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Saliency Detection for Stereoscopic Images
Yuming Fang, Member, IEEE, Junle Wang, Manish Narwaria, Patrick Le Callet, Member, IEEE,

and Weisi Lin, Senior Member, IEEE

Abstract— Many saliency detection models for 2D images have
been proposed for various multimedia processing applications
during the past decades. Currently, the emerging applications
of stereoscopic display require new saliency detection models
for salient region extraction. Different from saliency detection
for 2D images, the depth feature has to be taken into account
in saliency detection for stereoscopic images. In this paper, we
propose a novel stereoscopic saliency detection framework based
on the feature contrast of color, luminance, texture, and depth.
Four types of features, namely color, luminance, texture, and
depth, are extracted from discrete cosine transform coefficients
for feature contrast calculation. A Gaussian model of the spatial
distance between image patches is adopted for consideration
of local and global contrast calculation. Then, a new fusion
method is designed to combine the feature maps to obtain the
final saliency map for stereoscopic images. In addition, we adopt
the center bias factor and human visual acuity, the important
characteristics of the human visual system, to enhance the final
saliency map for stereoscopic images. Experimental results on
eye tracking databases show the superior performance of the
proposed model over other existing methods.

Index Terms— Stereoscopic image, 3D image, stereoscopic
saliency detection, visual attention, human visual acuity.

I. INTRODUCTION

V ISUAL attention is an important characteristic in the
Human Visual System (HVS) for visual information

processing. With large amount of visual information, visual
attention would selectively process the important part by
filtering out others to reduce the complexity of scene analysis.
These important visual information is also termed as salient
regions or Regions of Interest (ROIs) in natural images. There
are two different approaches in visual attention mechanism:
bottom-up and top-down. Bottom-up approach, which is data-
driven and task-independent, is a perception process for auto-
matic salient region selection for natural scenes [1]–[8], while
top-down approach is a task-dependent cognitive processing
affected by the performed tasks, feature distribution of targets,
etc. [9]–[11].
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Over the past decades, many studies have tried to pro-
pose computational models of visual attention for var-
ious multimedia processing applications, such as visual
retargeting [5], visual quality assessment [9], [13], visual
coding [14], etc. In these applications, the salient regions
extracted from saliency detection models are processed
specifically since they attract much more humans’ atten-
tion compared with other regions. Currently, many bottom-
up saliency detection models have been proposed for
2D images/videos [1]–[8].

Today, with the development of stereoscopic display, there
are various emerging applications for 3D multimedia such
as 3D video coding [31], 3D visual quality assessment
[32], [33], 3D rendering [20], etc. In the study [33], the
authors introduced the conflict met by the HVS while watching
3D-TV, how these conflicts might be limited and how visual
comfort might be improved by the visual attention model.
The study also described some other visual attention based
3D multimedia applications, which exist in different stages
of a typical 3D-TV delivery chain, such as 3D video cap-
ture, 2D to 3D conversion, reframing and depth adapta-
tion, etc. Chamaret et al. adopted ROIs for 3D rendering
in the study [20]. Overall, the emerging demand of visual
attention based applications for 3D multimedia increases the
requirement of computational saliency detection models for
3D multimedia content.

Compared with various saliency detection models proposed
for 2D images, only a few studies exploiting the 3D saliency
detection exist currently [18]–[27]. Different from saliency
detection for 2D images, the depth factor has to to be consid-
ered in saliency detection for 3D images. To achieve the depth
perception, binocular depth cues (such as binocular disparity)
are introduced and merged together with others (such as
monocular disparity) in an adaptive way based on the viewing
space conditions. However, this change of depth perception
also largely influences the human viewing behavior [39].
Therefore, how to estimate the saliency from depth cues and
how to combine the saliency from depth with those from other
2D low-level features are two important factors in designing
3D saliency detection models.

In this paper, we propose a novel saliency detection model
for 3D images based on feature contrast from color, luminance,
texture, and depth. The features of color, luminance, texture
and depth are extracted from DCT (Discrete Cosine Trans-
form) coefficients of image patches. It is well accepted that the
DCT is a superior representation for energy compaction and
most of the signal information is concentrated on a few low-
frequency components [34]. Due to its energy compactness
property, the DCT has been widely used in various signal
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processing applications in the past decades. Our previous study
has also demonstrated that DCT coefficients can be adopted
for effective feature representation in saliency detection [5].
Therefore, we use DCT coefficients for feature extraction for
image patches in this study.

In essence, the input stereoscopic image and depth map are
firstly divided into small image patches. Color, luminance and
texture features are extracted based on DCT coefficients of
each image patch from the original image, while depth feature
is extracted based on DCT coefficients of each image patch in
the depth map. Feature contrast is calculated based on center-
surround feature difference, weighted by a Gaussian model of
spatial distances between image patches for the consideration
of local and global contrast. A new fusion method is designed
to combine the feature maps to obtain the final saliency map
for 3D images. Additionally, inspired by the viewing influence
from centre bias and the property of human visual acuity in
the HVS, we propose to incorporate the centre bias factor
and human visual acuity into the proposed model to enhance
the saliency map. The Centre-Bias Map (CBM) calculated
based on centre bias factor and a statistical model of human
visual sensitivity in [38] are adopted to enhance the saliency
map for obtaining the final saliency map of 3D images.
Existing 3D saliency detection models usually adopt depth
information to weight the traditional 2D saliency map [19],
[20], or combine the depth saliency map and the traditional
2D saliency map simply [21], [23] to obtain the saliency
map of 3D images. Different from these existing methods,
the proposed model adopts the low-level features of color,
luminance, texture and depth for saliency calculation in a
whole framework and designs a novel fusion method to obtain
the saliency map from feature maps. Experimental results on
eye-tracking databases demonstrate the superior performance
of the proposed model over other existing methods.

The remaining of this paper is organized as follows.
Section II introduces the related work in the literature.
In Section III, the proposed model is described in detail.
Section IV provides the experimental results on eye tracking
databases. The final section concludes the paper.

II. RELATED WORK

As introduced in the previous section, many computa-
tional models of visual attention have been proposed for
various 2D multimedia processing applications. Itti et al.
proposed one of the earliest computational saliency detec-
tion models based on the neuronal architecture of the pri-
mates’ early visual system [1]. In that study, the saliency
map is calculated by feature contrast from color, intensity
and orientation. Later, Harel et al. extended Itti’s model
by using a more accurate measure of dissimilarity [2].
In that study, the graph-based theory is used to mea-
sure saliency from feature contrast. Bruce et al. designed
a saliency detection algorithm based on information max-
imization [3]. The basic theory for saliency detection is
Shannon’s self-information measure [3]. Le Meur et al.
proposed a computational model of visual attention based
on characteristics of the HVS including contrast sensitivity

functions, perceptual decomposition, visual masking, and
center-surround interactions [12].

Hou et al. proposed a saliency detection method by the con-
cept of Spectral Residual [4]. The saliency map is computed
by log spectra representation of images from Fourier Trans-
form. Based on Hou’s model, Guo et al. designed a saliency
detection algorithm based on phase spectrum, in which the
saliency map is calculated by Inverse Fourier Transform on
a constant amplitude spectrum and the original phase spec-
trum [14]. Yan et al. introduced a saliency detection algorithm
based on sparse coding [8]. Recently, some saliency detection
models have been proposed by patch-based contrast and obtain
promising performance for salient region extraction [5]–[7].
Goferman et al. introduced a context-aware saliency detection
model based on feature contrast from color and intensity in
image patches [7]. A saliency detection model in compressed
domain is designed by Fang et al. for the application of image
retargeting [5].

Besides 2D saliency detection models, several studies have
explored the saliency detection for 3D multimedia content.
In [18], Bruce at al. proposed a stereo attention framework by
extending an existing attention architecture to the binocular
domain. However, there is no computational model proposed
in that study [18]. Zhang et al. designed a stereoscopic visual
attention algorithm for 3D video based on multiple perceptual
stimuli [19]. Chamaret et al. built a Region of Interest (ROI)
extraction method for adaptive 3D rendering [20]. Both stud-
ies [19] and [20] adopt depth map to weight the 2D saliency
map to calculate the final saliency map for 3D images. Another
method of 3D saliency detection model is built by incorporat-
ing depth saliency map into the traditional 2D saliency detec-
tion methods. In [21], Ouerhani et al. extended a 2D saliency
detection model to 3D saliency detection by taking depth cues
into account. Potapova introduced a 3D saliency detection
model for robotics tasks by incorporating the top-down cues
into the bottom-up saliency detection [22]. Lang et al. con-
ducted eye tracking experiments over 2D and 3D images for
depth saliency analysis and proposed 3D saliency detection
models by extending previous 2D saliency detection mod-
els [26]. Niu et al. explored the saliency analysis for stereo-
scopic images by extending a 2D image saliency detection
model [25]. Ciptadi et al. used the features of color and depth
to design a 3D saliency detection model for the application
of image segmentation [27]. Recently, Wang et al. proposed
a computational model of visual attention for 3D images by
extending the traditional 2D saliency detection methods. In
the study [23], the authors provided a public database with
ground-truth of eye-tracking data.

From the above description, the key of 3D saliency detection
model is how to adopt the depth cues besides the traditional
2D low-level features such as color, intensity, orientation,
etc. Previous studies from neuroscience indicate that the
depth feature would cause human beings’ attention focusing
on the salient regions as well as other low-level features
such as color, intensity, motion, etc. [15]–[17]. Therefore,
an accurate 3D saliency detection model should take depth
contrast into account as well as contrast from other common
2D low-level features. Accordingly, we propose a saliency
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Fig. 1. The framework of the proposed model.

detection framework based on the feature contrast from low-
level features of color, luminance, texture and depth. A new
fusion method is designed to combine the feature maps for the
saliency estimation. Furthermore, the centre bias factor and the
human visual acuity are adopted to enhance the saliency map
for 3D images. The proposed 3D saliency detection model
can obtain promising performance for saliency estimation for
3D images, as shown in the experiment section.

III. THE PROPOSED MODEL

The framework of the proposed model is depicted as Fig. 1.
Firstly, the color, luminance, texture, and depth features are
extracted from the input stereoscopic image. Based on these
features, the feature contrast is calculated for the feature map
calculation. A fusion method is designed to combine the
feature maps into the saliency map. Additionally, we use the
centre bias factor and a model of human visual acuity to
enhance the saliency map based on the characteristics of the
HVS. We will describe each step in detail in the following
subsections.

A. Feature Extraction

In this study, the input image is divided into small image
patches and then the DCT coefficients are adopted to represent
the energy for each image patch. Our experimental results
show that the proposed model with the patch size within
the visual angle of [0.14, 0.21] (degrees) can get promising

performance. In this paper, we use the patch size of 8 × 8
(the visual angle within the range of [0.14, 0.21] degrees) for
the saliency calculation. The used image patch size is also
the same as DCT block size in JPEG compressed images. The
input RGB image is converted to YCbCr color space due to its
perceptual property. In YCbCr color space, the Y component
represents the luminance information, while Cb and Cr are
two color-opponent components. For the DCT coefficients,
DC coefficients represent the average energy over all pixels in
the image patch, while AC coefficients represent the detailed
frequency properties of the image patch. Thus, we use the
DC coefficient of Y component to represent the luminance
feature for the image patch as L = YDC (YDC is the DC
coefficient of Y component), while the DC coefficients of
Cb and Cr components are adopted to represent the color
features as C1 = CbDC and C2 = CrDC (CbDC and CrDC are
the DC coefficients from Cb and Cr components respectively).

Since the Cr and Cb components mainly include the color
information and little texture information is included in these
two channels, we use AC coefficients from only Y component
to represent the texture feature of the image patch. In DCT
block, most of the energy is included in the first several low-
frequency coefficients in the left-upper corner of the DCT
block. As there is little energy with the high-frequency coeffi-
cients in the right-bottom corner of the DCT block, we just use
several first AC coefficients to represent the texture feature of
image patches. The existing study in [35] demonstrates that the
first 9 low-frequency AC coefficients in zig-zag scanning can
represent most energy for the detailed frequency information
in one 8×8 image patch. Based on the study [35], we use the
first 9 low-frequency AC coefficients to represent the texture
feature for each image patch as T = {YAC1, YAC2, . . . , YAC9}.

For the depth feature, we assume that a depth map provides
the information of the perceived depth for the scene. In a
stereoscopic display system, depth information is usually
represented by a disparity map which shows the parallax of
each pixel between the left-view and the right-view images.
The disparity is usually measured in unit of pixels for display
systems. In this study, the depth map M of perceived depth
information is computed based on the disparity as [23]:

M = V/(1 + d · H

P · W
) (1)

where V represents the viewing distance of the observer;
d denotes the interocular distance; P is the disparity between
pixels; W and H represent the width (in cm) and horizontal
resolution of the display screen, respectively. We set the
parameters based on the experimental studies in [23].

Similar with feature extraction for color and luminance, we
adopt the DC coefficients of patches in depth map calculated
in Eq. (1) as D = MDC (MDC represents the DC coefficient
of the image patch in depth map M).

As described above, we can extract five features of color,
luminance, texture and depth (L, C1, C2, T, D) for the input
stereoscopic image. We will introduce how to calculate the
feature map based on these extracted features in the next
subsection.
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B. Feature Map Calculation

As we have explained before, salient regions in visual scenes
pop out due to their feature contrast from their surrounding
regions. Thus, a direct method to extract salient regions in
visual scenes is to calculate the feature contrast between image
patches and their surrounding patches in visual scenes. In this
study, we estimate the saliency value of each image patch
based on the feature contrast between this image path and
all the other patches in the image. Here, we use a Gaussian
model of spatial distance between image patches to weight the
feature contrast for saliency calculation. The saliency value Fk

i
of image patch i from feature k can be calculated as:

Fk
i =

∑

j �=i

1

σ
√

2π
el2

i j /(2σ 2)Uk
i j (2)

where k represents the feature and k ∈ {L, C1, C2, T, D};
li j denotes the spatial distance between image patches
i and j ; Uk

i j represents the feature difference between image
patches i and j from feature k; σ is the parameter of
the Gaussian model and it determines the degree of local
and global contrast for the saliency estimation. σ is set as
5 based on the experiments of the previous work [5]. For any
image patch i , its saliency value is calculated based on the
center-surround differences between this patch and all other
patches in the image. The weighting for the center-surround
differences is determined by the spatial distances (within the
Gaussian model) between image patches. The differences from
nearer image patches will contribute more to the saliency value
of patch i than those from farther image patches. Thus, we
consider both local and global contrast from different features
in the proposed saliency detection model.

The feature difference Uk
i j between image patches i and j

is computed differently from features k due to the different
feature representation method. Since the color, luminance and
depth features are represented by one DC coefficient for each
image patch, the feature contrast from these features (lumi-
nance, color and depth) between two image patches i and j can
be calculated as the difference between two DC coefficients
of two corresponding image patches as follows.

Um
ij = |Bm

i − Bm
j |

Bm
i + Bm

j
(3)

where Bm represents the feature and Bm ∈ {L, C1, C2, D};
the denominator is used to normalize the feature contrast.

Since texture feature is represented as 9 low-frequency
AC coefficients, we calculate the feature contrast from texture
by the L2 norm. The feature contrast U

′
i j from texture feature

between two image patches i and j can be computed as
follows.

U
′
i j =

√∑
t (B

′t
i − B

′t
j )2

∑
t (B

′t
i + B

′t
j )

(4)

where t represents the AC coefficients and t ∈ {1, 2, ..., 9};
B

′
represents the texture feature; the denominator is adopted

to normalize the feature contrast.

C. Saliency Estimation from Feature Map Fusion

After calculating feature maps indicated in Eq. (2), we fuse
these feature maps from color, luminance, texture and depth
to compute the final saliency map. It is well accepted that
different visual dimensions in natural scenes are competing
with each other during the combination for the final saliency
map [40], [41]. Existing studies have shown that a stimulus
from several saliency features is generally more conspicuous
than that from only one single feature [1], [41]. The differ-
ent visual features interact and contribute simultaneously to
the saliency of visual scenes. Currently, existing studies of
3D saliency detection (e.g. [23]) use simple linear combination
to fuse the feature maps to obtain the final saliency map. The
weighting of the linear combination is set as constant values
and is the same for all images. To address the drawbacks from
ad-hoc weighting of linear combination for different feature
maps, we propose a new fusion method to assign adaptive
weighting for the fusion of feature maps in this study.

Generally, the salient regions in a good saliency map should
be small and compact, since the HVS always focus on some
specific interesting regions in images. Thus, a good feature
map should detect small and compact regions in the image.
During the fusion of different feature maps, we can assign
more weighting for those feature maps with small and compact
salient regions and less weighting for others with more spread
salient regions. Here, we define the measure of compactness
by the spatial variance of feature maps. The spatial variance
υk of feature map Fk can be computed as follows.

υk =
∑

(i, j )

√
(i − Ei,k)2 + ( j − E j,k)2 · Fk(i, j)

∑
(i, j ) Fk(i, j)

(5)

where (i, j) is the spatial location in the feature map;
k represents the feature channel and k ∈ {L, C1, C2, T, D};
(Ei,k , E j,k) is the average spatial location weighted by feature
response, which is calculated as:

Ei,k =
∑

(i, j ) i · Fk(i, j)
∑

(i, j ) Fk(i, j)
(6)

E j,k =
∑

(i, j ) j · Fk(i, j)
∑

(i, j ) Fk(i, j)
(7)

We use the normalized υk values to represent the compact-
ness property for feature maps. With larger spatial variance
values, the feature map is supposed to be less compact. We
calculate the compactness βk of the feature map Fk as follows.

βk = 1/(eυk ) (8)

where k represents the feature channel and k ∈
{L, C1, C2, T, D}.

Based on compactness property of feature maps calculated
in Eq. (8), we fuse the feature maps for the saliency map as
follows.

S f =
∑

k

βk · Fk +
∑

p �=q

βp · βq · Fp · Fq (9)

The first term in Eq. (9) represents the linear combination
of feature maps weighted by corresponding compactness prop-
erties of feature maps; while the second term is adopted to
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Fig. 2. Visual samples for different feature maps and saliency maps: (a) original image; (b) color feature map from Cb component; (c) color feature map
from Cr component; (d) luminance feature map; (e) texture feature map; (f) depth feature map; (g) saliency map from linear combination of the feature maps
with the same weighting; (h) saliency map from the proposed combination method (the weights of Cb color, Cr color, luminance, texture, and depth feature
maps are 0.45, 0.51, 0.49, 0.62, and 0.81, respectively); (i) ground truth map.

enhance the common salient regions which can be detected by
any two different feature maps. Different from existing studies
using the constant weighting values for different images, the
proposed fusion method assign different weighting values for
different images based on their compactness properties. Fig. 2
provides an image sample for the feature map fusion. In this
figure, Fig. 2(g) shows the saliency map by combing the
feature maps with the same weighting; Fig. 2(h) gives the
saliency map from the proposed combination method, which
combine the feature maps with different weights. From this
figure, we can see that the proposed combination method gives
more weighting to the depth feature map during the fusion
process of feature maps, which causes the final saliency map
more similar with the ground truth map. Experimental results
in the next section show that the proposed fusion method can
obtain promising performance.

D. Saliency Enhancement

Eye tracking experiments from existing studies have shown
that the bias towards the screen center exists during human fix-
ation, which is called centre bias [43], [44]. In the study [43],
the experiments show that the initial response is to orient to
the screen center when the scene appears. The study [44] also
shows that the center-bias exists during the human fixation.
Existing studies have demonstrated that the performance of
fixation prediction can be improved largely by considering
the centre bias factor in saliency detection models [45], [46].
In this paper, we have used the centre bias factor to enhance the
saliency map from the proposed 3D saliency detection model.
Similarly with the studies [43], [45], [46], we use a Gaussian
function with kernel width as one degree (foveal size) to model
the centre bias factor. A CBM Sc can be obtained by the
Gaussian function.

The experimental results in the study [43] shows the centre
bias is irrespective to the distribution of image features, which
means that the centre bias is independent on the saliency
map S f calculated from image features. Here, we consider
the CBM as the fixation estimation from centre bias factor,
similarly with the fixation estimation map S f (saliency map)
from image features. The saliency map by considering the

center bias factor can be calculated as follows.

S = γ1S f + γ2Sc (10)

where γ1 and γ2 are two parameters used to weight the two
components. In the experiment, we consider the saliency map
S f from image features more important than the CBM Sc from
center-bias factor, and the parameters are set as γ1 = 0.7 and
γ2 = 0.3 empirically.

It is well accepted that the HVS is highly space-variant
due to the different densities of cone photoreceptor cells in
the retina [36]. On the retina, the fovea owns the highest
density of cone photoreceptor cells. Thus, the focused region
has to be projected on the fovea to be perceived at the
highest resolution. The density of the cone photoreceptor cells
becomes lower with larger retinal eccentricity. The visual acu-
ity decreases with the increased eccentricity from the fixation
point [36], [38]. We use this property to enhance the saliency
map of 3D images. In the saliency map, the pixels whose
saliency value is larger than certain threshold are considered
as salient regions. The human eyes would focus on these
salient regions when observing the natural scenes and they
are also most sensitive to these regions. The human visual
acuity decreases with farther neighboring regions of these
salient regions. In this study, we use a model of human visual
sensitivity in [38] to weight the saliency map. The contrast
sensitivity Cs( f, e) can be calculated as [38]:

Cs( f, e) = 1

C0ex p(α f (e + e2)/e2)
(11)

where f is the spatial frequency (cycles/degree); e is the retinal
eccentricity (degree); C0 is the minimum contrast threshold;
α is the spatial frequency decay constant; e2 is the half-
resolution eccentricity. Based on the experimental results
in [38], the best fitting parameter values are: α = 0.106,
e2 = 2.3, C0 = 1/64.

The retina eccentricity e between the salient pixel and non-
salient pixel can be computed according to its relationship
with spatial distance between image pixels. For any pixel
position (i, j), its eccentricity e can be calculated by the
spatial distance between this pixel and the nearest salient pixel
(i0, j0) as:

e = tan−1(d ′/v) (12)
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Fig. 3. Visual comparison samples between the original saliency map and enhanced saliency map by centre-bias and human visual acuity. (a) Input image.
(b) Original saliency map. (c) Enhanced saliency map. (d) Ground truth map.

where v is the viewing distance; d ′ is the spatial distance
between image pixels (i0, j0) and (i, j).

The final saliency map S′ enhanced by the normalized visual
sensitivity Cs( f, e) can be calculated as:

S′ = S ∗ Cs( f, e) (13)

With the enhancement operation by the centre bias factor, the
saliency values of center regions in images would increase,
while with the enhancement operation by human visual acuity,
the saliency values of non-salient regions in natural scenes
would decrease and the saliency map would get visually better.
Fig. 3 provides one visual comparison sample between the
original saliency map and the enhanced saliency map by the
centre bias factor and human visual acuity. From this figure,
we can see that the central regions become more salient
with the enhancement by the centre bias factor. Additionally,
the saliency values of non-salient regions in the saliency
maps decreased by the enhancement operation of the human
visual acuity. With the enhancement operation by the centre
bias factor and human visual acuity, the saliency map can
predict the saliency more accurately, as shown in Fig. 3, in
which the enhanced saliency map (Fig. 3(c)) is more similar
with the ground truth map (Fig. 3(d)) compared with the
original saliency map (Fig. 3(b)). Please note that the ground
truth map is obtained by the fixation data recorded from eye
tracker [23].

IV. EXPERIMENT EVALUATION

In this section, we conduct the experiments to demonstrate
the performance of the proposed 3D saliency detection model.
We first present the evaluation methodology and quantitative
evaluation metrics. Following this, the performance compari-
son between different feature maps is given in subsection IV-B.
In Subsection IV-C, we provide the performance evaluation
between the proposed method with other existing ones.

A. Evaluation Methodology

In the experiment, we adopt the eye tracking database [29]
proposed in the study [23] to evaluate the performance of
the proposed model. Currently, there are few available eye
tracking database for 3D visual attention modeling in the
research community. This database includes 18 stereoscopic
images with various types such as outdoor scenes, indoor
scenes, scenes including objects, scenes without any various
object, etc. Some images in the database were collected
from the Middlebury 2005/2006 dataset [42], while others
were produced from videos recorded by using a Panasonic

TABLE I

COMPARISON RESULTS OF PLCC, KLD AND AUC VALUES FROM

DIFFERENT FEATURE MAPS: C1 FEATURE MAP: COLOR FEATURE

MAP FROM Cb COMPONENT; C2 FEATURE MAP: COLOR FEATURE

MAP FROM Cr COMPONENT; L FEATURE MAP: LUMINANCE

FEATURE MAP; T FEATURE MAP: TEXTURE FEATURE MAP;

D FEATURE MAP: DEPTH FEATURE MAP.

Fig. 4. The ROC curves of different feature maps: C1 feature map: color
feature map from Cb component; C2 feature map: color feature map from Cr
component; L feature map: luminance feature map; T feature map: texture
feature map; D feature map: depth feature map.

AG-3DA1 3D camera. To avoid the uncertainty from Depth of
Field (DOF), the accommodation and vergence was considered
within stereoscopic 3D viewing environment in this eye track-
ing experiment [29]. The disparity of the used stereoscopic
images is within the comfortable viewing zone. Thus, the
conflict from DOF will not detected by observers during this
eye tracking experiments. However, DOF is normally associ-
ated with free vision in the real applications, where objects
actually exist at different distances from observers. Some
emerging stereoscopic displays are attempting to simulate this
DOF effect in order to make the viewing experience more
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Fig. 5. Visual comparison of saliency estimation from different features: (a) input image; (b) color feature map from Cb component; (c) color feature map
from Cr component; (d) luminance feature map; (e) texture feature map; (f) depth feature map; (g) final saliency map; (h) ground truth map.

comfortable, especially for the case where ’near’ objects exist.
In the case where ’near’ objects exist, there would be the
narrowest DOF and thus it would attenuate the saliency of
objects that are further away [51]. We will investigate more
on the influence of DOF in stereoscopic saliency detection in
the future work.

Stimuli were displayed on a 26-inch Panasonic
BT-3DL2550 LCD screen with a resolution of
1920 × 1200 pixels and refresh rate of 60 Hz. The
stereoscopic stimuli was viewed by participants with a pair
o passive polarized glasses at a distance of 93 cm. The
environment luminance was adjusted for each observer and
thus the pupil had an appropriate size for eye-tracking. The
data was collected by SMI RED 500 remote eye-tracker
and a chin-rest was used to stabilize the observer’s head.
These gaze points recorded by eye-tracker are processed by a
Gaussian kernel to generate the fixation density maps, which
can be used as ground-truth maps. The images were presented
in a random order and the presentation time for each image
is 15 seconds. Thirty-five participants were involved in the
eye tracking experiment. They ranged in age from 18 to 46
years old and the mean age is 24.2. All the participants had
either normal or corrected-to-normal visual acuity, which was
verified by pretests. Some samples of the left images and
corresponding ground-truth maps are shown in the first and
last columns of Fig. 6, respectively.

We use the similar quantitative measure methods as the
study [23] for performance evaluation of the proposed method.
The performance of the proposed model is measured by
comparing the ground-truth and the saliency map from the
saliency detection model. As there are left and right images for
any stereoscopic image pair, we use the saliency result of the
left image to do the comparison, similar with the study [23].
The PLCC (Pearson Linear Correlation Coefficient), KLD
(Kullback-Leibler Divergence), and AUC (Area Under the
Receiver Operating Characteristics Curve) are used to evaluate
the quantitative performance of the proposed stereoscopic
saliency detection model. Among these measures, PLCC and

KLD are calculated directly from the comparison between the
fixation density map and the predicted saliency map, while
AUC is computed from the comparison between the actual
gaze points and the predicted saliency map. With larger PLCC
and AUC values, the saliency detection model can predict
more accurate salient regions for 3D images. In contrast, the
performance of the saliency detection model is better with
the smaller KLD value between the fixation map and saliency
map.

B. Experiment 1: Comparison Between Different
Feature Channels

In this experiment, we compare the performance of different
feature maps from color, luminance, texture and depth. Table I
provides the quantitative comparison results for these feature
maps. In this table, C1 and C2 color represent the color
feature from Cb and Cr components respectively, which are
described in Section III-A. From this table, we can see that
the performance of saliency estimation from C1 color feature
is similar with that from C2 color feature, while the feature
map from Luminance feature can obtain better performance
than that of color feature map from C1 or C2 component.
Compared with color and luminance features, the depth feature
can estimate better saliency result. For the texture feature,
it gets the lowest PLCC and AUC values among these used
features. Its KLD value is also higher than those from other
features. Thus, the saliency estimation from texture feature is
poorest among the used features. Compared with feature maps
from these low-level features of color, luminance, texture and
depth, the final saliency map calculated from the proposed
fusion method can get much better performance for saliency
estimation for 3D images, as shown by the PLCC, KLD
and AUC values in Table I. The ROC curves in Fig. 4 also
demonstrate the better performance of the final saliency map
over other feature maps.

Fig. 5 provides some comparison samples of different
feature maps and the final saliency map. From this figure,
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Fig. 6. Visual comparison of stereoscopic saliency detection models. (a) Input image. (b) Model 1 in [23]. (c) Model 2 in [23]. (d) Model 3 in [23].
(e) Proposed model. (f) Ground truth map.

we can see that the feature maps from color, luminance
and depth are better than those from texture feature. The
reason is that these features of color, luminance and depth
represented by DC coefficients include much more energy for
image patches compared with the texture feature represented
by AC coefficients. Since AC coefficients only include high-
frequency components in image patches, the feature maps
from texture feature can mainly detect the shape of salient
objects in images, as shown in Fig. 5(e). The overall saliency
map by combining feature maps can obtain the best saliency
estimation, as shown in Fig. 5(g).

C. Experiment 2: Comparison Between the Proposed Method
and Other Existing Ones

In this experiment, we compare the proposed 3D saliency
detection model with other existing ones in [23].
The quantitative comparison results are given in Table II.

TABLE II

COMPARISON RESULTS OF PLCC, KLD AND AUC VALUES FROM

DIFFERENT STEREOSCOPIC-3D SALIENCY DETECTION MODELS. *

MEANS THAT IT IS SIGNIFICANTLY DIFFERENT FROM

THE PERFORMANCE OF THE PROPOSED MODEL

(PAIRED T-TEST, p < 0.05)

In Table II, Model 1 in [23] represents the 3D saliency
detection model by fusion method of linear combination from
2D saliency detection model in [1] and depth model in [23];
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TABLE III

CONTRIBUTION OF THE DEPTH INFORMATION ON 2D MODELS. + MEANS THE USE OF THE LINEAR POOLING STRATEGY INTRODUCED IN THE

STUDY [23]. × MEANS THE WEIGHTING METHOD BASED ON MULTIPLICATION IN THE STUDY [23]. 2D REPRESENTS THE SALIENCY MAP

FOR 2D IMAGES, WHILE DSM IS THE ABBREVIATION OF DEPTH SALIENCY MAP. * MEANS THAT IT IS SIGNIFICANTLY DIFFERENT

FROM THE PERFORMANCE OF THE PROPOSED 3D FRAMEWORK (PAIRED T-TEST, p < 0.05)

Model 2 in [23] represents the 3D saliency detection model
by fusion method of linear combination from 2D saliency
detection model in [3] and depth model in [23]; Model 3
represents the saliency detection model by fusion method of
linear combination from 2D saliency detection model in [4]
and depth model in [23]. From this table, we can see that the
PLCC and AUC values from the proposed model is larger
than those from models in [23], while KLD value from the
proposed model is lower than those from models in [23]. The
statistical test results show the performance of the proposed
model is significantly different from that from other existing
ones. Thus, the proposed model can obtain a significantly
higher performance than other existing models in [23]. The
ROC curves in Fig. 7 also demonstrate the better performance
of the proposed stereoscopic saliency detection model over
other existing ones.

We also provide some visual comparison samples from
different models in Fig. 6. From Fig. 6(b), we can see that
the stereoscopic saliency maps from the fusion model by
combining Itti’s model [1] and depth saliency [23] mainly
detect the contour of salient regions in images. The reason for
this is that the 2D saliency detection model in [1] calculates
saliency map mainly by local contrast. Similarly, there is the
same drawback for the saliency maps from Fig. 6(c). For the
saliency results from the fusion model by combing 2D saliency
model in [3] and depth saliency in [23], some background
regions are detected as salient regions in images, as shown in

Fig. 7. The ROC curves of different stereoscopic saliency detection models.

saliency maps from Fig. 6(d). In contrast, the saliency results
from the proposed stereoscopic saliency detection model can
estimate much more accurate salient regions with regard to
the ground truth map from eye tracking data, as shown in
Fig. 6(e) and (f).

To better demonstrate the advantages of the proposed
algorithm, we compare the proposed algorithm and others
from the aspects of 2D saliency and depth saliency in detail.
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Fig. 8. The ROC curves of different stereoscopic saliency detection models.
IT [1], AIM [3] and FT [4] are 2D saliency detection models.

Here, we use the same frameworks of depth-weighting com-
bination method (the fusion method of multiplication com-
bination) and depth-saliency combination method (the fusion
method of linear combination) from different 2D and depth
saliency maps to do the comparison. The quantitative compar-
ison results and statistical test results are given in Table III.
In the proposed model of Table III, we use the average
combination for the feature maps from color, luminance, and
texture features to obtain the proposed 2D model and combine
it with the proposed DSM (Depth Saliency Map) to obtain the
experimental results.

Table III provides the experimental results of 2D and 3D
saliency detection models. From this table, we can see that the
3D saliency detection model with the depth information always
obtains better performance than 2D saliency detection model,
which demonstrates that the depth information is helpful in
designing 3D saliency detection models. From the second row
of Table III (IT (2D) [1]), we can see that the PLCC and
AUC values from models by combing the 2D model and the
proposed DSM are larger than those from models by combing
the 2D model and DSM in [23], while the KLD values are
smaller. This means that the saliency results from models by
combing the 2D model and the proposed DSM are better
than those from models by combing the 2D model and the
DSM used in [23]. The third, fourth and fifth columns (AIM
(2D) [3] and FT (2D) [4]) demonstrate the similar results.
From these results, the 3D model by combing the 2D model
and the proposed DSM can obtain better performance than
others by combing the same 2D model and the DSM in [23].
Similarly, the 3D model by combing the proposed 2D and
the DSM in [23] can get better performance than others by
combing other 2D models and the DSM in [23]. From this
table, the saliency results from the proposed 3D framework
can get the significantly better performance than most of the
compared models. We also provide the ROC curves of several
compared models of Table III in Fig. 8. From this figure, we
can see that the proposed model can obtain better performance
than other compared ones.

TABLE IV

COMPARISON BETWEEN DIFFERENT 3D SALIENCY DETECTION MODELS.

⊕ MEANS THE COMBINATION BY SIMPLE SUMMATION INTRODUCED

IN THE STUDY [26]. ⊗ MEANS THE COMBINATION BY POINT-WISE

MULTIPLICATION IN THE STUDY [26]. DSM REPRESENTS THE

DEPTH SALIENCY MAP FROM THE STUDY [26]. IT [1],

GBVS [2], AIM [3], FT [4], ICL [47], LSK [48],

AND LRR [49] ARE 2D SALIENCY

DETECTION MODELS

Additionally, we use the recently published database from
the study [26] to evaluate the performance of the proposed
model. That database includes 600 stereoscopic images includ-
ing indoor and outdoor scenes. These images are diverse with
different objects, number and size of objects and degree of
interaction or activity depicted in the scene. The eye tracker
was used to record the human fixation from 80 participants.
Here, we focus on the performance comparison between
stereoscopic saliency detection models and use the fixation
data from 3D images to conduct the experiment. Similar with
the study [26], we calculate the AUC and CC (correlation
coefficient) [50] values of the proposed model on the database.
The experimental results are shown in Table IV. Please note
that the AUC and CC values of other existing models are
from the original paper [26]. From this table, we can see that
the CC and AUC values from the proposed model are higher
than other existing ones, which demonstrates that the proposed
model can obtain better performance on saliency estimation on
this database.

V. CONCLUSION

In this study, we propose a new stereoscopic saliency detec-
tion model for 3D images. The features of color, luminance,
texture and depth are extracted from DCT coefficients to
represent the energy for small image patches. The saliency is
estimated based on the energy contrast weighted by a Gaussian
model of spatial distances between image patches for the
consideration of both local and global contrast. A new fusion
method is designed to combine the feature maps for the final
saliency map. Additionally, we adopts the characteristics of
the HVS (the centre bias factor and human visual acuity)



FANG et al.: SALIENCY DETECTION FOR STEREOSCOPIC IMAGES 2635

to enhance the saliency map. Experimental results show the
promising performance of the proposed saliency detection
model for stereoscopic images based on the recent eye tracking
databases.
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