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Effect of size polydispersity versus particle shape in dense granular media
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We present a detailed analysis of the morphology of granular systems composed of frictionless pentagonal
particles by varying systematically both the size span and particle shape irregularity, which represent two
polydispersity parameters of the system. The microstructure is characterized in terms of various statistical
descriptors such as global and local packing fractions, radial distribution functions, coordination number, and
fraction of floating particles. We find that the packing fraction increases with the two parameters of polydispersity,
but the effect of shape polydispersity for all the investigated structural properties is significant only at low size
polydispersity where the positional and/or orientational ordering of the particles prevail. We focus in more detail
on the class of side/side contacts, which is the interesting feature of our system as compared to a packing of disks.
We show that the proportion of such contacts has weak dependence on the polydispersity parameters. The side-
side contacts do not percolate but they define clusters of increasing size as a function of size polydispersity and
decreasing size as a function of shape polydispersity. The clusters have anisotropic shapes but with a decreasing
aspect ratio as polydispersity increases. This feature is argued to be a consequence of strong force chains (forces
above the mean), which are mainly captured by side-side contacts. Finally, the force transmission is intrinsically
multiscale, with a mean force increasing linearly with particle size.
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I. INTRODUCTION

Polydispersity means “several sources of dispersion,”
which is conventionally summarized by particle size distri-
bution in the case of granular media. There are, however, other
origins of dispersion in granular materials, such as particle
shape and density. Shape polydispersity can be defined as
dispersion of a parameter describing the shape of the particles.
Major shape characteristics are elongation, angularity, and
convexity. Shape polydispersity and size polydispersity are
widespread in nature. In many industrial processes involv-
ing granular materials, particle size, and shape need to be
optimized for improved performance [1–4]. Polydispersity is
also a basic feature of soft matter systems such as colloids,
polymers, and liquid crystals [5–9].

Due to its profound effects on the structure of granular
systems, the analysis of polydispersity represents a con-
siderable challenge to theory, simulation, and experiment.
For monosized particles, systematic studies of particle shape
dependence have been recently reported for angular [10–14],
elongated [15–24], platy [25], complex shape [26,27], and
nonconvex shapes [28,29] as well as for “superballs” [30].

Shape characteristics strongly affect the structure of dense
packings as well as their rheology. Among others, an interest-
ing finding evidenced by recent studies is the nonmonotonic
relation between the aspherity of the particles (i.e., degree of
distortion from a perfectly circular or spherical shape) and
the packing fraction [15,30–32]. However, the particles in
naturally occurring granular materials have mostly irregular
shapes. This irregularity may often be described as a second-
order shape parameter, i.e., as degree of variability around
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a well-defined shape. To our best knowledge, no studies
have been reported on the effect of polydispersity parameters
pertaining to the shapes of the particles.

The effect of particle size distribution on the structure
of granular materials has been a subject of great interest
[3,4,33–40]. However, most investigations have mainly dealt
with packing fraction. For example, bidisperse systems,
as mixtures of particles of two different sizes, have been
modeled in this regard [38,41–44]. For a given size ratio, the
packing fraction first increases with the proportion of small
particles, but begins to decline back to that of a monodisperse
packing at still larger proportions. The granular soils are often
characterized by their cumulative particle mass as a function of
particle size [45]. But due to the large number of parameters
involved in soil behavior (particle shapes and their surface
roughness, mechanical behavior of soil grains, ...), there is
presently no general rule for the prediction of the mechanical
properties of a soil from its particle size distribution. It is
obvious that larger size spans lead to higher packing fraction
by allowing for the pores of each size class to be partially
filled by the particles of a lower-size class. The so-called
Apollonian packings extend this hierarchical structure to an
infinite number of classes composed of an increasing number
of particles of decreasing size [4].

However, most effective properties of granular materials
such as elastic moduli, shear stress, and compressibility cru-
cially depend on the texture, in the sense of the contact network
and force transmission, rather than packing fraction [46–49].
Recently, Voivret et al. investigated highly polydisperse
packings of circular particles by means of contact dynamics
simulations [50,51]. They found that, for all size spans, the
highest packing fraction occurs for uniform particle volume
distribution. They also showed that the number of rattlers, i.e.,
particles not involved in force transmission, increases with
size span, and the force chains are mainly captured by large
particles. For this reason, the shear strength of a noncohesive
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granular material is practically independent of particle size dis-
tribution. This clearly indicates that the mechanical properties
are essentially controlled by the granular texture that needs
therefore to be characterized as a function of both particle
shape and size polydispersity.

In this paper, we are interested in the combined effects
of particle shape and particle size distribution on the texture
of isotropic granular packings by means of two-dimensional
(2D) contact dynamics simulations. We consider pentagonal
particles with varying degree of irregularity compared to
regular pentagons. The particle size is given by the diameter of
the circumscribed circle and the size polydispersity is defined
from the size span for a uniform distribution of particle volume
fractions. The samples are built by uniaxial compaction.

In order to reach the highest packing fraction, interparticle
friction is set to zero. Frictionless packings have been
extensively investigated as “reference systems” that highlight
generic features of granular materials. In other words, they
materialize the concept of random close packing (RCP) defined
as the most compact and random packing. In the absence
of friction, the particles are allowed to reach their lowest
configurational energy without being trapped in metastable
states as a result of frictional frustration. The RCP states
have, however, only been investigated in sphere and disk
packings. In this work we are concerned with RCP packings of
polygonal particles. The microstructure is analyzed in terms of
various statistical descriptors as a function of polydispersity
parameters. Besides packing fractions and pair distribution
functions, we will characterize in detail the distribution of side-
side contacts and their aggregation into well-defied clusters
encompassed by side-vertex contacts.

In the following, we present in Sec. II the numerical
procedures, system characteristics, and preparation method.
In Secs. III and IV we present our main findings on the
space-filling and texture properties. We will conclude with
a summary and perspectives of this work.

II. NUMERICAL PROCEDURES

A. Numerical method

The simulations were carried out by means of the contact
dynamics (CD) method, which is suitable for simulating large
assemblies of undeformable particles [52–55]. In this method,
the rigid-body equations of motion are integrated by taking
into account the kinematic constraints resulting from contact
interactions. These interactions are characterized by three
parameters: the coefficient of friction when the coefficient of
friction is nonzero and the coefficients of normal and tangential
restitution that control the rate of dissipation. An implicit time-
stepping scheme makes the method unconditionally stable. In
contrast to the molecular dynamics method, in the CD method
the possible overlaps between particles do not represent an
elastic deflection, whose treatment then requires a fine time
step to resolve correctly the overlap and thus ensure numerical
stability. For this reason, the time step can be larger than that in
the molecular dynamics method. In CD, an iterative algorithm
based on nonlinear Gauss-Seidel iterations is used to determine
the contact forces and particle velocities simultaneously at
all potential contacts. The CD method has been extensively

−→n1

−→n2

−→n3

FIG. 1. (Color online) Two types of contact between two polyg-
onal grains: (1) side-vertex contact (left) represented by a single
contact point and a unit normal vector perpendicular to the side, and
(2) side-side contact (right) represented by two contact points with
their parallel unit normal vectors.

employed for the simulation of granular materials in two and
three dimensions [18,19,56–65].

The CD method is based on implicit time integration
of velocities but requires an explicit determination of the
contact network at the beginning of each time step [12,66].
The contacts are defined from the small geometrical overlaps
of the neighboring particles. The contact detection between
two bodies consists of looking at the portions of space they
occupy. The treatment of the mechanical interaction requires
additionally the identification of a common tangent plane (a
line in two dimensions). Of course, contact may take place
through a larger contact zone than a single point. In 2D
simulations of the present paper, the detection of contact
between two convex polygonal bodies was implemented
through the so-called shadow overlap method devised by
Moreau, with reliability and robustness tested in several
years of previous applications to various states of granular
materials [67].

In detection of contacts between two polygons, three
situations arise: (1) side-vertex contact, (2) side-side contact,
and (3) vertex-vertex contact. A side-vertex contact is a
“simple” contact as that between two disks. It corresponds
to a single unilateral constraint between the two polygons, and
the contact normal is perpendicular to the side; see Fig. 1.
In contrast, a side-side contact is a “double” contact in the
sense that it can be represented by two unilateral constraints.
In other words, a double contact can be reduced to a couple
of two simple contacts between the same polygons, and the
normal direction is the normal to their common side, as shown
in Fig. 1. In practice, this means that two forces are calculated
at each side-side contact. But only their resultant and point of
application are physically meaningful and independent of the
positions of the two contact points. Finally, the vertex-vertex
contacts are rare, but when they occur, they can be treated either
as a simple contact by taking into account the path followed by
the two particles or as a pair of double contacts, as discussed
in more detail in [12].

B. Packings

1. Shape and size parameters

In our simulations, we use pentagons as reference particle
shape. In fact, triangles and hexagons spontaneously assemble
into crystalline structures. Squares tend to form columnlike
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δ = 0 δ = 0.5 δ = 1

FIG. 2. Example of a regular pentagon δ = 0 transformed into
irregular pentagons for two values of the parameter δ (see text).

structures, and polygons of seven and more sides are close
to disks. In this sense, a pentagon may be considered as
having the least roundedness without the pathological space-
filling properties of triangles, squares, and hexagons [12]. An
irregular pentagon can be obtained by changing the angular
positions of the vertices. Let θ0 be the position of the first vertex
with respect to a reference frame. The angular position of a
vertex i is given by θ i = θ0 + 2πi/5. This regular pentagon
can be transformed into an irregular pentagon by perturbing
randomly the position of each vertex i within an angular limit
±δπ/5:

θ i = θ0 + 2π

5
i ± δ

π

5
, (1)

where δ can be varied in the range [0,1]. Its value quantifies
the degree of shape irregularity. Figure 2 shows two examples
of irregular pentagons constructed from a regular one. In the
following, we will refer to δ as “shape polydispersity” of the
packing.

The size of a pentagonal particle is defined by the diameter
d of its circumscribed disk. It is varied in a range [dmin,dmax]
with a uniform distribution of particle volume fractions.
Following [50], we define the size span s of the distribution by

s = dmax − dmin

dmax + dmin
. (2)

The value s = 0 corresponds to a monodisperse packing
whereas s = 1 corresponds to “infinite” polydispersity. In this
paper, s will be varied in the range [0,0.9].

2. Packing construction

All packings are prepared according to the same protocol.
For given values of s and δ, 5000 particles are generated with
ten size classes with a uniform particle volume distribution.
The number of particles in each class depends on s. We require
that the following two representativity conditions be satisfied:
(1) The number of particles in each class is above a minimum
Nmin, and (2) The volume of each particle in a class i is
small compared to the total volume of the class. Note that
these two conditions are equivalent for a quasimonodisperse
distribution. For the most polydisperse packing (s = 0.9), we
have 95 members in the class of largest particles, and 1350
members in the class of smallest particles. All classes have
thus a high statistical representativity in terms of both the
number and volume of particles, the total volume being the
same in all size classes. As compared to s = 0.9, the statistical
representativity improves for smaller values of s [50]. In each

size class, the vertices of the pentagons on the circumscribed
circle are randomly distributed within the range defined by δ.

The particles are initially placed on a square network in
a rectangular box of dimensions l0 × h0 and deposited under
the action of the gravity g. Then, the gravity is set to 0 and
the packings are subjected to vertical compression applied on

FIG. 3. Snapshots of dense packings at the end of compression:
(a) (s,δ) = (0.01,0), (b) (s,δ) = (0.9,0), (c) (s,δ) = (0.01,1), and (d)
(s,δ) = (0.9,1).
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the upper wall and where the left, bottom, and right walls are
fixed. The friction coefficient between particles and with the
walls is set to zero during the compression in order to obtain
dense and nearly isotropic packings. The compression ends
when a jammed mechanically stable configuration of particles
is obtained.

The mean behavior for each set of parameters s and δ

is obtained by averaging over three independent data sets.
108 samples were prepared for six different values of the
size span s ∈ [0.01,0.9] and for six different values of shape
polydispersity δ ∈ [0,1]. Several snapshots of the packings
obtained at the end of the compression are shown in Fig. 3 for
s = {0.01,0.9} and δ = {0,1} [68].

III. SPACE-FILLING PROPERTIES

In this section, we analyze the influence of size and shape
polydispersity on various packing properties. We focus on the
packing fraction ρm = Vp/V , where Vp is the total particle
volume and V the box volume (area in two dimensions), radial
pair distribution g(r), and radial volume distribution ρ(r)
describing the correlations of packing fractions as a function
of the radial distance r .

Figure 4 shows ρm as a function of size span s for all
values of δ. We observe that the packing fraction is an
increasing function of both polydispersity parameters. The
packing fraction increases from 0.85 to 0.89 as the size span
is increased for δ = 0 and from 0.87 to 0.90 for δ = 1.
Conversely, for δ from 0 to 1, the packing fraction varies
from 0.85 to 0.87 for s = 0.01 and from 0.89 to 0.90 for
s = 0.9. Hence, the effect of shape prevails at low size
polydispersity (s < 0.4) whereas it becomes less effective as
size polydispersity increases. Furthermore, higher values of
the packing fraction are reached with increasing size span
rather than increasing shape polydispersity.

While the increase of ρm with s is simply related to
partial filling of pore space between large particles by smaller
particles, its increase with δ is much less evident. This behavior
may be described in terms of the “angularity” of the particles.
Random-shaped pentagons have at least one internal angle well
below the average angle π/5, thus allowing the corresponding
vertex to intrude easily into free volumes between particles.
This is also the reason why a disordered monodisperse packing

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s
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δ=0.2
δ=0.4
δ=0.6
δ=0.8
δ=1.0

FIG. 4. (Color online) Packing fraction ρm as a function of size
span s for all values of shape polydispersity δ.

A

B

B

B

C

FIG. 5. (Color online) Examples of crystalline or quasicrys-
talline cores in a nearly monodisperse packing of regular pentagons:
(A) (red) densest configuration (packing fraction �92) involving both
positional and orientational order of the pentagons; (B) (orange)
“slipped” or slightly randomized examples of the fully ordered
configuration shown in the bottom-left inset with a packing fraction
�0.85; (C) (gray) typical local environment of the pentagons
characterized by a local triangular positional symmetry and random
orientations of neighboring particles.

of frictionless disks has a packing fraction (�0.82) below that
of regular pentagonal particles (0.85) [50]. In other words,
sharper corners play the same role as the points of large
curvature on a particle, used in [32] to explain the increase of
packing fraction as a function of distortion of particle shapes
from a perfectly circular or spherical shape.

A dense disordered packing of monodisperse regular
pentagons as the one shown in Fig. 3(a) may be described
as a random close packing of pentagons. Various crystalline
packings of monodisperse pentagons can be constructed
geometrically but many of such packings are singular or
mechanically unstable [69]. However, Fig. 3(a) reveals several
quasicrystalline domains with local packing fractions above
or equal to the average packing fraction ρm � 0.85. Two such
crystalline phases are highlighted in Fig. 5. The first phase
has a packing fraction �0.92 and was described in Ref. [69]
as the densest crystalline phase of 2D pentagon packings.
Its high packing fraction is slightly above that of triangular
disk packings (�0.91) mainly due to the intruding-corner
effect described previously. The second crystalline phase is
a “slipped” variant of a geometrically constructed crystalline
phase (inset to Fig. 5). The packing fraction of the nonslipped
phase is 0.854. In both phases, not only the centers of the
pentagons but also their orientations display long-range order.

Apart from the above two crystalline phases, the most
common structure observed in Fig. 5 is characterized by a
triangular symmetry as in regular monodisperse packings of
hexagons, but without the orientational order of neighboring
pentagons. This structure was observed in experiments [70]
and it may be obtained from the densest crystalline phase
by randomly rotating the pentagons. Although the crystalline
cores tend to increase the mean packing fraction, the mismatch
between the fivefold symmetry of the particles and the sixfold
symmetry of the packing may be considered as the main origin
of disorder and thus the reduction of the packing fraction of
pentagonal particles from 0.92 to 0.85.
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FIG. 6. (Color online) Variation of the ratio ρmax/ρmin as a func-
tion of the normalized grid spacing for δ = 0 and δ = 1 (inset).

Visual inspection of Figs. 3(a) and 3(c) suggests also that
the packing of irregular pentagons is more homogeneous than
the packing of regular pentagons. The shape symmetry in the
latter case together with steric exclusions enhances the arching
effect and leads to large pores. The relative homogeneity of the
packing of irregular pentagons can thus be described by stating
that the steric hindering constraints are generally less effective
in this case. Many methods have been developed to describe
quantitatively the homogeneity of a disordered microstructure.
In the following, we employ the density fluctuation method
introduced and used by Saint-Cyr et al. [71]. In this method,
the packings are subdivided into n2

c cells using a square
grid, where nc is the number of cells along each direction
of linear size lc varied from lc = 2d to lc = l0 = 60d. For this
subdivision, we compute ρmin and ρmax defined as, respectively,
the minimum and maximum values of the packing fraction
evaluated for all cells. The ratio ρmax/ρmin is a measure of
structural inhomogeneity as a function of lc.

Figure 6 shows ρmax/ρmin as a function of the normalized
cell size lc/〈d〉 for all values of s at δ = 0 and δ = 1.
We see that, for all values of δ and s, ρmax/ρmin declines
towards a constant plateau value �1 as lc is increased. This
behavior reflects the decrease of ρmax and increase of ρmin

with lc. For all values of s and δ, two regimes can clearly
be distinguished: (1) A rapid decrease of ρmax/ρmin up to
lc � 5〈d〉 and (2) a slow decrease towards 1. These two
scales seem to correspond, respectively, to (1) the particle
environments and (2) the mesoscopic scales due to crystalline
domains and their spatial extensions, as well as the effects
related to particle orientations and side-side contacts. The
inhomogeneity is higher for packings of irregular and more
polydisperse pentagons. For example, for lc = 2〈d〉, we have
ρmax/ρmin < 2 for s < 0.8 whereas ρmax/ρmin � 10 at large
values of s.

Radial distribution functions

The effect of shape and size polydispersity on the local
ordering of particle positions can be evaluated by means of
the radial distribution function g(r) of the radial positions r of
particle centers:

g(r) = n(r)

n
, (3)
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FIG. 7. (Color online) Radial distributions g as a function of
radial distance r normalized by the average particle diameter 〈d〉
for δ = 0 (a) and δ = 1 (b) for all values of size span s. The inset of
(a) shows g(r) for s = 0.01 at all values of δ. The inset of (b) shows
g(r) at s = 0.9 for all values of δ.

where n(r) is the average number density of particle centers
at a distance r from a particle and n is the average number
density of particles. The variations of g(r) as a function of r

reflect thus the average placement of the surrounding particles.
The function g(r) for δ = 0 and δ = 1 is shown in Figs. 7(a)

and 7(b), respectively, for all values of s. The insets of
Figs. 7(a) and 7(b) show also g(r) for s = 0.01 and s = 0.9
for all values of δ. Note that the radial distances have been
normalized by the mean diameter 〈d〉. For s < 0.4 we observe
the signature of short-range order with regular peaks of
decreasing amplitude. In this range, the position of the first
peak is nearly independent of the value of s, and the amplitude
decreases as δ increases. We also note that in this range of the
values of s, the peaks shift to smaller distances with increasing
δ. This behavior is consistent with more interlocking of
the particles and larger “intrusion” of increasingly sharper
corners of the particles, as discussed previously. For s = 0.01
(quasimonodisperse packings) and for δ = 0 or 0.1, the first
peak splits into two narrow subpeaks of nearly the same
amplitude. These subpeaks occur at r/〈d〉 = cos π/5 ∼ 0.8
and r/d ∝ 0.5(1 + cos π/5) ∼ 0.9, which are the intercenter
distances between pentagons for side-side and side-vertex
contacts, respectively. In a similar vein, the second peak is
split into four subpeaks. For s > 0.4, only one peak survives
and, due to polydispersity, it shifts to a distance below 〈d〉 with
an increasing amplitude as a function of s.
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This increase of the amplitude of g with high polydispersity
may be attributed to the uniform distribution of particle
volumes. Indeed, as the polydispersity increases, the number
of particles in the small-size classes grows rapidly and leads
to increasing local ordering of small particles assembled in the
pores between larger particles. Hence, the size span s = 0.4
is the point of transition from a polydispersity where a single
size generation governs the packing to a polydispersity with
two and then three size generations. The members of the
second generation are those fitting into the pores of particles
from the first generation. It is also worth noting that, at high
polydispersity as observed in Fig. 8, the radial distributions
are quite similar for all values of δ. This means that, as for
packing fraction, the shape polydispersity plays a minor role
at high polydispersity.

As far as the space-filling aspect in highly polydisperse
media is concerned, it is also convenient to consider the
packing fraction as a function of radial positions r of the
particles. The radial volume fraction distribution ρ(r) can be
calculated inside circular shells of increasing radius r centered
on particle centers. Figure 8 shows ρ(r)/ρm for δ = 0 and
δ = 1 for all values of size span s. The insets show also
ρ(r)/ρm at s = 0.01 and s = 0.9 for all values of δ. The plateau
at low r corresponds to the interior of the particles where
ρ(r) = 1 > ρm. The volume fraction distribution oscillates
between peaks and valleys of decreasing amplitude. The
valleys represent the void space between a particle and its
first or higher-order neighboring particles. We see that ρ(r)
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FIG. 8. (Color online) Radial volume fraction distribution ρ nor-
malized by the average packing fraction as a function of radial
distance r for δ = 0 (a) and for δ = 1 (b) for all values of size span
s. The inset of (a) shows ρ at s = 0.01 for all values of δ. The inset
of (b) shows ρ at s = 0.9 for all values of δ.

tends to the mean packing fraction ρm as r increases. But, the
convergence to ρm is faster and thus the correlation length
becomes smaller as both δ and s increase. At high size
polydispersity, we mainly observe a marked valley following
the plateau and a smooth increase towards ρm.

IV. CONTACT NETWORKS AND FORCE TRANSMISSION

The contact network can be described in terms of various
statistical descriptors pertaining to the force-bearing network
of particles such as the coordination number Z (i.e., mean
number of contact neighbors per particle), the proportion Pc

of particles with exactly c contact neighbors, and force dis-
tributions [72]. We consider in this section these geometrical
and mechanical descriptors in order to identify the signature
of particle shape and size polydispersity.

A. Connectivity

Figure 9 shows a map of the particle coordination numbers
for (s = 0.01,δ = 0) and (s = 0.9,δ = 1). Note that only the
“contact neighbors,” i.e., the number of neighbors having a
side-vertex or a side-side force-bearing contact with each
particle, are counted. The contact network topology is very
inhomogeneous in both monodisperse and polydisperse pack-
ings. The proportion of particles having c contact neighbors
is plotted in Fig. 10. We have

∑
c Pc = 1 and

∑
c cPc = Z.

We see that Pc is nearly independent of δ for all values of
s. P3 increases with s from 0.1 to 0.5 whereas both P4 and
P5 decline from 0.4 to 0.2 and 0.1, respectively. P7 and P8

increase with s but remain negligibly small with values as
small as 0.05. In the same way, P2 � 0 and for this reason it
was not shown in Fig. 10. The slower decrease of P4 compared
to P5 as a function of s indicates that the population of particles
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FIG. 9. Grey level map of particle connectivities and its scale bar
for (s = 0.01,δ = 0) (a) and (s = 0.9,δ = 1) (b). Floating particles
are in white and the grey level is proportional to coordination number.
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FIG. 10. (Color online) Proportion Pc of particles having c con-
tact neighbors as a function of s for all values of δ.

with four neighbors gains new members from the population
of coordination number 5 but loses even more members
to the population of coordination number 3. Hence, as the
size polydispersity becomes higher, an increasing number
of particles are equilibrated by three forces, approximately
one-third of them being side-side contacts, as we will see
below.

Figure 11 shows Z as a function of s for all values of δ. For
all values of δ, Z is nearly constant for s < 0.4, and it slightly
declines for s > 0.4. In contrast, for each given value of s, Z

increases with δ. This observation is consistent with a higher
interlocking of particles at higher shape polydispersity.

The nearly constant value of Z despite increasing size
polydispersity is surprising. It may also seem surprising that
its value is well below 6, which is the expected coordination
number of a system of noncircular frictionless particles (with
three degrees of freedom) [73]. A similar behavior was
observed for ellipses, ellipsoids [16], and tetrahedra [74],
which were found to have an average coordination number
below their respective isostatic values. This apparent departure
of ellipsoids from isostatic behavior was attributed to the
presence of floppy modes, which provide vanishing restoring
force, whereas for tetrahedra it was attributed to the varying
degrees of rotational constraint by discrete contact topologies.

We would like to introduce here a different interpretation.
The point is that the side-side contacts do not have the same
status as side-vertex contacts. The normal force at a side-vertex
contact has a single point of application that coincides with the
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δ=0.8
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FIG. 11. (Color online) Coordination number Z as a function of
s for all values of δ.
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FIG. 12. (Color online) Proportion kss of side-side contacts as a
function of s for all values of δ.

contact point. In contrast, at a side-side contact, the point of
application of the normal force is unknown and is determined
by the balance of forces. In other words, a side-side contact
represents two geometrical constraints and, in this respect, it
should be counted twice when one enumerates the number
of unknowns. Let kss be the proportion of side-side contacts,
Nf the number of degrees of freedom per particle, and Z the
number of contact neighbors. On average, kssZ/2 contacts per
particle are side-side whereas (1 − kss)Z/2 contacts are side-
vertex. Hence, the total number of constraints per particle is
kssZ + (1 − kss)Z/2 = (1 + kss)Z/2. In an isostatic system,
the number of constraints is equal to the number of degrees of
freedom. As a result, we have

Z = 2Nf

1 + kss

(4)

This relation correctly yields Z = 6 for kss = 0, but its value
is below 6 when side-side contacts occur. Figure 12 displays
the proportion of side-side contacts as a function of s for all
values of δ. The approximate value of kss is 1/3. But we see
that it is smaller at higher δ and slightly increases with s. By
virtue of Eq. (4), this evolution of kss is consistent with the
observed behavior of Z as a function of s in Fig. 11.

Equivalently, we may introduce a “connectivity number” Zc

defined as the number of constraints per particle by counting
the side-vertex contacts once and side-side contacts twice. We
get

Zc = (1 + kss)Z. (5)

According to Eq. (4), in an isostatic system we thus get Zc =
2Nf . This connectivity number in our system is Zc � 6.

The correlation between particle size and connectiv-
ity can be obtained by considering the average number
Z(dr ) of contact neighbors in the class of particle size
within the interval [dr − �dr/2,dr + �dr/2], where dr =
(d − dmin)/(dmax − dmin) is the mean reduced size of the
particles in each size class. Figure 13 shows Z(dr ) for all values
of s with δ = 0. At low values of s = 0.01, the polydispersity
is negligible and all size classes have practically the same
coordination number (�4.2). At larger values of s, Z increases
almost linearly with dr . The particles smaller than dr = 0.2
have less neighbors than ∼4.2 whereas the mean number of
neighbors for larger particles increases to nearly 13 for s = 0.9.
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FIG. 13. (Color online) Linear correlation between the coordina-
tion number Z and reduced particle size dr .

In the analysis of the connectivity and coordination only
the force-bearing contacts are considered. The purely “geo-
metrical contacts,” where the normal force is strictly zero, and
the “floating particles,” that have no force-bearing contacts,
are thus excluded from the statistics. The proportion Pf of
floating particles is, however, an interesting fabric property
as it provides an indication of the degree of arching in a
granular material. In polydisperse materials, the arching effect
is enhanced by size dispersion and we thus expect an increasing
number of particles to be excluded from the force network.
Figure 14 shows Pf as a function of s in our packings for
all values of δ. We see that Pf is quite small for s < 0.4 but
increases up to nearly 0.25 for s varying from 0.4 to 0.9. It is
also remarkable that Pf is practically independent of δ. Note
that most floating particles are small particles representing a
small volume fraction of the packing, as can be observed in
Fig. 9(b).

B. Clustering

The role of side-side contacts was briefly analyzed above
in connection with the connectivity and crystallized cores.
Since nearly one-third of contacts are of side-side type, the
issue that we would like to address in this section is how
those contacts are organized within our samples of frictionless
pentagons. Do the side-side contacts percolate throughout the
packing? How do the size and shape polydispersity affect their
spatial arrangement? We thus consider the particles bonded by

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s

0.0

0.1

0.2

P f

δ=0.0
δ=0.2
δ=0.4
δ=0.6
δ=0.8
δ=1.0

FIG. 14. (Color online) Proportion Pf of floating particles as a
function of s for all values of δ.

side-side contacts and identify clusters of particles in which
each particle is bonded by at least one side-side contact to
another particle of the same cluster. Two such clusters are
disjoint if they have no common side-side contact, i.e., when
the boundary particles of one cluster are connected only by
side-vertex contacts with the other cluster.

Four examples of the clusters are shown in Fig. 15 for
four pairs of the values of s and δ. The side-side contacts
are marked by a line joining the centers of the partner
particles. In exception to a few number of particles having
no side-side contact, most particles belong to a cluster. No
cluster encompasses the whole packing, showing that the
side-side contacts do not percolate. At low size and shape
polydispersity, two types of clusters can be distinguished:
(1) crystalline domains, as those identified in Fig. 5, and
(2) long zigzag chains. At low size polydispersity and high
shape polydispersity, the clusters are small. But at high size
polydispersity we observe well-formed large clusters.

Figure 16 shows the number Nc of clusters as a function of
s for all values of δ. We see that, irrespective of δ, Nc remains
constant as long as s < 0.4 and it declines quickly to a much
lower number as s increases. We also see that, for a given value
of s, Nc increases with δ. At the same time, as expected and
shown in the inset of Fig. 16, the mean number of particles
〈Np〉c per cluster increases with s. Since the shapes and sizes of
the clusters seem to vary with polydispersity, it is interesting to
evaluate their longest dimension �max and shortest dimension
�min. Figure 17(a) shows �max and �min normalized by the
maximum particle diameter dmax as a function of s for all
values of δ. We see that, due to disorder, both �max and �min

decline as s and δ increase. �max is 13 particle diameters for
the most regular packings (i.e., for s = 0.01 and δ = 0) and
only 5 diameters for the least regular ones (i.e., for s = 0.9 and
δ = 1). We also remark that the shape polydispersity affects
the mean size of the clusters at low size polydispersity. As in
the case of packing fraction, the shape polydispersity becomes
less influent as the size polydispersity increases. Indeed, for
nearly monodisperse packings �max/dmax declines from 13 to
7 as δ varies from 0 to 1 whereas it declines from 5 to 3 for
s = 0.9.

The mean sphericity of the clusters can also be evaluated by
averaging their aspect ratios a = �max/�min. The mean aspect
ratio 〈a〉 of the clusters is plotted as function of s for all values
of δ in Fig. 17(b). 〈a〉 declines with both s and δ, thus showing
that the clusters become less anisotropic as structural disorder
increases. The clusters have, however, random orientations.
Figure 17(b) clearly shows that the shape anisotropy of the
clusters even at high polydispersity is a consequence of their
columnlike ordering.

C. Force transmission

From the force-balance viewpoint, it may be argued that if
the side-side contacts tend to capture the strong force chains,
then the anisotropy of the clusters is simply a reflection
of force correlations. This point is checked in Fig. 18(a)
where we have plotted the mean forces 〈fss〉 and 〈fsv〉 at the
side-side and side-vertex contacts, respectively, as a function
of s for all values of δ. It is seen that both average forces
are nearly independent of δ, and although the proportion
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(a)

(b)

(c)

(d)

FIG. 15. (Color online) Clusters of particles bonded by at least
one side-side contact for (s,δ) = (0.01,0) (a), (s,δ) = (0.9,0) (b),
(s,δ) = (0.01,1) (c), and (s,δ) = (0.9,1) (d). Disjoint clusters are
represented in different colors (green, orange, light slate gray, and
cardinal red). The side-side contacts are marked by a thick black line
joining the centers of their partner particles. The floating particles are
in white.

of side-side contacts is almost half of that of side-vertex
contacts, 〈fss〉 is larger than 〈fsv〉. Hence, it is plausible to
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FIG. 16. (Color online) Number Nc of clusters as a function of
s for all values of δ. The inset shows the mean number 〈Np〉c of
particles per cluster as a function of s.

attribute the anisotropy of the clusters of side-side contacts
to the chainlike structure of strong forces. The difference
〈fss〉 − 〈fsv〉 declines as s increases, in agreement with the
decreasing anisotropy of the clusters when size polydispersity
increases.

Figure 18(b) shows 〈fss〉/〈f 〉 and 〈fsv〉/〈f 〉 as a function
of s. We see that the normalized forces have a nearly
constant value (with a slight decrease of 〈fss〉/〈f 〉 as s

increases), indicating that, despite gradual change in poly-
dispersity, almost the same fractions of the mean force are
sustained by the side-side and side-vertex contacts. We also
note that 〈fss〉 is higher than 〈fsv〉 but remains always
below 2〈fsv〉. Since side-side contacts are represented as
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FIG. 17. (Color online) (a) Average values of the longest and
shortest dimensions of the clusters normalized by the largest particle
diameter dmax (a) and their mean aspect ratio 〈a〉 (b) as a function of
s for all values of δ.
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FIG. 18. (Color online) (a) Average side-side force 〈fss〉 and
side-vertex force 〈fsv〉 as a function of s for all values of δ. (b)
The same data normalized by the mean force 〈f 〉 in each sample.

two point contacts, one would expect that such contacts
should support on average a force two times the average
force at side-vertex contacts. The discrepancy observed here
means that the forces transmitted by side-side and side-vertex
contacts are influenced by the overall structure of the packing
although the nature (side-side or side-vertex) of the contacts
prevails.

Figure 19 displays a map of contact forces for two extremal
values of the polydispersity parameters (s,δ) together with
the clusters of side-side contacts. As usual, the normal forces
are represented by the thickness of the segments joining
the particle centers. The visual impression that we get from
these maps is consistent with the above picture of clusters
elongated along strong force chains. Figure 19(b) provides a
nice illustration of the multiscale nature of force distributions
in highly polydisperse packings, as it was analyzed by Voivret
et al. in the case of disk packings [51]. The average normal
force 〈fn〉(dr ) as a function of the reduced size class dr

is displayed in Fig. 20 for all values of s and for δ = 0
and 1. The average force is a linear function of dr for
all s, with an increasing slope as s increases. Hence, the
forces are captured by particles in proportion to their size.
Moreover, the mean size class dr = 0.5 is the point of
separation between the forces above and below the mean
force.

V. CONCLUSION

In this paper, we presented a detailed numerical in-
vestigation of the combined effects of size polydispersity

(a)

(b)

FIG. 19. (Color online) A snapshot of the contact force network
for (s,δ) = (0.01,0) (a) and (s,δ) = (0.9,1) (b). The normal forces are
represented by the thickness of the segments joining particle centers.
The clusters of side-side contacts are also shown in different colors.

and particle shape polydispersity on the morphology and
internal structures of 2D dense granular systems composed
of frictionless pentagonal particles. The shape polydispersity
was defined from the level of irregularity in the shape of
pentagonal particles, quantified by a parameter δ varying
from 0 (regular pentagon) to 1 (fully irregular pentagon). The
particle size polydispersity was controlled by the size span s

varied from 0.01 (quasimonodisperse) to 0.9 (corresponding
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FIG. 20. (Color online) Mean force 〈fd〉 as a function of reduced
particle size dr for all values of s and two values of δ.
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to dmax = 20dmin) for a uniform size distribution by volume
fractions. For each set of parameters s and δ, three independent
packings composed of 5000 particles were prepared. The
mean values, correlations, and fluctuations were analyzed for
different values of s and δ from the three independent data sets.

In the limit of monodisperse packings, we identified
crystalline local structures characterized by positional and/or
orientational ordering of pentagons. Despite local ordering and
dense isostatic nature of the packings, the packing fraction is
well below an ideally crystalline structure of pentagons best
fitting to a triangular lattice and characterized by a packing
fraction �0.92. The increase of packing fraction with δ was
discussed as an effect of sharp corners intruding into the free
volumes between particles.

An interesting finding of this work is to show clearly that
the effect of shape polydispersity is significant only for a size
span below s = 0.4. This is true for all quantities analyzed
in this paper such as the packing fraction, radial distribution
functions, and clusters of side-side contacts. Below s = 0.4,
the size polydispersity is essentially a disorder parameter. In
contrast, above s = 0.4 the size distribution is broad enough
for an increasing number of particles to fit into the pore space
created by large particles. The value 0.4 is slightly below the
approximative diameter of a disk fitting into the pore between
four particles of unit diameter in a square arrangement. For
s > 0.4, the microstructural quantities reflect the interactions
inside each size generation and with other size generations. In
our packings, we have two generations for 0.4 < s < 0.7 and
three generations for 0.7 < s < 0.9.

The role of side-side contacts was analyzed in detail
with respect to the local structures. We showed that our
pentagon packings are isostatic by accounting correctly for
the kinematic constraints, each side-side contact representing

two constraints. The proportion of side-side contacts is only
marginally dependent on the polydispersity parameters, a
property that should not be generalized to the packings of
frictional pentagons where the connectivity of the particles is
strongly dependent on the history of deformations undergone
by the packing. The side-side contacts in our packings do not
percolate but define clusters with an increasing number of par-
ticles as a function of s and decreasing number of particles as a
function of δ. The clusters have anisotropic columnlike shapes
with a decreasing aspect ratio as polydispersity increases. This
feature was attributed to the effect of strong force chains
by showing that the side-side contacts sustain larger forces
than side-vertex contacts. Another important aspect of highly
polydisperse packings is the multiscale transmission of forces.
Each size class captures on average a mean force in proportion
to its particle size. Moreover, the probability density of forces
is increasingly broader as size polydispersity increases with a
well-defined exponential fall-off of the number of forces.

A similar analysis is underway for frictional pentagon
packings under steady shearing. The steady state in granular
materials is a reference state in the sense that its rheological
properties are independent of the strain history. The properties
of frictionless pentagon packings are also almost independent
of the packing preparation method due to their isostatic nature.
For this reason, all the structural properties investigated in
this paper reflect only the shape and size distributions of the
particles. The steady state shearing of frictional pentagons is
thus another instance where the effects of both size and shape
polydispersity can be analyzed and compared to the present
study with practically no reference to the preparation method.
In particular, an important issue that needs to be clarified in
this context is how the polydispersity parameters influence the
shear strength.
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[49] F. Radjaı̈ and E. Azéma, Eur. J. Env. Civil Eng. 13, 203 (2009).
[50] C. Voivret, F. Radjaı̈, J.-Y. Delenne, and M. S. El Youssoufi,

Phys. Rev. E 76, 021301 (2007).
[51] C. Voivret, F. Radjaı̈, J.-Y. Delenne, and M. S. El Youssoufi,

Phys. Rev. Lett. 102, 178001 (2009).

[52] J. Moreau, Eur. J. Mech. A Solids 13, 93 (1994).
[53] M. Jean, Comput. Methods Appl. Mech. Eng. 177, 235 (1999).
[54] F. Radjaı̈ and V. Richefeu, Mech. Mater. 41, 715 (2009).
[55] Discrete Numerical Modeling of Granular Materials, edited by

F. Radjaı̈ and F. Dubois (Wiley-ISTE, New-York, 2011).
[56] J. Moreau, Eur. J. Mech. A/Solids Suppl. 13, 93 (1994).
[57] F. Radjaı̈, M. Jean, J.-J. Moreau, and S. Roux, Phys. Rev. Lett.

77, 274 (1996).
[58] L. Staron, J.-P. Vilotte, and F. Radjaı̈, Phys. Rev. Lett. 89, 204302

(2002).
[59] A. Taboada, K. J. Chang, F. Radjaı̈, and F. Bouchette, J. Geophys.

Res. 110, 1 (2005).
[60] M. Renouf and P. Alart, Comput. Methods Appl. Mech. Eng.

194, 2019 (2005).
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