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High gain observer based synchronization for a

class of time-delay chaotic systems. Application to

secure communications.
Estelle Cherrier, Mohammed M’Saad

Abstract—This work investigates high gain observer design to
synchronize a time-delay chaotic system. It is shown that the
underlying class of nonlinear systems can be put into the
canonical observable form, and thus high gain observer design
framework can be extended to chaotic synchronization problem.
Our approach is motivated by its simplicity of implementation:
the observer gain synthesis relies on the explicit resolution
of a time-invariant algebraic Lyapunov equation, which leads
to a single parameter design. The proposed synchronization
scheme is validated in a real-time experimental setup, based on
Analog/Digital dSpace electronic device. At the end of the paper
an information transmission process is provided, based on the
previous synchronization scheme.

Index Terms—Chaos synchronization, high-gain observer, time-
delay system

I. INTRODUCTION

If state estimation of linear systems has been widely treated

through the last four decades, the nonlinear case, which

concerns most of physical processes, remains however an

open and very active research field. Among the recent

applications of nonlinear state estimation theory, chaotic

synchronization represents a pregnant issue, even if the words

”chaos” and ”synchronization” themselves have seemed

incompatible for a long time. Indeed, on the one hand, the

word ”synchronization” come from the Greek roots συγ (syn),

which means ”with”, and χρoνoς(chronos), which means

”time”. Hence we can give a first definition of synchronization

notion: it characterizes two systems having the same behavior

at the same time. In fact, synchronization effects have

been observed since the XVIIth century, when the Dutch

mathematician Huygens noticed the synchronization of two

pendulum clocks placed against the same wall. Consequently,

synchronization was reserved to periodic systems (two signals

were said synchronized if their periods were identical). On

the other hand, among nonlinear systems, chaotic systems

are characterized by a very complex behavior, asymptotically

aperiodic. A priori, the nature of chaotic systems would

seem to challenge the notion of synchronization. No further

attention was paid to this issue, until 1983, and the work

of Yamada and Fujisaka [1]. They noticed that, by coupling

oscillators which on their own evolved chaotically, it was

possible under certain hypotheses to force them to evolve

in an identical manner. This happened even if the two
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systems did not start with the same initial conditions. Despite

this breakthrough, the subject of chaotic synchronization

seemed to have no obvious applications until 1990. In their

pioneering paper [2], Pecora and Carroll gave necessary

and sufficient conditions under which two chaotic systems

would synchronize. They also indicated that by using chaotic

synchronization it might be possible to communicate in a

secure way, by using the chaotic signal as a mask, used

to hide the information-bearing message. This promising

application gave rise to a huge number of papers concerned

with chaotic synchronization. For general surveys on this

subject, the reader is referred to the references [3], [4], [5].

Then synchronization has become a state estimation issue.

The papers [6], [7] have shown that it is possible to estimate

chaotic systems states, using nonlinear control theory.

Indeed, the chaotic transmitter belongs to the wide class of

nonlinear dynamical systems, whereas the receiver can be

viewed as a nonlinear observer of the transmitter system.

Furthermore, nonlinear estimation theory can be used to

design a receiver which synchronizes with the driving system.

This nonlinear control point of view brings many approaches

to the receiver conception problem, and the underlying

synchronization analysis problem. Among the huge amount

of references on this subject, we can quote [8], which builds

an observer-based synchronization scheme, guaranteeing an

exponential synchronization. A generalization to a larger class

of nonlinearities is proposed in [9]. [10] details a particular

observer design, whose gain can be expressed in function

of the desired convergence speed. But other approaches can

also be found in the tremendous literature. For instance, the

synchronization problem is addressed as a chaos suppression

issue in [11]. [12] has established a synchronization criterion

based on a linear feedback control, applied to Chua’s

circuit. [13] deals with a reduced-order observer-based

exponential synchronization scheme, while [14] considers

synchronization as a control problem. A comparison between

different synchronization schemes, applied to well-known

chaotic systems is performed in [15]. Sliding mode observers

theory and an integral observer are used for synchronization

purposes, respectively in [16] and [17]. [18] deals with

synchronization of a class of time-delay chaotic systems,

and proposes a phase-modulation based transmission scheme.

More recently, a new family of chaotic systems has been

exhibited, relying on the multimodel framework, and a

dedicated synchronization process is detailed in [19]. Some

adaptive unknown input observer have been proposed, for



example in [20] or [21]. The former develops an adaptive

unknown input observer for a chaotic transmitter whose

linear part is affected by a time-delay, while the latter is also

concerned with a robust approach to cope with parametric

uncertainties and external disturbances. A new transmitter

is dealt with in [22], called unified chaotic system: when

a parameter is varied, the chaotic attractor is topologically

equivalent to a Lorenz attractor, or a Chen or a Lü one. Most

of the mentioned papers address a chaotic synchronization

problem and propose an application to secure transmissions,

but rarely with a security analysis or a precise exhibition of

what the secret key is. This point will be discussed at the end

of our paper.

In many papers that can be read in the literature, as in several

aforementioned papers, the observer gain design relies on

the resolution of a Linear Matricial Inequality (LMI), thanks

to numerical convex optimization algorithms, provided that

conservative assumptions are fulfilled. What we propose in

this paper is a chaotic synchronization scheme using high-gain

observer framework, extending our recent results detailed in

[23]. In this latter paper, a high gain observer was proposed in

the presence of one (or more) variable and known delay. The

exponential convergence of the observer relies on the resulting

solution of an algebraic Lyapunov equation and leads to an

explicit expression of the observer gain.

The layout of this paper is as follows. Section II presents

high gain observer design for a class of nonlinear time-

delay chaotic systems with a synchronization purpose. The

obtained results are applied in section III to information

transmission, and tested both in simulation and through

real-time experimental setup, based on Analog/Digital dSpace

electronic device.

Notations: throughout this paper, xτ (t) stands for x(t − τ).

II. HIGH-GAIN OBSERVER BASED SYNCHRONIZATION

This section presents a new observer based synchronization

scheme, relying on high gain design framework, for a class

of nonlinear time-delay systems.

A. Time-delay chaotic transmitter

It is claimed in some papers dealing with cryptanalysis (see

[24] for example) that hyperchaotic systems are well suited

for security purpose when used in synchronization and com-

munication schemes. Besides, the presence of a delay in the

dynamics of a nonlinear systems leads to an hyperchaotic

behavior, this has been detailed in ref. [25]. Therefore we

consider the following class of time-delay chaotic systems:

ẋ(t) = Ax(t) + F (x(t)) + H (xτ (t)) (1)

with

A =





−α α 0
1 −1 1
0 −β −γ



 (2)

F (x(t)) =





−αδ tanh(x1(t))
0
0



 (3)

H(xτ (t)) =





0
0

ε sin(σx1(t − τ))



 (4)

Fig. 1 shows the bifurcation diagram of system (1) when the

parameter σ is varied. The reader is referred to ref. [18] for a

thorough study of this chaotic transmitter. Once the transmitter
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Fig. 1. Bifurcation diagram

has been chosen, we address in next subsection the dedicated

receiver design, using high gain observer framework.

B. High gain observer synthesis

Since the pioneering paper of Gauthier et al. [26], which

presents a high gain observer for a class of nonlinear

systems called uniformly observable for all inputs, the

general high gain framework has been extended to larger

classes of nonlinear systems [27] (MIMO systems), [23]

(time-delay systems), as well as larger problems (including

state estimation), such as adaptive observers [28], to mention

just a few.

We present in this paper an extension of the results established

in reference [23] about high gain observer design in the

presence of one (or more) variable and known delay. This

class of high gain observers has, to the authors knowledge,

not yet been applied to time-delay chaotic synchronization.

The advantage of this approach principally remains in its

simplicity of implementation, in the sense that the observer

gain is obtained from the resolution of an algebraic Lyapunov

equation, and can be given explicitly.

The main results of reference [23] are now briefly summed

up.

Consider the following class of nonlinear systems [23]:
{

ẋ(t) = Ax(t) + g(u(t), uτ (t), x(t), xτ (t))
y(t) = Cx(t)

(5)



where x ∈ R
n, y ∈ R, u ∈ R

m, are respectively the state, the

(scalar) output and the input of system (5).

A is the anti-shift matrix:

A =



















0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 . . . . . . . . . 0



















(6)

and the matrix C is defined by:

C =
(

1 0 . . . 0
)

(7)

The components of the nonlinear function g: R
m+2n

→ R
n

are noted gi, i = 1, n and each one of them has a triangular

structure w.r.t. x and xτ , i.e. :

gi(u, uτ , x, xτ ) = gi(u, uτ , x1, . . . , xi, xτ,1, . . . , xτ,i) (8)

We introduce two matrices ∆θ and S, which belong to the

general high gain framework, as follows :

∆θ = diag

[

1
1

θ
. . .

1

θn−1

]

(9)

where θ is a strictly positive real number ;

S is the unique solution of the algebraic Lyapunov equation

below:

S + AT S + SA − CT C = 0 (10)

As in most of works dealing with high gain synthesis, we

make the following assumption (cf. [27]) :

• (H1) The function g is global Lipschitz w.r.t. x and xτ ,

uniformly in u.

Consider the following candidate observer:
{

˙̂x(t) = Ax̂(t) + g(u(t), uτ (t), x̂(t), x̂τ (t))
−θ∆−1S−1CT C(x̂(t) − x(t))

(11)

We give the main theorem of ref. [23] ensuring the conver-

gence of observer (11):

Theorem 1:

Under hypothesis (H1), there exists θ0 > 0 such that for all

θ > θ0, system (11) is an exponential observer for system (5).

Now we will show how the chaotic transmitter (1) can be put

into the canonical form (5)-(9) by an appropriate coordinate

change:
{

ż(t) = Az(t) + g(u(t), uτ (t), z(t), zτ (t))
y(t) = Cz(t)

(12)

with A and C respectively defined by (6) and (7), and g of

the form (8).

The appropriate coordinate change is given by [26]:

z(t) = φ(x(t)) =





x1(t)
Lgx1(t)
L2

gx1(t)



 (13)

where Lgf stands for the Lie derivative operator. If we note

φi, i = 1, 3 the three components of φ, we obtain:

φ1(x(t)) = x1(t)
φ2(x(t)) = −αx1(t) + αx2(t) − αδ tanh(x1(t)
φ3(x(t)) = α(α + 1)x1(t) + α2δ(1 + δ) tanh(x1(t))

+α2δ tanh(x1(t))
2(−x1(t) + x2(t))

−α2δ2 tanh(x1(t))
3

−α(α + 1 + αδ)x2(t) + αx3(t)
(14)

Then following the results of [23], one can explicitly compute

the observer gain for the canonical system (12):

Kz = θ∆θS
−1CT

Once this is achieved, one has to find the expression of

the observer gain in the original coordinates, which can be

expressed as:

K =

(

∂φ

∂x

)

−1

Kz

where

(

∂φ

∂x

)

stands for the Jacobian matrix of function φ.

It has been shown in [27] that only the diagonal terms of

this Jacobian matrix are necessary, the other terms being

controlled. It is also worth noticing the property below [26]:

S−1CT =
(

C1
n C2

n . . . Cn
n

)

where Cp
n =

n!

p!(n − p)!
.

To conclude this section, we have proposed a new synchroniza-

tion scheme, based on high gain observer framework, which

has been recalled, for a time-delay chaotic transmitter.

III. REAL-TIME APPLICATION AND SECURE

TRANSMISSION

The aim of this section is twofold. First we illustrate the

effectiveness of the proposed synchronization scheme in sim-

ulations using Matlab, then in real-time experimental setup,

based on Analog/Digital dSpace electronic device. Finally

this synchronization process will be included in a complete

communication system.

A. Real-time synchronization

We recall the model of the chosen transmitter, and the numer-

ical values of its parameters:






ẋ1(t) = −αx1(t) + αx2(t) − αδ tanh(x1(t))
ẋ2(t) = x1(t) − x2(t) + x3(t)
ẋ3(t) = −βx2(t) − γx3(t) + ε sin(σx1τ (t))

(15)

with

α β γ δ ε σ τ

9 14 5 −1 10 102 0.1

TABLE I
PARAMETERS OF SYSTEM (15)



For the simulation, we choose a fourth-order Runge-Kutta

integration solver, with a constant step fixed to 1 ms.

The following initial conditions have been fixed for the trans-

mitter and the receiver:






x(t) = x̂(t) = (0 0 0)T for t ∈ [−τ, 0[
x(0) = (0.1 0.1 0.1)T

x̂(0) = (−0.1 − 0.1 − 0.1)T

(16)

The value of the tuning parameter θ has been set to 10.

A comparison between the transmitter states and the receiver

state is depicted in figure 2 and shows that identical synchro-

nization is achieved after a few seconds. This synchronization

time can be shortened by using larger values for θ. However

this tuning must be made carefully, since the larger θ is, the

less robust (to additive noise on the transmitted signal y(t))
the observer is.
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Fig. 2. Synchronization of the transmitter states and the receiver states

Now experimental results are performed on two calcula-

tors (Transmitter / Receiver) communicating through Ana-

log/Digital dSpace electronic devices. At the first calculator,

the Matlab-Simulink software simulates the chaotic model

and transmits the output signal y(t) through the dspace card

( using a coaxial cable ) to the receiver. At the receiver, the

second calculator uses the proposed high gain observer based

approach for synchronization. Fig. 3 shows the experimental

results. It can be noticed that experimenting real transmission

conditions inevitably lead to some degradations of the per-

formances: while the first state x1 seems exactly recovered,

some unaccuracies appear during the synchronization of the

second and the third states. These problems have been taken

into account and are under study.

B. Application to information transmission

One proposes to integrate the previous high gain observer

based synchronization scheme into a complete communication

process. The information transmission is performed using the

two-channel principle, as in [18]: a first signal (corresponding

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.6

−0.4

−0.2

0

0.2

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

Time (s)

 

 
x3

x̂3

x2

x̂2

x1

x̂1

Fig. 3. Real-time synchronization

to y(t) defined in (5)) is sent to the receiver, for synchroniza-

tion purpose only. No information about the message is con-

tained in this signal. Then, once synchronization is achieved

at the receiver end, a second signal y2(t) containing the

information (corresponding to an encryption of the message)

is sent. To be able to decrypt the information, the receiver

must possess the secret key, given by the transmitter. This

point has been discussed in [18], where it has been shown

that the parameter σ of the transmitter (5) can play the role of

the secret key. In this case, we are dealing with a symmetric

cryptosystem, since the same key is used to encrypt and

decrypt the information. For lack of place, the security of the

proposed communication scheme will not be longer discussed

here, it would deserve an entire paper.

We give now the expression of the second signal y2(t) which

is used to conceal the information, noted u(t):

y2(t) = x3(t − Tuu(t)) (17)

where we suppose without restriction that u(t) ∈ [0, 1] and Tu

is chosen equal to the fixed integration step.

Then the decryption formula is given by (see [18] for a detailed

proof):

û(t) =
x̂3(t) − y2(t)

Tu
˙̂x3(t)

(18)

where û(t) stands for the deciphered message.

Fig. 4 shows the effectiveness of the proposed cryptosystem

when the following message is chosen: u(t) = 0.5(1 +
sin(2πfot)) with fo = 0.2Hz.

Since the obtained results within the experimental setup were

not totally satisfying, we decide not to make a real-time

transmission trial. We prefer to perform a deeper study of

high gain observer based synchronization. This paper is the

first step in our approach.

IV. CONCLUSION

In this paper we addressed a chaotic synchronization problem.

We propose a specific solution for a class of time-delay
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Fig. 4. Decrypted message u(t) = 0.5(1 + sin(2πfot))

hyperchaotic transmitters, by designing a high-gain observer

as a receiver. We first showed that the considered transmitter

belongs to the class of uniformly observable nonlinear systems

which is dealt with in the high gain framework. Then we

detailed the conception of the receiver, whose efficiency has

been tested not only in simulation using Matlab, but also in

real-time experiment, using dSpace Analog/Digital device. At

the end of the paper, the proposed synchronization scheme has

been used to design a two-channel communication scheme

based on chaotic phase modulation. This paper represents a

first step in using high gain techniques for chaotic synchro-

nization purpose. Further real-time experimentations of chaotic

cryptosystems are under study.
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