classes' centers, over the minimum distance, is introduced

to measure the degree of distinguishability of these classes. Thus,

the belief mass of a meta-class is determined from the distance

between the object and the center of meta-class and its corre-

sponding ratio value. An object will be committed to a meta-class

with a high belief mass as soon as it is located at (almost) the same

distances of several specific classes centers. Because in that case, it

means that the object is very difficult to be correctly classified into

a specific class. CCR provides credal classification results with low

computational burden due to the simple working principle.

After a brief presentation of belief functions in Section 2, we

state in Section 3 the principles of CCR and the mathematical

computation of bba's for the credal classification. In Section 4, we

present some classification results based on artificial and real data

sets, and we compare the performances of the CCR with respect

to well-known classification methods. Conclusions are given in

Section 5.

2. Basics of belief functions theory

The belief functions have been introduced by Shafer in 1976 in

his Mathematical Theory of Evidence known also as Dempster–

Shafer Theory (DST) [4–8]. Let us consider a finite discrete set

Θ¼ fθ1;θ2;…;θhg of h41 mutually exclusive and exhaustive

hypotheses θi, i¼ 1;2;…;h. This set Θ is called the frame of

discernment of the problem under consideration. The power-set

of Θ, denoted 2Θ, includes all the subsets of Θ. It is defined by

2Θ ¼ fAjADΘg ð1Þ

For example, if Θ¼ fθ1;θ2;θ3g, then 2Θ ¼ f∅;θ1;θ2;θ3;θ1 [ θ2;

θ1 [ θ3;θ2 [ θ3;θ1 [ θ2 [ θ3g.

In the frame of discernment Θ, each element (e.g. θiAΘ)

represents one single hypothesis, and it characterizes one class

in this work. The union θi [ θj � fθi;θjg of two elements2 θi and θj
is interpreted as the proposition “the truth value of unknown

solution of the problem under concern is either in θi, or in θj, and
θi and θj are undistinguishable”.

A basic belief assignment (bba) is a functionmð�Þ from 2Θ to [0, 1]

satisfying

∑
AA2Θ

mðAÞ ¼ 1 ð2Þ

The subsets A of Θ such that mðAÞ40 are called the focal elements of

mð�Þ. The credal partition [9,10] is defined as n-tupleM¼ ðm1;…;mnÞ,

wheremi is the basic belief assignment of the object xiAX, i¼ 1;…;n

associated with the different elements of the power-set 2Θ. The mass

of belief of meta-class can well reflect the imprecision (ambiguity)

degree of the classification of the uncertain data.

From any bba mð�Þ, the belief function Belð�Þ and the plausibility

function Plð�Þ are defined for 8XA2Θ as

BelðXÞ ¼ ∑
YA2Θ jYDX

mðYÞ

PlðXÞ ¼ ∑
YA2Θ jX\Ya∅

mðYÞ

8

>

>

<

>

>

:

ð3Þ

Bel(X) represents the whole mass of belief that comes from all

subsets of Θ included in X. It is interpreted as the lower bound of

the probability of X, i.e. PminðXÞ. Belð�Þ is a sub-additive measure

since ∑θi AΘBelðθiÞr1. Pl(X) represents the whole mass of belief

that comes from all subsets of Θ compatible with X (i.e. those

intersecting X). Pl(X) is interpreted as the upper bound of the

probability of X, i.e. PmaxðXÞ.

The Pignistic probability (or betting probability) transformation

BetPð�Þ introduced by Smets [6,7] is commonly used to transform

any bba mð�Þ into a probability measure for the decision-making

support based on the maximum of BetPð�Þ value. Mathematically,

BetP(A) is defined 8AA2Θ\f∅g by

BetPðAÞ ¼ ∑
BA2Θ ;ADB

jA \ Bj

jBj
mðBÞ ð4Þ

where jXj is the cardinality of the element X (i.e. the number of the

singleton elements in X, for example if X ¼ θi [ θj then jXj ¼ 2).

In DST [4], the combination of distinct bba's is done by

Dempster's rule of combination. This paper only focuses on the

construction of bba mð�Þ in the credal classification context and

does not concern the combination of bba's.

2 Since there is one-to-one mapping between propositions and sets [4], the

union set operator is equivalent to the disjunction operator of propositions. Hence,

θ1 [ θ2 [ … [ θh �Θ.
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3. Credal classification rule (CCR)

In this section we present in detail the Credal Classification

Rule (CCR) for classifying uncertain data. CCR provides a simple

and an efficient way to compute the belief mass of the assignment

of the object with the specific classes, with the meta-classes

(which characterize the partial imprecision of class), and with

the outlier class (i.e. the full ignorant class). The CCR consists of

two main steps: (1) the determination of centers of the specific

and meta classes , and (2) the construction of the bba's based on

the distances between the object and each class center.

3.1. Determination of the centers of classes

Let us consider a given set of data X ¼ fx1; x2;…;xng, where the

vectors xiði¼ 1;…;nÞ have to be to classified over a frame of

discernment Ω¼ fw0;w1;…;whg using the training data set

Y ¼ fy1; y2;…;ygg. The element w0 is explicitly included in the

frame Ω to represent the unknown extra class for the closure of

the frame.

The center of each specific class of Ω can be obtained in many

ways.3 For instance, one can use a given data pdf model, or the

average of training data, or the centers produced by an unsuper-

vised clustering (estimation) method (e.g. FCM, EM, etc). In this

work, the center of each specific class is simply defined by the

mean value of the training data Y ¼ fy1; y2;…; ygg in the corre-

sponding class. It is assumed that C ¼ fc1;…; chg are given, and

correspond to the centers of the specific classes w1,…, wh. For

j¼ 1;2;…;h, the center cj is defined 8yiAwj by

cj ¼
1

Sj
∑

yi Awj

yi ð5Þ

where Sj is the number of training samples in the class wj.

The interest of the credal classification is taking into account of

the meta-classes that are used to model the imprecision of the

class of the object to classify. In the ECM [9] method, each class is

characterized by its class center, and the center of meta-class is

the simple mean value of the involved specific classes' centers.

The mass of belief committed to each class is proportional to the

distance between the object and the corresponding class center.

The bigger distance leads to the smaller mass of belief. Unfortu-

nately, the determination of the bba proposed by the ECM

approach is not very efficient because the mean value of vector

cannot well represent the meta-class. Indeed, the arithmetic mean

value of the specific classes' centers generally does not take the

same distance to the each center of the associated specific class.

Because of this, the centers of the involved specific classes become

distinguishable of the center of the meta-class if one applies the

ECM approach. This ECM behavior is not very good because the

meta-class should fairly reflect the real impossibility to distinguish

the involved specific classes for the object belonging to this meta-

class.

To palliate the aforementioned major drawback of ECM, we

propose a new method to determine the center of the meta-

classes. Basically in our approach, an object to classify will be

committed to a meta-class (e.g. wi [ wj… [ wk), as soon as all the

specific classes (e.g. wi, wj, …, wk) become undistinguishable for

this object according to the distance measures. Therefore, we

argue that the center of a meta-class must be located at the same

distances of all the centers of the specific classes included in the

meta-class under consideration.

For instance, let us consider the simplest meta-class (e.g.

U ¼wi [ wj) having a cardinality equals to two, e.g. jUj ¼ 2. The

meta-class center, denoted cU , should be at the same distance to

all the specific classes' centers include in U, which are ci and cj.

Therefore, the following condition must be satisfied:

dðcU ; ciÞ ¼ dðcU ; cjÞ ð6Þ

Eq. (6) represents only one constraint, and it can produce only one

solution of cU when the dimension of the vector cU (i.e. the number

of the attributes of data) is exactly one. If the dimension of cU is

bigger than one, there are many possible solutions for cU . Then, we

will select the one which is closest to all the centers of the specific

classes included in U, and given by arg½mincU ∑wj AU ðdðcU ; cjÞÞ�

because the meta-class center should be also simultaneously close

to all the involved specific classes as much as possible.

It is worth noting that Mahalanobis distance (i.e. the normalized

Euclidean distance) is used in this work to deal with the anisotropic

data sets. This distance between two vectors cU and ci is given by

dUi9dðcU ; ciÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

k ¼ 1

ðcU ðkÞ�ciðkÞÞ
2

δiðkÞ
2

s

ð7Þ

where N is the number of dimensions (attributes/features) of cU and

ci, and δiðkÞ is the standard deviation of the training data of class wi

in its k-th dimension.

The object committed to a meta-class (e.g. U ¼wi [ wj) indicates

that it must truly belong to one of the specific classes included in this

meta-class, but these specific classes are not very distinguishable for

this object. So the meta-class center should be closer to the centers of

these involved specific classes than to other incompatible classes'

centers.4 Therefore, the following condition must be satisfied:

max
wi AU

dUiomin
wk =2U

dUj ð8Þ

If the condition given by Eq. (8) is fulfilled, then one considers

that the meta-class U must be kept as a potential solution of the

classification, i.e. as a focal element of the bba. Otherwise, if the

meta-class center is closer to the center of an incompatible specific

class wk =2U than to the center of a specific class wiAU, it indicates

that the objects close around the center cU should belong more

likely to the specific class wk =2U rather than to wiAU. In such case,

this meta-class U cannot be considered as effective5 for the

classification solution, and the center cU should be eliminated to

reduce the computational burden by reducing the number of focal

elements of the bba.

Fig. 1 illustrates the selection of the meta-class. One considers a

three class problem with Ω¼ fw1;w2;w3g and the corresponding

set of centers fc1, c2, c3g as shown in Fig. 1. One sees that the class

w2 partly overlaps w1 and w3, whereas w2 and w3 are well

separated. The meta-class center c1;2 is more close to c1 and c2
than to c3. So the meta-class6 w1 [ w2 is considered acceptable

and its center c1;2 should be kept for the determination of the

mass of belief (see Section 3.2 for details). For a similar reason, the

meta-classw2 [ w3 with the center c2;3 is also acceptable. However,

the center c1;3 is closer to the incompatible class' center c2 than to

c1 and to c3 which indicates that the objects around c1;3 will more

3 It is worth noting that there is no class center corresponding to the outlier

class w0. The meta-classes involving wo do not enter in CCR because w0 plays the

role of the default (closure) class which will contain all data points that cannot be

reasonably associated within 2Θ\fwog .

4 The elements A and B are considered incompatible if A \ B¼∅, and

compatible if A \ Ba∅.
5 Because it is very likely that the specific classes (e.g. wi and wj) in U are

separated by the class wk. The classes wi and wj in fact do not overlap, and so no

object need to be assigned to the meta-class U ¼wi [ wj .
6 Actually according to Fig. 1, the overlapped zone between w1 and w2 should

better correspond to w1 \ w2 . Because in this work we do not allow an object to

belong simultaneously to several distinct classes, the object in the overlapped zone

is supposed to belong to one class only, but we cannot exactly determine precisely

which class (w1 or w2). So the meta-class w1 [ w2 , which is more coherent with

our interpretation here than w1 \ w2 , is used to represent the overlapped zone.
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likely belong to the class w2. Consequently, the meta-class w1 [ w3

will not be taken into account in the credal classification, and its

center c1;3 is useless for the determination of the bba because one

will take mðw1 [ w3Þ ¼ 0 in that case.

Let us consider the more general situation with the cardinality

value of the meta-class bigger than two (i.e. jUjZ3). If the meta-

class U is accepted7 in the credal classification, it indicates that all

the specific classes included in U should be undistinguishable for

the objects committed to this meta-class. So all the subsets (i.e. the

sub-meta-classes) of U should be also acceptable before entering

the calculation of meta-class center cU . If one meta-class A� U is

considered unacceptable, it means that several specific classes in A

can be distinguished by all the objects, and there is no necessity to

preserve the meta-class A as a focal element of the bba. In that

case, the meta-class U of course becomes unacceptable (useless),

and we do not need to calculate its center. If all the subsets of U are

acceptable, then one can go for the computation of the center cU to

determine mðUÞ40.

Because the center cU must be located at the same Mahalanobis

distance with respect to all centers of the specific classes included

in U, the following conditions must hold:

dðcU ; ciÞ ¼ dðcU ; cjÞ; 8wi; wjAU; ia j: ð9Þ

Since one can obtain a set of jUj�1 independent constraints from

Eq. (9), there will be only one solution of cU when the number of

the available attributes of data is equal to jUj�1. If the number

of attributes is bigger than jUj�1, there exist many solutions

for cU . If so, we will select the solution which is closest to all

the centers of the specific classes included in U, and given

by arg½mincU ∑wj AU ðdðcU ; cjÞÞ�. If the dimension of cU is smaller

than jUj�1, one has to solve an optimization problem to seek

the solution for cU that should be satisfied with all the constraints

as much as possible, such as for 8wi;wjAU; ia j, arg½mincU

∑wi ;wj AUðdðcU ; ciÞ�dðcU ; cjÞÞ
2�. This can be done using any classical

nonlinear optimization method. In this work, we seek the solution

using the classical nonlinear least squares estimate method [28].

Moreover, cU should be also satisfied with the constraint given

by Eq. (8). Otherwise, this meta-class cannot be included in the

credal classification results. In real applications, many unaccepta-

ble meta-classes will be eliminated through this step, and we just

consider only the selected acceptable meta-classes as true focal

elements of the bba. By doing so, we greatly reduce the computa-

tional complexity, which is very appealing for most engineering

applications.

3.2. Construction of bba's

Let us consider a particular object xsAX; s¼ 1;…;n to classify

over the frame of discernment Ω¼ fw0;w1;…;whg using the

framework of the belief functions. The mass of belief of the specific

class (e.g. wi) should depend on the Mahalanobis distance

between the object and the corresponding center of class, and

the bigger distance generally leads to the smaller mass of belief.

If xs is more close to a specific class center (e.g. ci), it indicates that

xs belongs very likely to the class wi as done in the classical way.

So the initial mass of xs of a singleton class should be a monotone

decreasing function (denoted by f 1ð�Þ) of the distance between the

object and the corresponding class center, which is denoted as

~mðwiÞ ¼ f 1ðdðxs; ciÞÞ; 8 i¼ 1;…;h ð10Þ

The credal classification approach offers the possibility that the

object belongs with different masses of belief to all the specific

classes, and also to some meta-classes as well. The meta-classes

are introduced as a means for modeling the imprecision of the

class of the object. To reduce the computational burden, we have

shown in the previous step devoted to the determination of meta-

class center how some unacceptable meta-classes can be reason-

ably ignored. Moreover, we can reasonably assume that the object

is close to the true class it belongs to in general. Consequently, the

object should not very likely belong to the classes very far away of

its true class. Based on this remark, we also consider (for the

construction of the bba) the compatibility of the meta-classes

according to the ascending order of the distances between the

object and all the centers of specific classes.

The specific classes are listed in the ascending order of the

distances of xs to the centers as ðwi;wj;wk;…;wgÞ. It means that xs

belongs most likely to wi, then to wj, wk,…, wg. Thus, we just need

to consider only the nested meta-classes wi [ wj, wi [ wj [ wk,…,

wi [ wj [ wk… [ wg because the object xs will not very likely

belong to the other meta-classes.

For example, let us consider the simple frame Ω¼ fw1;w2;w3g,

and an object xs which is the most close to w1, and then to w2, and

then to w3. In that case, we select only the following nested meta-

classes w1 [ w2 and w1 [ w2 [ w3 as potential focal elements.

The meta-class w2 [ w3 is not considered as compatible because

the true class of xs cannot be reasonably compatible with w2 [ w3

only (because xs is in fact the most close to w1). Moreover, if some

selected compatible nested classes appear finally unacceptable

(according to the step of meta-class center determination

described in Section 3.1), they will be ignored in the construction

of the bba for the credal classification of the object.

Once all the acceptable meta-classes of the object xs have been

determined, we can proceed with the computation of the mass of

these meta-classes (i.e. the focal elements of cardinalities greater

than one). The principle of construction of the mass for a meta-

class U is based on the following considerations:

� If an object is committed to a meta-class U, then of course it

should be very close to the center cU of this meta-class.
� the ratio γ ¼ dmax=dmin of the maximum distance dmax of the

object to the centers of the specific classes included in U over

the minimum distance dmin is used to measure the degree of

distinguishability among the classes in U. The smaller ratio

indicates a poor distinguishability degree among the classes in

U from the object. The object committed to a meta-class must

have a small ratio value (close to one) indicating that the

involved specific classes are not very distinguishable for the

object. So the value of the ratio γ will be used to put more or

less mass of belief to the meta-class U.

Fig. 1. Simple illustration of the meta-class selection.

7 Then U is a focal element of the bba.
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Based on these considerations, the mass of belief of assignment

of the object xs with the meta-class U is mathematically defined as

~mðUÞ ¼ f 2ðdðxs; cU Þ; γU Þ ð11Þ

where

dðxs; cU Þ ¼
1

jUj
∑

wi AU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

k ¼ 1

ðxsðkÞ�cUðkÞÞ
2

δiðkÞ
2

s

ð12Þ

γU ¼
maxwi AU dðxs; ciÞ

minwi AU dðxs; ciÞ
ð13Þ

The smaller value of dðxs; cUÞ and γU will yield bigger mass of

belief ~mðUÞ, and vice versa. Hence, f 2ð�Þ should be a monotone

decreasing function with respect to dðxs; cU Þ and γU .
To get good results, the functions f 1ð�Þ and f 2ð�Þ must be

determined according to the application under concern. Unfortu-

nately, we do not find yet general guidelines for the selection of

these functions. This topic of research is actually under investiga-

tions. In this work, we have chosen the exponential decreasing

function because it is commonly used in many engineering

applications [13,18].

In summary, the (unnormalized) masses of belief for the specific

classes and the acceptable meta-classes are finally given by

~mðwiÞ ¼ e�dðxs ;ciÞ ð14Þ

~mðUÞ ¼ e�λUγUdðxs ;cU Þ for jUjZ2 ð15Þ

with λU ¼ ηjUjα . The quantity jUjα is a penalized parameter for the

meta-classes having a big cardinality value. In most cases, the

classification of the object is imprecise only among a small number

of specific classes, and there are usually only few objects to assign

with the meta-classes having big cardinalities. Thus, bigger cardin-

alities generate stronger penalization. η is a tuning parameter used

to control the number of objects committed to the meta-classes.

In practice, we always have to find a good compromise between the

error rate and the imprecision rate. The guidelines for tuning the

parameters are given at the end of this section.

The outlier class w0 is also taken into account to deal with

the case where the potential outliers (noise) can be involved.

The object will be considered as outlier if it is far from all the other

classes according to a given outlier threshold t. The mass of the

object in the outlier class is defined by

~mðw0Þ ¼ e� t ð16Þ

8ADΩ, the previous unnormalized mass of belief ~mð�Þ is normal-

ized as follows:

mðAÞ ¼
~mðAÞ

∑BDΩ ~mðBÞ
ð17Þ

This normalized bba mð�Þ is then used for the credal classifica-

tion of the object xs.

Guidelines for tuning the parameters in the CCR approach: The

parameters α, η and t can be optimized using the training data

with the cross-validation method (e.g. leave-one-out) before the

application of CCR. The bigger penalized parameter α will lead to

smaller number of the objects in the meta-class with big cardin-

ality, and the suitable value can be found according to the

classification results of the training data. Generally, one can take

αA ½1;3�, e.g. 1 or 2. The parameter η is used to control the number

of objects in the meta-classes. The bigger value of η will produce

smaller number of objects committed to the meta-classes. It is

recommended to take ηAð0;1Þ, but the exact value of η can be

tuned according to the imprecision degree (i.e. the rate of the

objects in the meta-classes) of the classification results one can

accept in the application under concern. The outlier threshold t

should be determined according to the outlier rate one expects in

the classification. The bigger t will cause smaller number of

outliers, and we generally recommend to take tA ½2;5�.

4. Evaluation of CCR on artificial and real data sets

In this section we present four experiments to evaluate and

compare the performances of CCR with respect to four classical

methods: (1) the Classification And Regression Tree (CART) [29],

(2) the Artificial Neural Networks (ANN) [30], (3) the EK-NN [13],

and (4) the BK-NN [14]. The experiment #1, based on artificial data

sets, is presented to show the difference between the credal

classification and the classical methods. The experiment #2 allows

to evaluate the performance of CCR with respect to the other

methods based on a 4-class artificial data set. The experiment #3

is used to illustrate the efficiency of CCR for dealing with the large

scale data set. The experiment #4 is based on four real-data sets

from UCI [31]. It shows the advantage of CCR over the other

methods. The different methods in the experiments have been

programmed and tested with MatlabTMsoftware.

In order to show the ability of CCR to deal with the meta-

classes, the class of each object is decided according to the

maximal mass of belief criterion. In CCR, the imprecise objects

do not count really as misclassifications, but as imprecise classi-

fications in fact. In our simulations, a misclassification is declared

(counted) as soon as an object truly originated from wi is classified

into A with wi \ A¼∅. If wi \ Aa∅ and Aawi then it will be

considered as an imprecise classification. In our experiments, the

error rate and imprecision rate are introduced to evaluate the

performance of CCR. The error rate Re is calculated by

Re ¼ ðNe=TÞ � 100%, where Ne is number of misclassification

errors, and T is the number of objects under test. The imprecision

rate RIj is calculated by RIj ¼ ðNIj=TÞ � 100%, where NIj is number of

objects committed to the meta-classes with the cardinality value j.

4.1. Experiment #1 (with artificial data sets)

4.1.1. Test #1: A 2-class problem with artificial data

Two classes of artificial data set w1 and w2 are obtained from

two uniform distributions as shown in Fig. 2(a). Each class has 200

training samples and 200 test samples. The uniform distributions

of the samples of the two classes are characterized by the

following bounds:

x-label interval y-label interval

w1 (4, 6) (0, 10)

w2 (0, 10) (4, 6)

Three classical classifiers (CART, ANN and EK-NN) are compared

with the proposed CCR method. A particular value of K¼9 is

selected here for EK-NN, since it provides good results. The other

parameters in EK-NN are optimized using the method introduced

in [32]. In ANN, we used the feed-forward back propagation

network with epochs¼500 and goal¼0.001 in all the experiments.

In CCR, one has taken α¼ 1, t¼2, and tested two different values

of η to show its influence on the performances of CCR. The

classification results of the objects with the different methods

are given in Fig. 2(b)–(f). For notation conciseness, we have

denoted wte9wtest , wtr9wtraining and wi;…;k9wi [ … [ wk.

The misclassification rate obtained by the different methods is

indicated in the title of each subfigure. The objects of classes w1

and in w2 are distributed over two overlapping areas following
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a cross shape as shown in Fig. 2(a). Obviously, all objects belonging

to the middle of the cross area are really difficult to associate with

a particular class. However, EK-NN, CART and ANN just commit

these objects into a specific class w1 or w2 as shown in Fig. 2(b)–(d).

Such classification methods generate many misclassification errors

(the error rate is about ten percent). CCR provides one more meta-

class w1 [ w2 as shown in Fig. 2(e) and (f). The classes w1 and w2

are undistinguishable for all the objects located in the intersecting

(overlapping) zone. Thus, it is more judicious and prudent to assign

these objects to the meta-class w1 [ w2. By doing this, one greatly

reduces the number of misclassification, and also deeply reveals

the imprecision degree of class of the objects. Once the tuning

parameter η¼ 0:25 increases to η¼ 0:3, the imprecision rate will

decrease but meanwhile the error rate will increase. So one should

find a good compromise between the error rate and imprecision

rate by tuning η in the training data space.
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Fig. 2. Classification results obtained by different methods for a 2-class problem. (a) Original data, (b) classification result by ANN (Re ¼ 9:00), (c) classification result by CART

(Re ¼ 10:75), (d) classification result by EK-NN (Re ¼ 12:25), (e) classification result by CCR with η¼ 0:25 (Re ¼ 4:25;RI2 ¼ 10:25) and (f) classification result by CCR with

η¼ 0:3 (Re ¼ 5:25;RI2 ¼ 7:00).
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4.1.2. Test #2: A 3-class problem with artificial data

In this second test, we consider a particular 3-classes data set in

a round shape as shown in Fig. 3(a). This data set consists of 615

training data points and 617 test data points including two noisy

data (outliers). The radii of the circles for w1;w2 and w3 are

r1 ¼ 10; r2 ¼ 10; r3 ¼ 12. The centers of three circles are located at

c1 ¼ ð0;0Þ, c2 ¼ ð16;0Þ and c3 ¼ ð8;15Þ. CCR is applied for the

classification of this particular data set and it is compared with

the CART, ANN and EK-NN classification methods. A particular

value of K¼9 is also selected in EK-NN. In CCR, we have chosen the

tuning parameters α¼ 2, t¼2 and η¼ 0:4. The classification results

obtained by the different methods are shown in Fig. 3(b)–(e).

The error rate and the imprecision rate of classification results

obtained by the different methods are also given in the title of

each subfigure. In Fig. 3(a), one sees that the three classes w1, w2

and w3 partly overlap on their borders, and the points belonging to
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Fig. 3. Classification results by different methods for a 3-class problem. (a) Original data, (b) classification result by ANN (Re¼14.42), (c) classification result by CART

(Re¼10.86), (d) classification result by EK-NN (Re¼12.68) and (e) classification result by CCR with η¼ 0:4 (Re ¼ 1:13;RI2 ¼ 15:07;RI3 ¼ 3:73).
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the overlapped zones are really difficult to classify correctly due to

their ambiguity. Moreover, two noisy points far from the other

data are included in the test data set. As shown in Fig. 3(b)–(d),

ANN, CART and EK-NN produce only three singleton clusters w1,

w2 and w3 respectively. Thus, most of the points in the overlapped

zone are probably misclassified because of the inherent limitation

of the framework adopted for these methods. These classifiers

cannot detect the noisy data (outliers), and they all commit the

noisy data into the class w3. CCR produces more reasonable credal

classification results in comparison with other methods. The points

in the middle of w1 and w2, w2 and w3 and w1 and w3 are

respectively committed to w1 [ w2, w2 [ w3 and w1 [ w3 as

shown in Fig. 3(e) because these points are really difficult to classify

correctly into a particular class. All of the three classes overlap in

their middle, and the points in this zone are prudently committed

to the meta-class w1 [ w2 [ w3 because their classes are totally

imprecise with respect to w1, w2 and w3. CCR is also able to well

detect the outliers. This example clearly shows the potential interest

of the credal classification done by this new CCR approach.

4.2. Experiment #2 (with artificial data sets)

In this second experiment, the statistics of the performances of

CCR are compared with CART, ANN, EK-NN and BK-NN on a 4-class

artificial data set, which is generated from four 2D Gaussian

distributions characterizing the classes w1, w2, w3 and w4 with

the following means vectors

μ1 ¼ ð0;0Þ;Σ1 ¼ 2 � I

μ2 ¼ ð7;0Þ;Σ2 ¼ 2:5 � I

μ3 ¼ ð15;0Þ;Σ3 ¼ 3 � I

μ4 ¼ ð22;0Þ;Σ4 ¼ 2 � I

There are 3�200 test objects, and the training sets contain 3� N

samples (for N¼200, 300, 500).

For EK-NN and BK-NN methods, the values of K ranging from

5 to 15 neighbors have been tested. The error rates Re, the

imprecision rates RIj , and the computation time t (in seconds)

have been averaged over 10 Monte Carlo runs (i.e. 10 independent

random generation of the data sets). The results obtained with the

different classifiers are shown in Table 1. The BK-NN and CCR have

been tuned to get a good compromise between the misclassifica-

tion error and the imprecision of the results.

The meta-classes with cardinalities bigger than two are not

considered in this application, that is why we did just mention Ri2

in Table 1. One sees in Table 1 that CCR and BK-NN produce

smaller error rate than other methods. This is normal because the

objects that are difficult to classify correctly have been assigned to

the associated meta-classes. In general, the classification results of

BK-NN and CCR are similar. The error rate for CCR is a bit lower

than for BK-NN, but in counterpart the imprecision rate for BK-NN

is lower than for CCR. However, BK-NN requires much more

computational time than CCR, which shows that the computa-

tional burden of BK-NN is much bigger than CCR. CCR consumes

much less time than any other tested methods which indicates

that CCR has the least computational complexity which offers a

strong advantage for some engineering applications with respect

to other methods.

4.3. Experiment #3 (with large scale artificial data sets)

The performance of CCR for dealing with large scale data sets

(i.e. big number of samples with high-dimensional features) is

evaluated in this experiment by comparing CCR with several other

classical methods8 (ANN, CART and EK-NN).

In this experiment, an artificial data set with four class w1, w2,

w3 and w4 is generated from four 30D Gaussian distributions with

the means vectors and covariance matrices as follows:

μ1 ¼ zerosð1;30Þ;Σ1 ¼ 10 � I

μ2 ¼ 5 � onesð1;30Þ;Σ2 ¼ 10 � I

μ3 ¼ 20 � onesð1;30Þ;Σ3 ¼ 15 � I

μ4 ¼ 30 � onesð1;30Þ;Σ4 ¼ 15 � I

Here zerosð1;30Þ represents the 30-dimensional vector with value

of zero in each dimension, and onesð1;30Þ is the 30-dimensional

vector with value of one in each dimension, and I denotes the

30�30 identity matrix.

In each class, we use the same number (i.e. n) of training

samples and test samples. So there are totally N¼ 4� n training

samples and N¼ 4� n test samples, and we take N¼8000, 40 000,

200 000, 1 000 000. In EK-NN, the values of K ranging from 5 to 15

neighbors are tested. It has have been tuned to get a good

compromise between the misclassification error and the impreci-

sion of the results by CCR. The error rates Re, the imprecision rates

RIj , and the computation time t (in seconds) are the average value

over 10 Monte Carlo runs. The results produced by the different

classifiers are illustrated in Table 2. In Table 2, ‘NA’ means ‘Not

Applicable’.

Table 1

Classification results of different methods (in %).

Number of samples ANN (Re, t) CART (Re, t) EK-NN (Re, t) BK-NN (Re ;RI2 ; t) CCR (Re ;RI2 ; t)

N¼200 (13.40,10.8327) (14.17,0.0265) (11.20, 0.5171) (9.06, 5.39, 2.3816) (8.45, 6.53, 0.0125)

N¼300 (12.73,11.8592) (14.23,0.0374) (11.02, 0.6518) (8.89, 3.17, 3.4892) (8.06, 6.20, 0.0140)

N¼500 (13.08,13.0573) (14.55,0.0546) (10.97, 1.1950) (8.28, 4.06, 5.6056) (7.50, 6.12, 0.0156)

Table 2

Classification results of different methods (in %).

Number of samples ANN (Re, t) CART (Re, t) EK-NN (Re, t) CCR (Re ;RI2 ; t)

N¼8000 (33.09, 15.6313) (29.59, 1.2168) (8.46, 47.5023) (5.26, 5.84, 0.2340)

N¼40 000 (35.04, 58.9684) (26.66, 6.4428) (8.25, 1669.1) (5.15, 6.41, 1.1544)

N¼200 000 (33.93, 241.7703) (24.34, 35.1470) NA (5.11, 6.24, 5.8032)

N¼1 000 000 NA (22.25, 200.3053) NA (5.14, 6.16, 29.0162)

8 It is well known that the K-NN based methods (e.g. EK-NN, BK-NN, etc) are

usually not very effective for dealing with the big data set due to the large

computation burden. We have shown that BK-NN can produce results similar to

CCR, but it requires more computational time than CCR, EK-NN and CART. So we

just use the EK-NN method here to compare its performance with CCR.
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We can see that CCR produces the lowest error rate with some

partial imprecision results, since it assigns some objects that are

hard to be correctly classified into the proper meta-classes. Mean-

while, CCR consumes the shortest operation time. EK-NN can

obtain the reasonable classification results, but it requires the

longest running time, which is the main drawback of the K-NN

based methods. EK-NN is even not applicable when the number of

samples is big (i.e. N¼200 000 and N¼1 000 000), since it takes

too long time, which is not convenient in many cases where the

high speed of execution is necessary. ANN and CART cause much

higher error rate than CCR and EK-NN, and they are also much

more time-consuming than CCR. ANN is not applicable for the big

data set (i.e. N¼1 000 000) because of its high computational

burden. So it indicates that CCR is effective for dealing with the

large scale data set thanks to its low computational and complex-

ity burden.

4.4. Experiment #4 (with real data sets)

Four well-known real data sets obtained from UCI Machine

Learning Repository [31] (the Iris, Seeds, Wine and Yeast data sets)

have been tested in this experiment to evaluate the performances

of CCR compared with CART, ANN, EK-NN and BK-NN. For the Yeast

data set, three classes named as CYT, NUC and ME3 are selected

here, since these three classes are close and difficult to discrimi-

nate. The main characteristics of the four data sets are summarized

in Table 3 below. All the detailed information can be found on UCI

repository archive at http://archive.ics.uci.edu/ml/.

The k-fold cross validation is performed on the four data sets by

different classification methods, and k generally remains a free

parameter [33]. We use the simplest 2-fold cross validation9 here,

since it has the advantage that the training and test sets are both

large, and each sample is used for both training and testing on

each fold. The tuning parameter of CCR and BK-NN were optimized

using the training samples. The classification results including Re

and RIj of BK-NN and EK-NN are calculated with values of K

ranging from 5 to 15. The reported error rates Re, the imprecision

rates RIj , and the computation time t (in seconds) for the different

methods are given in Table 4.

In these tests, no object is committed to the meta-class with

cardinality value of three, and that is why we have just given Ri2 in

Table 4. From Table 4, one sees that CCR and BK-NN produce the

smaller error rate than other classical methods. It is normal

because the objects difficult to classify correctly have been reason-

ably and automatically committed to the associated meta-classes.

It shows that the credal classification can effectively reduce error

occurrences, and the meta-classes indicate that the attributes

information is not good enough to obtain the correct specific class

of some objects. In that case, some other complementary sources

of information, or techniques, will be necessary if one wants to

precisely discriminate the objects committed to the meta-classes

with high belief mass value (if a precise classification is absolutely

required). The CCR and BK-NN methods provide similar perfor-

mances for the Iris, Seeds and Yeast data sets according to the

compromise between error rate and imprecision rate. For the

Wine data set, CCR yields the lowest error rate due to its inherent

working principle which is very different of the other classifiers.

It is worth noting that BK-NN requires a very long running time

due to the heavy computational load. The proposed CCR method

requires less computational time than the other methods. This

shows again that CCR working with credal classification can deal

efficiently with uncertain data using belief functions with a serious

computational complexity advantage over other methods.

5. Conclusions

A new simple and effective credal classification rule (CCR)

based on the belief functions has been presented in this work to

deal with the classification of uncertain data. CCR strengths the

robustness of results by reducing the misclassification errors

thanks to the introduction of meta-classes. The CCR approach is

also able to detect the outliers in the data sets. In CCR, each

specific class corresponds to a center (i.e. prototype) obtained

using the training data, and the center of meta-class is located at

the equal Mahalanobis distances to all the centers of the involved

specific classes. Mahalanobis distance is used here to deal with the

anisotropic data sets. The acceptable meta-classes are selected

according to the current context and distance ratios, and all the

unacceptable meta-classes are automatically rejected to reduce

the number of focal elements and the computational complexity.

A tuning parameter has been introduced in CCR to control the

number of objects in the meta-classes. The output of CCR can be

used efficiently to alert the classification system designer that

other complementary information sources are necessary to

remove (or reduce) the ambiguity of the classification of some

particular data points. Several experiments using both the artificial

and real data sets have been presented to evaluate the performance

Table 3

Main information of the real data sets used in our tests.

Name Classes Attributes Instances

Iris 3 4 150

Seeds 3 7 210

Wine 3 7 255

Yeast 3 9 683

Table 4

Classification results of different methods (in%).

Data sets ANN (Re, t) CART (Re, t) EK-NN (Re, t) BK-NN (Re ;RI2 ; t) CCR (Re ;RI2 ; t)

Iris (4.00,4.5708) (5.33,0.0156) (3.98, 0.0094) (2.12, 6.67, 0.0581) (2.00, 6.67, 0.0000)

Seeds (16.665,9.3289) (11.90,0.0234) (10.57, 0.0296) (7.71, 4.16, 0.0971) (7.14, 6.19, 0.0000)

Wine (33.71, 8.4553) (8.89,0.0312) (28.94, 0.0135) (22.11, 11.80, 0.0737) (3.37, 0, 0.0078)

Yeast (51.42,9.9841) (37.73,0.0936) (36.51, 0.2366) (27.76, 14.42, 2.4350) (25.31, 19.43, 0.0156)

9 More precisely, the samples in each classes are randomly assigned to two sets

S1 and S2 having equal size. Then we train on S1 and test on S2, and reciprocally.
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of CCR with respect to other methods. Our results show that CCR is

able to provide good credal classification results with a relatively

low computational complexity with respect to other methods. Belief

functions provide an effective tool to model the uncertainty and

imprecision of data. It is possible to incorporate belief functions into

other methods (e.g. CART, ANN, etc) to improve the classification

performance, and we will make more investigations on this topic in

our future research work.
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