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Piecewise Smooth System Identification

in Reproducing Kernel Hilbert Space

Fabien Lauer and Gérard Bloch

Abstract— The paper extends the recent approach of Ohlsson
and Ljung for piecewise affine system identification to the
nonlinear case while taking a clustering point of view. In
this approach, the problem is cast as the minimization of a
convex cost function implementing a trade-off between the fit
to the data and a sparsity prior on the number of pieces.
Here, we consider the nonlinear case of piecewise smooth
system identification without prior knowledge on the type
of nonlinearities involved. This is tackled by simultaneously
learning a collection of local models from a reproducing kernel
Hilbert space via the minimization of a convex functional, for
which we prove a representer theorem that provides the explicit
form of the solution. An example of application to piecewise
smooth system identification shows that both the mode and the
nonlinear local models can be accurately estimated.

I. INTRODUCTION

Hybrid dynamical systems switch between multiple sub-

systems, either arbitrarily (e.g., due to unobserved external

inputs) or according to a partition of the space of the

observed variables. This switching behavior prevents their

direct identification via classical procedures even for the

most simple case of static linear subsystems. The main dif-

ficulty comes from the combinatorial nature of the problem,

where one has to simultaneously assign the data points to

the different subsystems, i.e., determine the modes, and to

estimate a model for each one of these subsystems.

Related work. Formally, hybrid system identification

has been considered in the literature either as a switching

regression or a piecewise affine (PWA) regression problem

with an ARX set of regressors (see [1] for details). Con-

sequently, most approaches, e.g., [2], [3], [4], [5], [6], [7],

focus on regression in a supervised learning framework, i.e.,

a context where both the input and the output of the function

to be estimated are available in the data. Such approaches

often treat the classification of the data points into consistent

groups corresponding to the subsystems as a by-product of

the estimation.

On the contrary, this paper considers an unsupervised

learning framework by focusing on the classification problem

inherent in hybrid system identification: determining the ac-

tive mode for each data point. The rationale is that once this

classification is obtained, then classical estimation techniques

provide the solution to the regression problem. This point of

view was originally considered in the seminal work of [8]

on PWA regression, where local models were first estimated
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independently at each data point and then clustered into a

small number of modes. More recently, the sum-of-norms

approach of [9] allowed for the simultaneous estimation

of all local models with a sparsity prior on the number

of different models, which directly yields the classification.

Similar approaches were also proposed in [10], [11], [12]

for the segmentation of ARX systems, i.e., the special (and

much easier) case where the data points are ordered in time

and the modes are defined as intervals of the time axis. Other

works with a focus on the classification subproblem include

the Bayesian approach of [13], the method of [14] based

on Dempster-Shafer theory, the adaptation of the k-means

clustering algorithm to switching regression discussed in [15]

and the geometric approach of [16].

Recent nonlinear extensions of the methods typically in-

volve a “kernelization” step where linear models are replaced

by linear combinations of kernel functions (see [17] for an

introduction to kernel functions). In particular, [18] extends

the continuous optimization approach of [6], and [19], [20]

extend the sparse optimization approach of [5]. But these

focus on arbitrarily switched regression and are not suitable

for piecewise smooth (PWS) systems, as will be emphasized

in the example of Sect. IV-A. In addition, [18] and [19]

assume a restricted function class for the models based on

a finite combination of basis functions fixed a priori. Note

that [21] extends the sum-of-norms approach of [10] without

such restrictions on the model, but only for the segmentation

of nonlinear ARX systems from data ordered in time.

Contribution. We extend the sum-of-norms approach of

[9], originally proposed for PWA systems, to PWS system

identification, with a focus on the clustering point of view.

This yields the first approach based on convex optimization

that is effective for piecewise smooth regression with un-

known nonlinearities. More precisely, we consider a convex

problem formulation, in which the cost functional is a

trade-off between a data fitting term and a regularization

term controlling the complexity of the global model via

two aspects: the number of pieces or submodels and the

complexity of each of the submodels. Then, the framework is

derived for local models that belong to a reproducing kernel

Hilbert space, which provides sufficient flexibility to learn

PWS systems with arbitrary (but smooth) nonlinearities. The

explicit form of the solution to this learning problem is

obtained thanks to a new representer theorem. To complete

the method, we show how to cluster the resulting functions

in such spaces and obtain the classification of the data.

Paper organization. The paper first presents the PWS

system identification problem in Sect. II with the general ap-



proach in Sect. II-A and straightforward instances in Sect. II-

B. Then, Sect. III sets up the learning problem in reproducing

kernel Hilbert space and provides its solution in Sect. III-A,

while details on the clustering of functions in such spaces

are given in Sect. III-B. Finally, numerical examples are

presented in Sect. IV and conclusions in Sect. V.

II. PIECEWISE SMOOTH SYSTEM IDENTIFICATION

Consider the class of systems in input–

output ARX form, i.e., with regressors xi =
[yi−1, . . . , yi−ny

, ui, . . . , ui−nu
]T ∈ X ⊂ R

p, that are

PWS. These systems take the form
{

qi = g(xi),

yi = hqi(xi) + vi,
(1)

where the discrete state (or mode) qi is determined by a

partition of the regression space X , represented in the above

by the function g : X → {1, . . . , n}, and the output yi ∈ R

is computed within each region of this partition by one of the

smooth (i.e., of class C∞) functions {hj}
n
j=1 implementing

the dynamics of the subsystems, plus a noise term vi.
Given a data set {(xi, yi)}

N
i=1 generated by (1), the

PWS system identification problem is to estimate n, g and

{hj}
n
j=1. However, since different triplets

(

n, g, {hj}
n
j=1

)

can generate the exact same data, this problem is intractable

unless we introduce additional knowledge or desired proper-

ties for the model. In the following, we assume that we have

access to a fairly good estimate n̂ of the number of modes.

A. General approach

The most difficult subtask in PWS system identification is

to compute the estimates q̂i of the mode qi at all data points,

from which both the partitioning function g and the models

hj in (1) can be easily estimated. This point of view leads to

the overall procedure suggested by [8] and depicted in Algo-

rithm 1. In this method, Step 1 estimates the mode via two

sub-steps, in which local models associated to data points

are first learned and then clustered. After that, the partition

of the regression space corresponding to g can be obtained

in Step 2 by standard supervised classification tools, such as

support vector machines [22], applied to the data xi labeled

by q̂i. In Step 3, standard (i.e., non-hybrid) regression or

system identification methods applied independently within

each mode yield estimates of the models hj . Therefore, we

focus on Step 1 and the estimation of the mode qi in the

following.

Step 1.a) For the purpose of the identification, we consider

the following alternative model of (1):

yi = fi(xi) + ei,

where a local model fi is assigned to each data point

to predict yi with an error ei. These local models are to

be estimated within a function class F ⊂ R
X (where

R
X is the set of functions from X into R), which can

encode the prior knowledge on the structure of the models

{hj}
n
j=1, as discussed in Sect. II-B, or be sufficiently large

Algorithm 1 Overall procedure

focus of this paper

1) Estimate the modes {q̂i}
N
i=1:

1.a) learn the local models {fi}
N
i=1;

1.b) cluster the fi’s into n̂ groups to estimate the

labels q̂i.

classical problems with known methods

2) Estimate ĝ from {(xi, q̂i)}
N
i=1.

3) Estimate ĥj from {(xi, yi) : q̂i = j}, j = 1, . . . , n̂.

to contain satisfactory approximations of arbitrary functions,

as in Sect. III.

This learning phase relies on the following observation.

Since the optimal clustering of the fi’s corresponds to a

partition of X induced by g, we are interested in finding

a set of fi’s such that for two points xi and xj close to each

other, fi and fj should be the same function. This is obtained

by minimizing the variations over the set {fi}
N
i=1, i.e., the

sum of distances between local models of neighboring points.

Formally, we consider the following learning problem:

min
{fi∈F}N

i=1

N
∑

i=1

ℓ(yi−fi(xi))+λ

N
∑

i=1

N
∑

j=1

wijdF (fi, fj), (2)

where the error is measured by a loss function ℓ : R → R
+,

such as the squared loss, ℓ(e) = e2, or the absolute loss,

ℓ(e) = |e|, dF denotes a suitable distance measure in F and

the wij’s are precomputed weights. The role of these weights

is to encode the assumptions on the piecewise nature of the

model, as in [9]: wij > 0 for neighboring points and wij = 0
for points that are presumably not in the same region. A

typical choice is to compute the weights as wij = 1/‖xj −
xi‖2 if xj is one of the Nn neighbors of xi and 0 otherwise.

Thus, the interaction between local models decreases when

the distance between their base points increases.

Remark 1: In a sparse optimization framework as the one

developed in [9], the second term in the cost functional of (2)

can be seen as a convex surrogate for the number of different

local models. In this context, this number corresponds to the

so-called ℓ0-pseudo-norm of the vector d of all weighted

distances wijdF (fi, fj), denoted ‖d‖0 and whose direct

minimization is intractable. However, a large body of work,

notably in the field of compressed sensing [23], [24], shows

that the ℓ1-norm ‖d‖1, appearing in (2), can be used as a

surrogate for ‖d‖0 in minimization problems.

In addition, as suggested in [9], reweighting procedures,

similar to the ones used in compressed sensing [25], [26],

can be applied to enhance the sparsity of the solution, i.e., to

decrease the number of different functions fi. For instance,

the reweighting of [25] leads to the initialization w0
ij = wij ,

with wij computed as before, and wk
ij = wij/(dF (fi, fj)+ǫ)

at iteration k for a small ǫ > 0. The selective ℓ1-minimization

scheme of [26] can also be applied with the same initializa-

tion by setting the weight of the maximal weighted distance

to 0 at each iteration.



Step 1.b) In our approach, the mode estimates q̂i cor-

respond to the labels obtained by clustering the set of

functions, {fi}
N
i=1, resulting from Step 1.a of Algorithm 1.

This clustering can take two different forms. In the ideal

case, the number n̂ of different functions fi is small and

consistent with the expected number of modes. Then, the

labels q̂i belong to {1, . . . , n̂} and are simply set such that

q̂i = q̂j if and only if fi = fj .

In order to reduce the number of modes, or to improve the

labeling in case the set of fi’s is noisy and too many different

functions are obtained, a clustering algorithm such as k-

means can be applied to the fi’s, i.e., to the data mapped into

F , with a fixed number of groups n̂. Indeed, even with noisy

fi’s, the different groups are expected to be well separated in

F due to the variational regularization imposed on the fi’s
in Step 1.a.

B. Straightforward instances

1) Piecewise affine regression: In PWA regression, we

consider linear models, i.e., F = {f : f(x) = xTθ,θ ∈
R

p}, and assume the last component of xi to be 1 for

affine models. In this case, the distance dF can simply be

computed as the Euclidean distance between the parameter

vectors: dF (fi, fj) = ‖θi−θj‖2. For typical loss functions,

Problem (2) can be solved in this setting by Second Order

Cone Programming (SOCP) general purpose solvers, such as

[27], with the parameter vectors {θi}
N
i=1 as variables. Then,

the estimated parameter vectors can be easily clustered by

k-means in R
p in case this yields too many modes.

2) Explicit nonlinearities: A nonlinear extension of the

PWA case can be obtained in a straightforward manner by

preprocessing the data with a nonlinear feature map φ : x 7→
φ(x) = [φ1(x), φ2(x), . . . ]

T ∈ R
d. This corresponds to the

learning problem (2) using the function class Fφ = {f :
f(x) = θTφ(x), θ ∈ R

d}, in a parametric setting similar

to the PWA case, i.e., with dFφ
computed as a norm of the

parameter vector difference.

However, this formulation clearly suffers from major lim-

itations due to the requirement of an explicit nonlinear map:

the basis functions φj must be fixed or known, and in limited

number to avoid the curse of dimensionality.

To circumvent these difficulties, the following takes a

different path by assuming local models that are smooth

functions of a Reproducing Kernel Hilbert Space (RKHS).

III. PWS REGRESSION IN RKHS

We now briefly introduce the required background on

kernel functions and associated function spaces.

Definition 1 (Real-valued positive definite function): A

real-valued function K on X 2 is called a positive definite

function if it is symmetric and ∀N ∈ N, ∀{xi}
N
i=1 ∈

XN , ∀{ai}
N
i=1 ∈ R

N ,
∑N

i=1

∑N

j=1 aiajK(xi,xj) ≥ 0.
Definition 2 (Reproducing kernel Hilbert space): Let

(H, 〈·, ·〉H) be a Hilbert space of real-valued functions on

X with inner product 〈·, ·〉H. A real-valued function K on

X 2 is a reproducing kernel of H if and only if

1) ∀x ∈ X , K(x, ·) ∈ H;

2) ∀x ∈ X , ∀f ∈ H, 〈f,K(x, ·)〉H = f(x) (reproduc-

ing property).

A Hilbert space of real-valued functions which possesses

a reproducing kernel is called a reproducing kernel Hilbert

space (RKHS).

Note that the reproducing property of K implies in partic-

ular that 〈K(x, ·),K(x′, ·)〉H = K(x,x′). In the following,

we shall refer to such functions satisfying Definition 1 as

kernel functions. The Moore–Aronszajn theorem states that

for any kernel function K, there is one and only one RKHS

with K as reproducing kernel [28].

Let K be a kernel function as in Definition 1 and

(H, 〈·, ·〉H) the associated RKHS. Then, the class of func-

tions H can be written as

H =

{

f ∈ R
X : f =

m
∑

i=1

αiK(xi, ·),

m ∈ N, αi ∈ R,xi ∈ X , ‖f‖H < +∞

}

,

where ‖f‖H =
√

〈f, f〉H is the norm in H induced

by the inner product defined for two functions, f =
∑m

i=1 αiK(xi, ·) and g =
∑m′

i=1 βiK(x′
i, ·), as

〈f, g〉H =
m
∑

i=1

m′

∑

j=1

αiβjK(xi,x
′
j).

A typical kernel function is the Gaussian kernel,

K(x,x′) = exp(−‖x − x′‖22/2σ
2), for which H consists

of all infinitely differentiable (i.e., smooth) functions of

X → R. With such a kernel, H enjoys the so-called universal

approximation capacity, i.e., any continuous function can be

arbitrarily well approximated by a function in H.

A. Learning problem and its solution

We now focus on Step 1.a of Algorithm 1, in which we

consider local models fi as functions of an RKHS H and set

F = H in the learning problem (2). In this case, in order to

avoid overfitting the noise, the complexity of the fi’s should

be controlled at the local level and not only at the global level

of their number. This is related to the smoothness assumption

on the functions hj in (1) and the fact that H is typically a

very flexible function class, possibly including an f that can

perfectly fit noisy data. Thus, in addition to the variational

regularization aiming at the minimization of the number of

different local models, we penalize the complexity of the

local models.

More precisely, we consider the standard measure of

complexity for functions fi in an RKHS, as employed

for instance in support vector machines [22], [29], i.e.,

the RKHS squared norm, ‖fi‖
2
H. This norm also naturally

serves to define the distance between functions of the RKHS

as dH(fi, fj) = ‖fi − fj‖H. Thus, the learning problem



becomes

min
{fi∈H}N

i=1

N
∑

i=1

ℓ(yi − fi(xi)) + γ

N
∑

i=1

‖fi‖
2
H (3)

+ λ

N
∑

i=1

N
∑

j=1

wij‖fi − fj‖H,

where γ > 0 is the parameter that controls the complexity

of the functions fi, while λ controls the complexity of

the global model in terms of the number of different local

models fi.
A fundamental difference between (3) and the versions

of (2) using parametrized models as discussed in section II-

B is that the variables {fi}
N
i=1 are functions of H and not

vectors of R
p. However, a finite-dimensional formulation

of (3) is obtained thanks to the following theorem, which

extends the representer theorem originally proposed in [30]

and generalized in [31]. Indeed, the formulations in [30], [31]

do not include multiple functions to be learned, nor allow

for variational terms involving the norm of the difference

between these functions.

Theorem 1 (Representer theorem): Any solution {f∗
i }

N
i=1

to (3) is a collection of functions that all lie in the span of

the kernel functions taken at the data points:

∀i ∈ {1, . . . , N}, f∗
i ∈ Span ({K(x, ·)}x∈X) ,

where X = {xi}
N
i=1 contains all regression vectors.

Proof: See the Appendix.

By applying Theorem 1, we can replace the fi’s in (3) by

the linear combinations of kernel functions

fi =

N
∑

k=1

αikK(xk, ·),

with weights αik ∈ R to be estimated and function values

computed via the reproducing property of K (see Defini-

tion 2) as

fi(xi) = 〈fi,K(xi, ·)〉H =

N
∑

k=1

αik 〈K(xk, ·),K(xi, ·)〉H

=

N
∑

k=1

αikK(xk,xi).

This yields the finite-dimensional and convex optimization

problem

min
{αi∈RN}N

i=1

N
∑

i=1

ℓ
(

yi −αT
i ki

)

+ γ

N
∑

i=1

αT
i Kαi (4)

+ λ

N
∑

i=1

N
∑

j=1

wij

√

(αi −αj)TK(αi −αj),

where αi = [αi1, . . . , αiN ]T , K is the Gram matrix of the

kernel K, i.e., ∀(k, i) ∈ {1, . . . , N}2, (K)ki = K(xk,xi),
and ki is its ith column.

For the squared or absolute loss functions, Problem (4) can

be rewritten in a SOCP form, suitable for general purpose

solvers, by computing the Cholesky factorization of the Gram

matrix, K = RTR.

Remark 2: In the case where the index i provides the

ordering of the data in time, replacing the variational term

in (3) with
∑N−1

i=1 ‖fi+1 − fi‖H yields a method similar in

spirit to [21] for segmenting ARX systems over time.

B. Clustering functions in RKHS

We now turn to Step 1.b of Algorithm 1. After solving (4),

we have a set of N functions fi ∈ H, with the expectation

that only a few different functions (corresponding to the true

number of modes) are obtained. However, the ℓ1 relaxation

discussed in Remark 1 might not yield a truly sparse distance

vector d, in which case the functions fi are tightly clustered

around a few mean functions. Then, the recovery of the data

classification amounts to a well separated clustering problem

in the function space H, that can be tackled as follows.

Consider the classical k-means algorithm which clusters

feature vectors, ϕi ∈ R
p, by minimizing the sum of squared

Euclidean distances,

nG
∑

k=1

∑

ϕi∈Gk

d(ϕi,ϕk)
2 =

nG
∑

k=1

∑

ϕi∈Gk

‖ϕi −ϕk‖
2
2,

with respect to the means ϕk of nG groups {Gk}
nG

k=1 in

R
p. In order to cluster functions of the RKHS, the distances

must be computed in H with dH(fi, fk)
2 = ‖fi − fk‖

2
H =

〈

fi − fk, fi − fk

〉

H
. However, since all fi belong to the

span of {K(xi, ·)}
N
i=1, the mean functions also belong

to this subspace of H and can be expressed as fk =
∑N

j=1 αkjK(xj , ·). Using the factorization K = RTR, this

simplifies the computations as

dH(fi, fk)
2 = (αi −αk)

TK(αi −αk) = ‖R(αi −αk)‖
2
2.

Thus, k-means can be applied in a straightforward manner

with the Euclidean distance and feature vectors ϕi = Rαi ∈
R

N in order to cluster the fi’s and produce the final

classification of the data points.

IV. EXAMPLES

A. Illustrative example

Figure 1 presents an example of PWS regression with data

generated by yi = sin(xi mod 2) + vi with xi uniformly

distributed in [0, 4] and a Gaussian noise vi ∼ N (0, 0.052).
Here, the proposed approach yields the correct classification

of the N = 100 data points into 2 groups; and Figure 2

shows that, within each group, the functions fi solution

to (3) are close to each other and many are identical (only

7 different functions are obtained). Note that, in Step 3 of

Algorithm 1 (not shown here) one could easily estimate more

accurate local models than the mean functions f1, f2 from

the correctly classified data. For a comparison, Fig. 1 shows

the results of the method of [20], which also estimates the

local models in an RKHS via convex optimization. However,

this method is dedicated to switching regression and does

not deal with the fact that, in PWS regression, a single

nonlinear model can easily approximate many points of
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Fig. 1. Example of PWS regression. Left: data classified (as ◦ or ×) by

the proposed method and the mean functions f1 (–) and f2 (- -). Right:
classification and models obtained by the switching nonlinear regression
method of [20].
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Fig. 2. The N = 100 functions fi obtained by solving (3), classified in
two groups (left and right plots) by the method of Sect. III-B. As desired,
in the solution of (3) many of the one hundred fi’s are the same and they
are easily separated in two groups.

multiple groups. The plot in the right-hand side of Fig. 1

illustrates this issue: the model of the first group (plain line),

though very smooth, also fits half of the data of the second

group, thus yielding many classification errors and leaving

insufficient data for an accurate estimation of the second

model.

B. Piecewise smooth system identification example

Consider the PWS dynamical system:

yi=















yi−1yi−2(yi−1 + 2.5)

1 + y2i−1 + y2i−2

+ui−1+vi, if yi−1+yi−2≥0,

2yi−1sinc(yi−1 + ui−1)

1 + y2i−2u
2
i−1

+ vi, otherwise,

(5)

where sinc(x) = sin(πx)/(πx). A trajectory of 300 points

is generated by (5) with a uniformly distributed input ui ∈
[−1, 1] and a Gaussian noise vi ∼ N (0, 0.12). The first

N = 200 points are used as the training set and the last 100

form the test set. For the identification, the system (5) is as-

sumed completely unknown except for the set of regressors,

xi = [yi−1, yi−2, ui−1]
T , and the number of modes, n = 2.

The proposed method is applied with a Gaussian kernel

(σ = 0.5), λ = 1 and γ = 0.5 to classify the training data

and compute the labels q̂i. Then, the nonlinear submodels,

ĥ1(x) and ĥ2(x), are estimated by support vector regression

[32] applied to each subset {(xi, yi) : q̂i = k}, k = 1, 2.

The switching boundary is estimated by a linear support

vector classifier [22] trained on {(xi, q̂i)}
N
i=1 to output the

mode, ĝ(x) ∈ {1, 2}. Note that this choice of final regression

method and of classifier is purely arbitrary and that many

other options are available for these tasks.
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Fig. 3. Top: noisy data (plain line) and predictions (dashed line) for an
output trajectory of system (5). Middle: corresponding true mode sequence.
Bottom: estimated mode sequence. The vertical dashed line delimits the
training set (left) from the test set (right).

Figure 3 shows the output trajectory {yi} and the predicted

one {ŷi}. On the training set, the predictions are computed

by ŷi = ĥq̂i(xi) with a mean squared error, MSE =

1/N
∑N

i=1(yi− ŷi)
2, equal to 0.007. The bottom plots show

that the mode is correctly estimated by the labels q̂i for most

training data points with an error rate of 2%. On the test set,

the mode is given by the classifier ĝ and ŷi = ĥĝ(xi)(xi),
leading to a classification error rate of 4% and MSE =

0.0379. This, and the fact that estimating the submodels h1,

h2 and the classifier g from the true mode qi instead of q̂i
yields similar MSE and error rate on the test set, shows the

effectiveness of the proposed approach.

V. CONCLUSIONS

The paper proposed an approach based on convex opti-

mization for the identification of piecewise smooth systems.

The core of the method relies on learning a collection of

functions from an RKHS by minimizing a trade-off between

the fit to the data and the complexity of the model (number

of pieces and complexity of each piece). The solution to

this learning problem was obtained thanks to a representer

theorem. This led to the first convex optimization-based algo-

rithm that is effective for piecewise smooth regression with

arbitrary nonlinearities, as the few previous approaches dealt

with arbitrarily switched nonlinear regression and proved

unsuited for the piecewise case.

APPENDIX

Proof: [of Theorem 1] Let S = Span ({K(x, ·)}x∈X) denote
the subspace of interest in H and Sc its orthogonal complement.
Then, every function fi ∈ H can be decomposed into a sum of two
orthogonal components as

fi = ui + vi, ui ∈ S, vi ∈ Sc
, S ⊥ Sc

. (6)

Note that in this case, the function values, fi(xi) = ui(xi) +
vi(xi), only depend on the components ui, since

vi ∈ Sc ⇒ vi ⊥ S ⇒ 〈vi,K(xi, ·)〉H = 0



and, by the reproducing property of K (see Definition 2),

vi(xi) = 〈vi,K(xi, ·)〉H = 0.

This implies fi(xi) = ui(xi), and thus that ℓ(yi − fi(xi)) =
ℓ(yi − ui(xi)), i = 1, . . . , N , in the data term of (3).

Regarding the complexity-control term, note that for all fi ∈ H,

‖fi‖
2

H = 〈fi, fi〉H = 〈ui, ui〉H + 〈vi, vi〉H + 2 〈ui, vi〉H

= ‖ui‖
2

H + ‖vi‖
2

H,

due to the orthogonality between ui and vi.
For the variational term, we have, ∀(i, j) ∈ {1, . . . , N}2,

‖fi − fj‖H = ‖ui − uj + vi − vj‖H

=
√

‖ui − uj‖2H + ‖vi − vj‖2H + 2 〈ui − uj , vi − vj〉H.

Besides, 〈ui − uj , vi − vj〉H = 〈ui, vi〉H−〈ui, vj〉H−〈uj , vi〉H+
〈uj , vj〉H = −〈ui, vj〉H − 〈uj , vi〉H . But since all ui belong to
S and all vi are orthogonal to that subspace, we have ∀(i, j) ∈
{1, . . . , N}2, 〈ui, vj〉H = 0, leading to

‖fi − fj‖H =
√

‖ui − uj‖2H + ‖vi − vj‖2H

and

‖fi − fj‖H ≥ ‖ui − uj‖H.

Let J
(

{fi}
N
i=1

)

denote the cost functional of (3). Then, for any

set of functions, {fi}
N
i=1 ∈ HN , decomposed as in (6), the partial

results on the data, regularization and variational terms lead to

J
(

{fi}
N
i=1

)

− J
(

{ui}
N
i=1

)

= λ

N
∑

i=1

wij (‖fi − fj‖H − ‖ui − uj‖H) + γ

N
∑

i=1

‖vi‖
2

H

≥ 0.

In addition, if vi 6= 0 for some i ∈ {1, . . . , N}, then ‖vi‖H > 0
and

J({fi}
N
i=1) > J({ui}

N
i=1).

Hence, any minimizer, {f∗
i }

N
i=1, of (3) admits a decomposition (6)

with v∗i = 0, i = 1, . . . , N , which concludes the proof.
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