Effect of one-, two-, and three-body atom loss processes on superpositions of phase states in Bose-Josephson junctions - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue The European Physical Journal B: Condensed Matter and Complex Systems Année : 2014

Effect of one-, two-, and three-body atom loss processes on superpositions of phase states in Bose-Josephson junctions

Résumé

In a two-mode Bose-Josephson junction formed by a binary mixture of ultracold atoms, macroscopic superpositions of phase states are produced during the time evolution after a sudden quench to zero of the coupling amplitude. Using quantum trajectories and an exact diagonalization of the master equation, we study the effect of one-, two-, and three-body atom losses on the superpositions by analyzing separately the amount of quantum correlations in each subspace with fixed atom number. The quantum correlations useful for atom interferometry are estimated using the quantum Fisher information. We identify the choice of parameters leading to the largest Fisher information, thereby showing that, for all kinds of loss processes, quantum correlations can be partially protected from decoherence when the losses are strongly asymmetric in the two modes.

Dates et versions

hal-01060001 , version 1 (02-09-2014)

Identifiants

Citer

Dominique Spehner, Krzysztof Pawlowski, Giulia Ferrini, Anna Minguzzi. Effect of one-, two-, and three-body atom loss processes on superpositions of phase states in Bose-Josephson junctions. The European Physical Journal B: Condensed Matter and Complex Systems, 2014, 87, pp.157. ⟨10.1140/epjb/e2014-50066-8⟩. ⟨hal-01060001⟩
151 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More