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ALPHA-INVARIANT OF TORIC LINE BUNDLES

We generalize the work of Jian Song to compute the α-invariant of any (nef and big) toric line bundle in terms of the associated polytope. We use the analytic version of the computation of the log canonical threshold of monomial ideals to give the log canonical threshold of any non-negatively curved singular hermitian metric on the line bundle, and deduce the α-invariant from this.

Introduction

The α-invariant of a line bundle L on a complex manifold X is an invariant measuring the singularities of the non-negatively curved singular hermitian metrics on L. It was introduced by Tian in the case of the anticanonical bundle on a Fano manifold. Tian showed in [START_REF] Tian | On Kähler-Einstein metrics on certain Kähler manifolds with C 1 (M ) > 0[END_REF] that if the α-invariant of the anticanonical bundle is strictly greater than n n+1 , then the Fano manifold admits a Kähler-Einstein metric.

The Yau-Tian-Donaldson conjecture asserts in general that X admits an extremal metric in c 1 (L) if and only if the line bundle L is K-stable. It was proved in [START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities[END_REF][START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π[END_REF][START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof[END_REF][START_REF] Tian | K-stability and kähler-einstein metrics[END_REF] that it holds when L is the anticanonical bundle. In particular (as it was shown also in [START_REF] Odaka | Alpha invariant and K-stability of Q-Fano varieties[END_REF]), if the α-invariant of the anticanonical bundle is greater than n n+1 , then the anticanonical bundle is K-stable. Dervan [Der] gave a similar condition of K-stability for a general line bundle, involving again its α-invariant. This is one motivation to compute explicitly the α-invariants of line bundles when possible.

In [START_REF] Chel | Log-canonical thresholds for nonsingular Fano threefolds[END_REF], Chel'tsov and Shramov computed for example the α-invariant of the anticanonical bundle for many Fano manifolds of dimension three. In higher dimensions, Song [START_REF] Song | The α-invariant on toric Fano manifolds[END_REF] proved a formula giving the α-invariant of the anticanonical bundle on a toric Fano manifold in terms of its polytope. The only toric manifolds satisfying Tian's criterion are the symmetric toric manifolds. Batyrev and Selivanova [START_REF] Batyrev | Einstein-Kähler metrics on symmetric toric Fano manifolds[END_REF] proved first that their α-invariant was one, so that they admit a Kähler-Einstein metric. Wang and Zhu [START_REF] Wang | Kähler-Ricci solitons on toric manifolds with positive first Chern class[END_REF] fully settled the question of the existence of Kähler-Einstein metrics on toric Fano manifolds, and an illustration that Tian's criterion is only a sufficient condition can be found in the toric world [START_REF] Nill | Examples of Kähler-Einstein toric Fano manifolds associated to non-symmetric reflexive polytopes[END_REF].

The α-invariant of a line bundle L is strongly related to the log canonical thresholds (lct) of metrics on L. The log canonical threshold was initially an algebraic invariant defined for ideal sheaves, but it was shown to coincide with the complex singularity exponent and Demailly defines the log canonical threshold of any nonnegatively curved singular hermitian metric on a line bundle in [START_REF] Chel | Log-canonical thresholds for nonsingular Fano threefolds[END_REF] for example.

One of the main examples of computation of log canonical threshold is in the case of monomial ideals. Howald carried out the computation of the lct of such an ideal in terms of its Newton polygon [START_REF] Howald | Multiplier ideals of monomial ideals[END_REF]. One can find in Guenancia [START_REF] Guenancia | Toric plurisubharmonic functions and analytic adjoint ideal sheaves[END_REF] an analytic proof of this result, generalized to compute the lct of an ideal generated by a "toric" psh function on a neighborhood of 0 ∈ C n , i.e. a function invariant under rotation in each coordinate.

Since the only smooth affine toric manifolds without torus factor are isomorphic to C n , the computation of Guenancia in fact gives the log canonical threshold of any invariant metric on an affine smooth toric manifold, as we explain in Section 2.

In this note, we give a formula for the α-invariant of any line bundle L on a compact smooth toric manifold in terms of its polytope. We also compute the log canonical threshold of any invariant non-negatively curved singular metric on L.

After this article was accepted, the author was informed that other authors computed similar invariants using other methods (H. Li, Y. Shi, Y. Yao [START_REF] Li | A criterion for the properness of the K-energy in a general Kähler class[END_REF], and F. Ambro [Amb]).

1. Line bundles on smooth toric manifolds 1.1. Toric manifolds. Let us recall some basic facts about toric varieties (see [START_REF] Fulton | Introduction to toric varieties[END_REF], [START_REF] Oda | Convex bodies and algebraic geometry[END_REF], [START_REF] Cox | Toric varieties[END_REF]).

Let T = (C * ) n be an algebraic torus. Denote its group of characters by M , which is isomorphic to Z n through the choice of a basis, and let

M R := M ⊗ R ≃ R n .
The dual N of M consists of the one parameter subgroups of T , and we let also

N R := N ⊗ R ≃ R n .
We denote by T c ≃ (S 1 ) n the compact torus in T .

Considering only cones for the toric setting, we will call σ ⊂ N R a cone if σ is a convex cone generated by a finite set of elements of N . The dual cone σ ∨ is defined as

σ ∨ = {x ∈ M R | x, y ≥ 0 ∀y ∈ σ}.
A fan Σ consists of a finite collection of cones σ ⊂ N R such that every cone is strongly convex (i.e. {0} is a face of σ), the faces of cones in Σ are in Σ and the intersection of two cones in Σ is a union of faces of both. The support of Σ is

|Σ| := σ∈Σ σ ⊂ N R .
Recall that a fan Σ in N R determines a toric variety X Σ , that is, a normal Tvariety with an open and dense orbit isomorphic to T , and every toric variety is obtained this way.

By the orbit-cone correspondence [CLS11, Theorem 3.2.6], a maximal cone σ of Σ corresponds to a fixed point z σ in X Σ . Also, a one-dimensional cone ρ in Σ corresponds to a prime invariant divisor D ρ of X Σ , and these divisors generate the group of Weil divisors of X Σ . Let ρ be such a cone, then we denote by u ρ the primitive vector in N generating this ray. We will denote by Σ(r) the set of r-dimensional cones in Σ.

Many properties of X Σ can be read off from the fan. For example, X Σ is smooth if and only if every cone in the fan Σ is generated by part of a basis of N . We will call a cone smooth if it satisfies this condition. The variety X Σ is complete if and only if |Σ| = N R .

We will assume in general in the following that either |Σ| = N R or that Σ is given by a strongly convex, full dimensional cone σ and its faces, in which case we will denote X σ the corresponding (affine) toric variety.

1.2. Line bundles. Recall that a line bundle L on a G-variety X is called linearized if there is an action of G on L such that for any g ∈ G and x ∈ X, g sends the fiber L x to the fiber L g•x and the map defined this way between L x and L g•x is linear.

To a T -linearized line bundle L on X Σ is associated a set of characters v σ , for σ ∈ Σ(n). We define v σ as the opposite of the character of the action of T on the fiber over the fixed point z σ .

This defines the support function g L of L, which is a function on the support |Σ| of Σ, linear on each cone, which takes integral values at points of N , by x → v σ , x for x ∈ σ.

Another equivalent data is the Weil divisor D L associated to L, which is related to g L by the following:

D L = -ρ g L (u ρ )D ρ .
If L is effective, then to L is associated a polytope P L in M R . This polytope can be defined as

P L = {m ∈ M R |g L (x) ≤ m, x ∀x ∈ |Σ|} .
The properties of the line bundle can be read off from the polytope or the support function. In particular, we can associate to each point of P L ∩ M a global section of L, and the collection of these sections form a basis of the space of algebraic sections of L. Recall also the following, where we assume that |Σ| = N R .

Proposition 1.1. [CLS11, Theorem 6.1.7] The following are equivalent:

• L is nef • L is generated by global sections • {v σ } is the set of vertices of P L • g L is concave.
Proposition 1.2. [CLS11, Lemma 9.3.9] L is big iff P L has nonempty interior.

Proposition 1.3. [CLS11, Lemma 6.1.13] The line bundle L is ample iff g L is concave and

v σ = v σ ′ whenever σ = σ ′ ∈ Σ(n).
Example 1.4. The anticanonical divisor -K XΣ on a toric manifold is given by -K XΣ = ρ D ρ . It is always big on a toric manifold.

1.3. Non-negatively curved singular metrics on line bundles.

1.3.1. Potential on the torus. Let L be a T -linearized line bundle on X Σ . Recall that any linearized line bundle on T ≃ (C * ) n is trivial. Fix an invariant trivialization s of L on T .

Given a hermitian metric h on the line bundle L, we denote by ϕ h the local potential of h on T , which is the function on T defined by:

ϕ h (z) := -ln(||s(z)|| h ).
The local potentials of a smooth hermitian metric are smooth. We will work here with singular metrics, whose local potential are a priori only in L 1 loc . A singular hermitian metric h is said to have non negative curvature (in the sense of currents) if and only if every local potential of h is a psh function.

A T c -invariant function ϕ on T is determined by a function f on N R , identified with the Lie algebra of T c , through the equivariant isomorphism:

T c × N R -→ T ; ((e iθj ) j , (x j ) j ) → (e xj+iθj ) j .
Furthermore, ϕ is psh if and only if f is convex.

So to a non negatively curved, T c -invariant metric h on L is associated a convex function f h , which is the function on N R determined by ϕ h .

Behavior at infinity of the potentials.

Definition 1.5. Let L be a nef line bundle on X Σ . The function f L : x → -g L (-x) is a convex function on N R , and it is the potential of a continuous, T c -invariant, non negatively curved metric on L called the Batyrev-Tschinkel metric (see [START_REF] Maillot | Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables[END_REF]), which we denote by h L .

Proposition 1.6. The map h → f h defines a bijection between the singular hermitian T c -invariant metrics on L with non-negative curvature, and the convex functions on N R , such that there exists a constant C with

f h ≤ f L + C on N R .
Proof. See also [START_REF] Berman | Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties[END_REF]Proposition 3.3]. Let h be a singular hermitian T c -invariant metrics on L with non-negative curvature. Write h = e -v h L , and let ω L be the curvature current of h L . Then v is a ω L -psh function on X. In particular, v is bounded from above on X. Denote by u the convex function on R n associated to the T c -invariant function v| T . Then we see that

f h (x) -f L (x) = u(x) is bounded above on N R .
Conversely, the standard fact that a psh function, which is bounded from above, extends uniquely over an analytic set, allows one to extend u := f -f L to an ω L -psh function on the whole of X if f satisfies the condition of the proposition.

Log canonical thresholds

2.1. Definition. Let X be a compact complex manifold, and L a line bundle on X. Let h be a singular hermitian metric on L. We recall the definition of the log canonical threshold of h (see the appendix of [START_REF] Chel | Log-canonical thresholds for nonsingular Fano threefolds[END_REF]).

Definition 2.1. Let z ∈ X. The complex singularity exponent c z (h) of h at z is the supremum of the real c > 0 such that e -2cϕ is integrable in a neighborhood of z, where ϕ is a local potential of h near z.

Definition 2.2. The log canonical threshold lct(h) of h is defined as

lct(h) = inf z∈X c z (h).

Newton body of a function.

Definition 2.3. Let σ be a cone. Let f be a function defined on N R . Define the Newton body of f on σ as

N σ (f ) = {m ∈ M R ; f (x) -m, x ≥ O(1), ∀x ∈ σ}. If σ = N R we will write N (f ).
The following properties of the Newton body will be useful.

Proposition 2.4. For any function f , N σ (f ) is convex, and

N σ (f ) = N σ (f ) -σ ∨ . If f is convex, then for any y ∈ N R , N σ (f ) = {m ∈ M R ; f (t) -m, t ≥ O(1), ∀t ∈ y + σ}.
Proof. The first two properties are trivial. Let us briefly prove the last statement.

Let m be in the right-hand set, i.e.

{f (t) -m, t ≥ O(1) ∀t ∈ y + σ}. Let x = t -y ∈ σ for t ∈ y + σ. By convexity, f (x + y) ≤ 1 2 (f (2x) + f (2y)) so we get f (2x) ≥ 2f (x + y) -f (2y) = 2f (t) -f (2y) Subtracting m, 2x gives f (2x) -m, 2x ≥ 2(f (t) -m, t ) + (2 m, y -f (2y)).
The right hand side is the sum of a lower-bounded function of t ∈ y + σ and a constant, so the left hand side is a lower-bounded function of x ∈ σ.

This shows one inclusion and the other is proved by a similar argument.

Given a non negatively curved T c -invariant metric h on L, we define the associated convex subset P h of M R , as the Newton body of f h . Proposition 2.5.

• For the Batyrev-Tschinkel metric h L , we recover the polytope P L .

• For any T c -invariant, non-negatively curved metric h on L, P h ⊂ P L .

• If h is smooth, we also have

P h = P L Proof.
For the first statement, observe that m ∈ P L if and only if for any cone σ ∈ Σ, for all x ∈ σ, g L (x) = v σ , x ≤ m, x . This inequality is equivalent to -v σ , x + m, x ≥ 0 and since the functions involved are linear, it is satisfied for all x ∈ σ if and only if

-v σ , x + m, x is bounded below on σ. Since f L (-x) = -g L (x) = -v σ ,
x for x ∈ σ, we get that m ∈ P L if and only if for every cone σ ∈ Σ, the function f L (-x) -m, -x is bounded below on σ. Finally, this can be translated as: for every cone σ ∈ Σ, the function f L (y) -m, y is bounded below on -σ. To conclude, we note that

N (f L ) = σ N -σ (f L ).
The second statement is an easy consequence of the first and Proposition 1.6 since whenever two functions f and g satisfy f ≤ g + C for a constant C, we have trivially N σ (f ) ⊂ N σ (g).

For the last statement, remark that in this case, f h -f L extends to a continuous function on X Σ , so we have f L -C ≤ f h ≤ f L + C for some constant C. The same property of Newton bodies allows one to conclude.

Integrability condition.

The first result on log canonical thresholds on toric varieties was the computation by Howald [START_REF] Howald | Multiplier ideals of monomial ideals[END_REF] in the case of monomial ideals. Guenancia gave an analytic proof of this result, extending the computation to the case of non algebraic psh functions. The key ingredient in this analytic version is the following integrability condition.

Proposition 2.6. (see [START_REF] Guenancia | Toric plurisubharmonic functions and analytic adjoint ideal sheaves[END_REF]) Let σ be a smooth cone of maximum dimension. Let f be a convex function on N R . Then e -f is integrable on all translates of σ if and only if 0 ∈ Int(N σ (f )). This is essentially the result in Guénancia [START_REF] Guenancia | Toric plurisubharmonic functions and analytic adjoint ideal sheaves[END_REF] because any smooth affine toric manifold with no torus factor is isomorphic to C n . However we describe the change of variables used precisely, to use it later in the compact case.

Proof. Choose a basis of N formed by the generators of the extremal rays of σ, then define S σ to be the isomorphism from N to Z n sending the chosen basis to the canonical basis of Z n .

Let f be a function on N R , and g the function on R n such that f = g • S σ . Then from the definition of Newton body we have N σ (f ) = S * σ (N D (g)), where S * σ is the dual isomorphism from Z n to M and D is the cone generated by the canonical basis of Z n .

Using the change of variables, e -f is integrable on all translates of σ if and only if e -f •S -1 σ is integrable on all translates of D. Apply [Gue12, Proposition 1.9] to the concave function -f • S -1 σ . This proves that we have integrability if and only if 0 ∈ Int(N D (f • S -1 σ )). Using S * σ , which is linear, this indeed translates to 0 ∈ Int(N σ (f )).

Remark that the statement in [Gue12, Proposition 1.9] only mentions integrability on D, but the equivalence with integrability on all translates is easily derived from Proposition 2.4.

lct on an affine smooth toric manifold.

Proposition 2.7. Let σ be a smooth cone of maximum dimension, X σ the corresponding smooth affine toric manifold. Let L be a linearized line bundle on X σ , and h a T c -invariant metric with non-negative curvature. Then

lct(h) = sup{c > 0|cv σ ∈ Int(N -σ (cf h )) -S * σ (1, . . . , 1)}.
Proof. The change of variables for cones S σ in the proof of Proposition 2.6 gives (by [CLS11, Theorem 3.3.4]) an equivariant isomorphism between X σ and C n , which we denote again by S σ . Any linearized line bundle on C n is trivial, so L admits a global equivariant trivialization t on X σ . Remark that, at the fixed point z σ , we have g •t(z σ ) = -v σ (t(z σ )) by definition of v σ . Restricting to T and remembering that s is an invariant trivialization of L on T , we deduce that up to renormalization by a constant, t(z) = v σ (z)s(z) on T .

We can now look at the potential ψ of h with respect to the trivialization t, and remark that, on T , and if ϕ denotes the potential of h with respect to s on T , we have ψ(z) = -v σ , ln |z| + ϕ(z).

Let y ∈ N R . Using again the isomorphism T c × N R ≃ T , we consider T c × (y -σ) as a subset of T , and denote by C y the closure of this set in X σ . Each set C y is a neighborhood of z σ in X σ , and they form a basis of neighborhoods. Observe that the collection of the translates of -σ cover N R and so the corresponding sets cover X σ . More precisely, for any point z in X σ , there is a translate of -σ which corresponds to a neighborhood of z.

We consider first the complex singularity exponent of h at z σ . Suppose c > 0 is such that e -2cψ is integrable in a neighborhood of z σ . Then it is integrable in a neighborhood C y . We have first that, Cy e -2cψ(z) dz ∧ dz = Tc×(y-σ) e -2cψ(z) dz ∧ dz.

Recall that ψ(z) = -v σ , ln |z| + ϕ(z), and that f is the function on N R such that f (x) = ϕ(e x ).

Say we have chosen a basis of N or equivalently of M , and we denote by (x i ) i=1...n the coordinates of x ∈ N R along this basis. This determines local holomorphic coordinates z i = e xi+iθi on T ≃ N R × T c . Using the fact that dzi zi ∧ dzi zi = dx i ∧ dθ i , and T c -invariance, we obtain that, up to a constant, Cy e -2cψ(z) dz ∧ dz = y-σ e -2c(f (x)+ -vσ,x ) e 2 i xi dx.

Since i x i is equal to S * σ (1, . . . , 1), x , we conclude by using Proposition 2.6 that the complex singularity exponent c zσ (h) is the supremum of the c > 0 such that 0 ∈ Int(N -σ (2c(f + -v σ , • ) -2 S * σ (1, . . . , 1), • )). To obtain a simpler condition, remark that for any function g and positive scalar λ, N -σ (λg) = λN -σ (g), and that if g 1 and g 2 are two convex functions then N -σ (g 1 + g 2 ) is the Minkowski sum of N -σ (g 1 ) and N -σ (g 2 ).

So we get c zσ (h) = sup{c > 0|cv σ ∈ Int(N -σ (cf )) -S * σ (1, . . . , 1)}. Furthermore, for any c < c zσ (h), the Proposition 2.6 shows that e -2cψ is integrable on every C y for y ∈ N R . Observe now that for any point z ∈ X σ , there exists a C y containing z. So for any point z ∈ X σ , c z (h) ≥ c zσ (h). This concludes the proof of the proposition.

2.5. lct on a compact smooth toric manifold.

Theorem 2.8. Let X Σ be a smooth compact toric manifold, L a linearized line bundle on X Σ and h a T c -invariant non-negatively curved metric on L. Then

lct(h) = sup{c > 0|cP L ⊂ Int(cP h + P -KX Σ )}.
Proof. The compact manifold X Σ is covered by the affine toric manifolds X σ , for σ ∈ Σ(n). By definition of the log canonical threshold,

lct(h) = min σ∈Σ(n) lct(h| Zσ ).
Another way to say this is that lct(h) is the sup of c > 0 such that c ≤ lct(h| Xσ ) for all σ ∈ Σ(n). Now this condition means, by Proposition 2.7, that for all σ ∈ Σ(n),

cv σ ∈ Int(N -σ (cf h + -S * σ (1, . . . , 1), • )
. By Proposition 2.4, this is equivalent to the condition that for all σ ∈ Σ(n),

cv σ + σ ∨ ⊂ Int(N -σ (cf h + -S *
σ (1, . . . , 1), • ). This is further equivalent to the condition that for all σ ∈ Σ(n),

σ∈Σ(n) (cv σ + σ ∨ ) ⊂ Int(N -σ (cf h + -S * σ (1, . . . , 1), • ).
Recall from Proposition 2.5 that σ∈Σ(n) (v σ + σ ∨ ) = N (f L ) = P L , so that the condition can be written:

N (cf L ) ⊂ σ∈Σ(n) Int(N -σ (cf h + -S * σ (1, . . . , 1), • ) = Int(N (cf h + f -KX Σ )).
Indeed, the support function of the anticanonical bundle is, from Example 1.4,

f -KX Σ (x) = -S * σ (1, . . . , 1), x .

Alpha-invariant

3.1. Log canonical threshold and α-invariant. Let X be a compact Kähler manifold, L a big and nef line bundle on X.

Definition 3.1. Assume that a compact group K acts on X, and that L is Klinearized. The alpha invariant α K (L) of L with respect to the group K is defined as the infimum of the log canonical thresholds of all K-invariant, non negatively curved singular hermitian metrics on L.

The linear systems in a multiple of L give singular metrics on L, that we will call algebraic metrics, in the following way. Let δ 1 , . . . , δ r ∈ H 0 (X, mL) be linearly independent sections, and denote by ∆ the linear system generated by these. Then it defines an algebraic metric h ∆/m on L by setting, in any trivialization,

||ξ|| 2 h ∆/m = |ξ| 2 ( |δ j (z)| 2 ) 1/m , for any ξ ∈ L z . The local potential ϕ ∆/m (z) = 1 2m ln |δ j (z)| 2 is psh. If ∆ is
one dimensional, generated by δ, we denote by h δ/m the corresponding metric.

Recall the following result of Demailly, relating the α-invariant with log canonical thresholds of algebraic metrics: Theorem 3.2. [CS08, Appendix A] Let K be a compact group, let X be a compact complex K-variety and L a big and nef K-linearized line bundle on X. Then

α K (L) = inf m∈N * inf ∆⊂H 0 (X,mL), ∆ K =∆ lct(h ∆/m ).
One can slightly improve this result, and give the following statement, which is only given in the case of a trivial group K by Demailly.

Corollary 3.3. Let K be a compact group, let X be a compact complex K-variety and L a big and nef K-linearized line bundle on X. Then

α K (L) = inf m∈N * inf ∆∈Irr(H 0 (X,mL)) lct(h ∆/m ),
where Irr(H 0 (X, mL)) denotes the set of all irreducible K-subrepresentations of H 0 (X, mL).

Proof. Let ∆ be a K-invariant subspace of H 0 (X, mL), then ∆ = ∆ 1 ⊕ • • • ⊕ ∆ s with ∆ i irreducible subspaces.
For all i, one can choose a basis δ i j of ∆ i . Together they form a basis of ∆ and we can obtain the metric h ∆ this way.

In particular, ϕ ∆/m (z) = 1 2m ln i j |δ i j (z)| 2 . Since the logarithm is increasing we can write

ϕ ∆/m (z) ≥ 1 2m ln |δ 1 j (z)| 2 = ϕ ∆1/m (z)
. This implies, by elementary properties of the complex singularity exponent, [DK01, 1.4] that lct(h ∆/m ) ≥ lct(h ∆1/m ).

We conclude that the log canonical threshold of a metric associated to a Kinvariant linear system is greater than the log canonical threshold of at least one metric associated to an irreducible linear system, so it is enough to consider only these.

3.2. General formula. Let X Σ be a smooth compact toric manifold. Let N (T ) be the normalizer of T in Aut(X Σ ), and denote by W = N (T )/T the Weyl group obtained from T .

The group N (T ) naturally acts on M and since T acts trivially on M , this induces an action of W on M . By duality one also gets an action on N .

From the description of morphisms between toric varieties [CLS11, Theorem 3.3.4], we can see that W is isomorphic to the subgroup of GL(N ) composed of the ρ such that ρ(Σ) = Σ. In particular, W is finite.

Given a subgroup G of W , we denote by T G the preimage in N (T ) of G, and let K G := K ∩ T G . If P is a polytope in M R we let P G be the set of G-invariant points of P .

Finally, if P is a polytope in M R , we denote by P (Q) the set of rational points in P , i.e. points p such that there exists m ∈ N * with mp ∈ M . Theorem 3.4. Let L be a T G -linearized line bundle on X Σ . Then

α KG (L) = inf p∈P G L (Q) sup{c > 0|cP L ⊂ Int(cp + P -KX Σ )}.
Proof. The Corollary 3.3 shows that it is enough to consider algebraic metrics on L associated to K G -irreducible linear system in a multiple of L.

The T c -irreducible subrepresentations of H 0 (X Σ , mL) are the dimension one subspaces corresponding to integral points of the polytope P mL associated to mL. Recall that P mL = mP L . Now a K G -irreducible subrepresentation of H 0 (X Σ , mL) is the union of the images by G of a T c -irreducible representation.

Let p be an integral point in mP L , and denote by ∆ the K G -irreducible linear system generated by the G-orbit of p.

The potential of h ∆/m is

ϕ ∆/m (z) = 1 2m ln   g∈G |(g • p)(z)| 2   .
By arithmetico-geometric inequality,

ϕ ∆/m (z) ≥ 1 2m ln g∈G (g • p) |G| (z) 2 .
The right-hand side of this inequality is the potential of the algebraic metric h g∈G (g•p) m|G| corresponding to the linear system of H 0 (X Σ , m|G|L) generated by the section g∈G (g • p).

Using again the fact that the complex singularity exponent is increasing [DK01, 1.4], we get lct(h ∆/m ) ≥ lct(h g∈G (g•p)

m|G|

).

We have thus shown that it is enough to compute the log canonical thresholds of algebraic metrics associated to one dimensional G-invariant sublinear systems of multiples of L.

We use Theorem 2.8 to conclude. Indeed if p ∈ mP L generates a one dimensional G-invariant sublinear system in H 0 (X Σ , mL), and f p/m denotes the convex function associated to the potential of the corresponding algebraic metric h p/m , we have N (f p/m ) = {p/m}.

Applying Theorem 2.8 gives

lct(h p/m ) = sup{c > 0|cP L ⊂ Int(cp/m + P -KX Σ )}.
Finally, observe that as p and m vary, they describe the set P G L (Q) of G-invariant points of P L with rational coordinates. Remark 3.5. One can also prove, without the use of Corollary 3.3, that we can consider only metrics corresponding to points of P L (not necessarily with rational coordinates), by considering the expression of the log canonical threshold of any metric. p 0 w p Indeed, if f is a convex function on N R , corresponding to a metric h on L, and p is a point in N (f ), then the metric h p associated to the convex function x → p, x is also a non-negatively curved metric on L, and lct(h p ) ≤ lct(h).

3.3.

Case of the anticanonical line bundle. We assume in this section that L = -K XΣ .

This line bundle admits a natural Aut(X)-linearization, and the polytope associated to this linearization contains the origin in its interior, because -K X is big.

For any subgroup G of W , let S G := {p ∈ ∂P L |g • p = p ∀g ∈ G}. If 0 = p ∈ P L , let w p be the point ∂P L ∩ {-tp|t ≥ 0}.

Remark 3.6.

• S G is empty if and only if {0} is the only point fixed by G in P .

• If S W is empty, X Σ is called symmetric. Consider the half-line starting from p and containing the origin. It intersects ∂P at w p . Denote by r its intersection with ∂(p + P ).

Then it is easy to see that the log canonical threshold of h p is equal to the quotient of the distance between p and r by the distance between p and w p . The translation sending 0 to p also sends w p to r, so |r-p| = |w p |. The result follows.

Remark 3.8. If P h = {0} then lct(h) = 1.

Example 3.9. Consider the case P h = {b}, where b is the barycenter of the polytope P L . Then lct(h) is equal to the greatest lower bound for Ricci curvature R(X), introduced by Székelyhidi [Szé11], and computed for toric manifolds by Li [START_REF] Li | Greatest lower bounds on Ricci curvature for toric Fano manifolds[END_REF].

From this formula we recover the previous results of Song and Chel'tsov-Shramov.

Theorem 3.10. [Son05] [CS08, Lemma 6.1] Let X be a smooth Fano toric manifold, and G be a subgroup of W . Then

• if S G is empty, α KG (X) = 1; • else, α KG (X) = 1 1+maxp∈S G |p| |wp | ≤ 1 2 .
Proof. By Theorem 3.4, it is enough to consider only the (rational) G-invariant points of P . The first case follows immediately using Remark 3.8. In the second case, we obtain the formula using Proposition 3.7. Indeed, it is enough to consider points p in S G because if q = 0 is not in ∂P , and p is the intersection of ∂P with the half line starting from the origin and going through q, then lct(h q ) ≥ lct(h p ).

Furthermore, max p∈SG |p| |wp| ≥ 1 because otherwise if p was such a point at which this maximum was attained and it was < 1 then we would have |wp| |p| > 1 with w p ∈ S G , which is a contradiction.

3.4. Example. We compute the α-invariant of any linearized line bundle on the blow up X of P 2 at one point which we denote X in the following.

Identify N with Z 2 . The fan of X has four rays, with generators u 1 = (1, 0), u 2 = (1, 1), u 3 = (0, 1) and u 4 = (-1, -1).

The group W is isomorphic to Z/2Z and acts on M R by exchanging the coordinates (x, y) → (y, x).

We define the polytope P (k, l) to be the polytope whose vertices are (0, k), (0, l), (k, 0) and (l, 0), for k, l ∈ N with l > k. It is easy to see that the polytopes of nef and big divisors are the P (k, l), up to translation by a character. For example, the polytope of the anticanonical bundle is Q := (-1, -1) + P (1, 3).

Proposition 3.11. The α-invariant with respect to K W of the nef and big line bundle corresponding to P (k, l) is equal to inf( 1 l-k , 2 l ). Proof. By Theorem 3.4, it is enough to consider points (with rational coordinates) in the intersection of P (k, l) with the first diagonal. However, one easily remarks that it is enough to consider only the point (l/2, l/2), similarly to the proof of Theorem 3.10.

We want to compute sup{c > 0|cP (k, l) ⊂ Int(c(l/2, l/2) + Q)}.

This is of course equal to sup{c > 0|P (k, l) ⊂ Int((l/2, l/2) + 1 c Q)}.

Observe that l/2 is the least positive constant b such that {(0, l), (l, 0)} ⊂ (l/2, l/2) + bQ.

If k ≥ l/2, then we have also {(0, k), (k, 0)} ⊂ (l/2, l/2) + l/2Q, so P (k, l) ⊂ (l/2, l/2) + l/2Q.

Thus α KW (P (k, l)) = 2/l when k ≥ l/2. For the other case, observe that l -k is the least positive constant b such that (k/2, k/2) ∈ (l/2, l/2) + bQ. If k ≤ l/2, then we have also P (k, l) ⊂ (l/2, l/2) + (l -k)Q.

Thus α KW (P (k, l)) = 1 l-k when k ≥ l/2.

Proposition 3. 7 .

 7 Assume that P h = {p} with 0 = p ∈ P L . Then lct(h) = |w p | |w p | + |p| . Proof. By Theorem 2.8 we have lct(h) = sup{c > 0|cP ⊂ Int(cp + P )}.