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A link at infinity for minimal surfaces in R*

Marina Ville

Abstract

We look at complete minimal surfaces of finite total curvature in
R*. Similarly to the case of complex curves in C? we introduce their
link ot infinity; we derive the writhe number at infinity which gives a
formula for the total normal curvature of the surface. The knowledge
of the link at infinity can sometimes help us determine if a surface has
self-intersection and we illustrate this idea by looking at genus zero
surfaces of small total curvature.

1 Introduction - Sketch of the paper

The study of complete minimal surfaces of finite total curvature in R* has
been initiated by a paper of Chern and Osserman ([Ch-Os]): they show that
the Gauss map giving the data of the oriented tangent planes can be seen as
a holomorphic map into a quadric in CP2. This quadric is actually the prod-
uct of two projective lines and the Gauss map splits into two meromorphic
functions. These meromorphic functions would be the starting point for the
twistor representation of minimal surfaces by Eells and Salamon ([E-S]).

In the 1980’s Ossermann and other authors wrote a series of papers (see for
example [Ho-Osl], [Ho-Os2] and [Mo-Os]) pursuing the investigation of the
Gauss map. In R?, the planes are characterized among minimal surfaces as
having a constant Gauss map. Similarly, complex curves in R* have one of
the two meromorphic Gauss maps equal a constant.

Much research has been done about the Gauss map, using tools of complex
analysis as it gives us good information about the minimal surface. How-
ever it cannot really help us determined when an immersed minimal surface
is actually embedded and it is this problem that we would like to address here.



We start by recalling the definitions of the Gauss maps via the quadric and
also the Eells-Salamon approach. This material is classical and well-known
but we felt it was useful to present in the same paper both definitions and
to give a concrete way of going from one to the other. We then recall the
curvature formulae derived from these maps.

For an embedded minimal surface we define the link at infinity, which is the
intersection of the surface with a sphere of very large radius in R*. We give
a formula relating this link to the total normal curvature of the surface and
derive some restrictions on the asymptotic behaviour of the surface. These
give us a necessary condition for a degenerate minimal surface to be embed-
ded.

Finally we look at minimal surfaces of small total curvature. If the curvature
is —4m, we are able to classify all complete embedded non holomorphic ones.
We get some partial information for curvatures —67 and —8.
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2 The Gauss maps and the curvatures

In this section, ¥ is a complete embedded minimal surface in R* of finite
total curvature; its Gauss map maps a point p of X to the tangent plane 7,3
inside the Grassmannian of oriented 2-planes in R%.

2.1 The Grassmannian of oriented 2-planes in R*

There are two equivalent ways of describing this Grassmannian which give
rise to two different definitions of the Gauss map. They are both classical and
well-understood; we recall them both and describe a concrete correspondence
between them.
For more details we refer the reader to [Ch-Os], [E-S] and [Mo-Os], [Ho-Osl]
and [Ho-Os2].



2.1.1 Complex structures

Here is the definition of the Grassmannian which is used the twistor approach
to minimal surfaces.
We let G the Grassmannian of oriented 2-planes in R*: it splits into a

product

GF = S(A* (RY)) x S(A~(R*))
where S denotes the unit sphere and AT(R*) (resp. A~(R?)) denotes the
subset of 2-vectors which are +1 (resp. —1) -eigenvectors for the Hodge
operator * : A2(R*) — A?(R%).
If P is an oriented 2-plane in R*, we write it as €; A e where (€1,€2) is a
positive orthonormal basis on P and we split €; A€y as € A ey = \%(JJr +J.)
with

T (P) = ——le A s + +(e1 A &2)] € S(A*(RY) (1)

J_(P) = E[el A€y — x(e1 A €)] € S(A™(R?Y)) (2)

The space S(AT(R?)) (resp. S(A~(R?))) is the space of parallel complex

structures on R* which are compatible with (resp. reverse) the orientation
on R*. We view J, and J_ in (1) and (2) as a complex structure by setting

Ji(er) =6  J_(a)=e (3)
Then the plane P is a J(P)- and J_(P)-complex line.

2.1.2 The Grassmannian as a quadric in CP3

We now present the definition most commonly used by authors working on
minimal surfaces in Euclidean spaces.

We fix a positive orthonormal basis (e, es,e3,e4) of R* and we extend it
to a basis of the complexified space R* @ C = C* We denote by z the
corresponding complex coordinates in C* and we define the quadric

3
Q2 = {[z0, ..., 23] € CP?/ > 2} = 0}
i=0

We consider again the plane P generated by €1, €2 and we map it to the class
in CP? of the vector

[61 - iEQ] € QQ (4)
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We now recall the Segre isomorphism between Q5 and CP! x CP?; it is given
by the following two maps:

_ ¢3 + iy _ ¢1 + i
G1— 1Py —P3+ iy

 —@3t+ids  P1+id
g-([¢1, P2, 3, B4]) = o —ids b3t ite (6)

We now explain that these two different ways of describing an oriented 2-
plane P as the data of two elements in two 2-spheres are equivalent. We do

it for g4 and J,; it works the same for g_ and J_.
We derive from the basis (e, ..., e4) of R* a basis of S(A*(R*)) given by

9+([¢17¢2,¢3,¢4D (5>

1

J() = E(el /\€2+63/\€4)
1

Jl = E(el /\63"—64/\62)
1

J2 = —(61 /\64"‘62/\63)

N

Suppose J.(P) = aJy + BJ1 + vJo. We denote by II the stereographic
projection w.r.t. the point Jy to the plane generated by J; and .J5; we have
s gl

(4 (P) = T2y +

- Jo (7)

Convention 1. We identify the plane generated by J, and Jo with the com-
plex plane, with Jy (resp. Ji) identified with 1 (resp. i).

Following Convention 1, we rewrite (7) as

v +ip
II P)) =
(P = 1L ®)
On the other hand, we identify CP! with C U {oo} by
o1, za] = (©)
22

Proposition 1. Under the above identifications, if P is an oriented 2-plane,

9+(P) = H(J+(P))



Proof. We first check

Lemma 1. If J € S(AT(RY)), the planes of G5 which are J-complex lines
form a complex line in Gy .

Proof. We first prove Lemma 1 if J = Jy. A Jy-complex plane is generated
by two vectors

€1 = ae; + bey + ces +dey € = —bey + aey — des + cey (10)

Then

€1 — ieg = (A, —iA, p, —ip) (11)
where A = a +ib and p = ¢+ id. It is clear that (11) describes a line L in
Q2.
A general J is given by J = B~1JyB for some B € SO(4). For a unit vector
u, we have

u—iJu = B~ (Bu —iJyu)
hence J belongs to the line B~1L. O

It follows from Lemma 1 that it is enough to prove Prop. 1 if P is
generated by eq, J,(P)e;. Then

e —iJ(P)ey = (1, —icv, —i 3, —i7y)

hence )
g (P) =20 (g, (P))

11—«

2.2 The Gauss map: notations

Let ¥ be a Riemann surface and F' : ¥ — R* be an immersion. If p € X, the
Gauss map I'(p) € G5 of F at p is the oriented tangent plane to dF(T,Y).
Namely, if z = x 4 1y is a local holomorphic coordinate on ¥ around p, we
can write

oF OF
L'p) =]— —i— 12
1) =5 —i5 1@ (12)
If F' is minimal, then I : ¥ — )5 is holomorphic.

Using the notations of (1) and (2) we define



If F is minimal and we use Convention 1, the maps v, and 7, are holomor-
phic.
2.3 Curvatures of the tangent and normal bundle

If ¥ is a surface immersed in R?, we use the Gauss maps (13) to compute
the curvatures of the tangent bundle 7% and normal bundle NY. We have
([Ch-T],[Vi]):

1 1
SV = —KT — KN vy P = KT+ KN (4

If 3 is minimal,
KV < -K" (15)

the equality being attained at points where Y. is superminimal.

3 Complete minimal surfaces of finite total
curvature

In this section ¥ is a Riemann surface and F : ¥ — R* is a conformal
harmonic map such that F(X) is a complete minimal surface in R*. We
recall some basic properties (see [Ch-Os]).
There exists a compact Riemann surface 3 without boundary and a finite
number of points py, ..., pg in 3} such that

Y= 2\{}917 --->Pd}

and the Gauss map I extends to a holomorphic map
f‘ : i] — QQ.

Moreover there exist meromorphic differentials oy, as, az, ey on X such that,
for every k = 1,...,4, the corresponding i-th coordinate of F' can be written

N e o )

We assume that for R large enough, F(X) N (R*\S(0, R)) is a finite union of
annuli. These annuli are called ends of ¥ and these ends correspond to the
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pr’s. X

Given a pyg, we call the plane P, = I'(pg) the tangent plane to ¥ at infinity
for the corresponding end. Using the expression (16), we parametrize the
end as follows

Proposition 2. Let D(py,€) be the disk in S centered at pr and of radius €.
For e > 0 small enough, we reparametrize D(pg, €)\{pr} as {z € C/|z| > R}
for some R > 0. The restriction of F' to the end can be written as

{2/|z] >R} — R*'=CxC
2= (Re(2™) + o(|2™]), Im(2™) + o(|2"]), o|="]), o(|2"]))  (17)
where the first complex coordinate on R* = C x C generates Pj.
REMARK. The condition that F'(X) is complete is essential for Prop. 2:

Exemple 1. The following minimal surface has finite total curvature:
C—C?

z s (e72,e727).

A

If g(3) = 0 we also also derive from (16),

Proposition 3. If mq,...,mgq are points in C and F s a complete minimal
immersion of C\{my, ..., mg} in R* of finite total curvature, it can be written
as

F:C— C?

F:ze (fi(2) + fa(2), fa(2) + fa(2))
where f1, fa, f3, f4 are meromorphic functions verifying
fi(2)f5(2) + f3(2) fa(2) = 0 (18)
If ¥ = C, the f;’s are polynomials.

The identity (18) follows from the fact that F' is conformal (cf. [M-W]).



3.1 Homology computations

The maps v, and y_ also extend to finite degree maps
Ay 32— S(AT(RY), 4 : % — S(A™(RY).

We denote by dy (resp. d-) the degree of 44 (resp. 4-) and we express the
dy’s in terms of the homology class of I'(X) in G, see ([Ho-Os2]).
We let S, (resp. S_) be the class in Hy(G5,Z) of S(AT(R?)) x {x} (resp.
{x} x S(A~(RY))), where x is an element of S(A~(R?)) (resp. S(AT(R?)).
The homology class of T'(3) verifies

M) =dySy +d_S_ (19)

We have

—/ K'=2r(dy +d_) - / KY =2r(d, —d_) (20)

3.2 Total curvature of the tangent bundle

The Gauss-Bonnet formula together and Th. A of [Shi] yield

Proposition 4. If d is the number of ends of ¥ and x(X) is its Euler char-
acteristic, we have

% KT _ ZN +x(2 2(1 + ;) — 29(%) (21)

where the N;’s are as the N in (17).

4 The normal bundle

In this section we assume that ¥ is embedded.

4.1 The knots and link at infinity

We define a link at infinity similarly to what is done for complex curves (cf.
IN-R)):



Theorem 1. There exists a Ry > 0 such that for R > Ry, Lgr = S(0, R) N%
18 a link; and its link type does not depend on R > Ry.

Proof. We go back to Prop. 2 and we consider for each end 7, the knot

K;(R) = S(0,R) N F(D(pi,e)\{pi}); it follows from the expression of (17)

that for R large enough, K;(R) is transverse to S(0,R) and for R < R/,

K;(R) is isotopic to K;(R'). Also, since the D(p;, €)’s are disjoint for € small

enough, K;(R) and K;(R) are disjoint if ¢ # j.

It follows that the Lg’s are all well-defined and isotopic for R large enough.
[

4.2 The writhe at infinity

Let X be a vector in R* which does not belong to any of the P’s (the
tangent planes at infinity). We derive from Prop. 2 that the projection of X
to S(0, R) is not tangent to any of the K;(R)’s if R is large enough. Hence, if
we push slightly K;(R) in the direction of the projection of X along S(0, R),
we get another knot K;(R) which is disjoint from K;(R). Moreover we can
take each K;(R) close enough to K;(R) so that K;(R) and K (R) are disjoint
if i # j. Thus the K;’s put together form a link L(R) and the linking number
Ik(L(R), L(R)) is well defined.

4.3 Integral formulae for the normal curvature

Proposition 5. Let X be a complete minimal surface of finite total curva-
ture embedded in R*. For a large enough positive real number R, we define
Ik(L(R),L(R)) as in §4.2. Then, for R large enough, the curvature of the
normal bundle is )
— | KV =k(L(R), L(R)) (22)
2 Js
the equality being attained if and only if ¥ is holomorphic for a parallel com-
plex structure on R*.

Proof. We let X” be the projection of X to the normal bundle NX. We let
J be the complex structure (compatible with the metric and orientation) on
N3 and we apply Stokes’theorem to the form

1
w:_HX—NH2<VXN’JXN>'



We have dw = KVdA, where dA is the area element on .

1 1

— KN = — w-+number of zeroes of X on ¥NB(0, R).
27 $NB(0,R) 2m $NOB(0,R)
Lemma 2.

lim w=20
R—00 J$noB(0,R)
Proof. 1t is enough to consider one end p;; we denote P; the oriented tangent
plane at infinity for this end viewed as a 2-vector and by J, the corresponding
complex structure (i.e. 44 (p1)).
Denoting by
x: A3(R) — AY(R)

the Hodge operator, we let the reader check that
XV = —J,(x(X ATF(X))) (23)

where T'F(X) is the tangent plane. It follows that, in order to bound w, we
need to bound ||V~ and ||[V7_||. We achieve ths by putting together (5),
(6) and (17) to derive the existence of two complex numbers a and b,

a b 1
= — _— _ —_ — R 24
1(z) = +o(—=)  7-(2) Z+0(|Z|) (24)
We conclude by saying that interpreting the number of zeroes of X%V as the

number of intersection points inside B(0, R) between F'(3) and a surface
obtained by pushing F(X) slightly in the direction of X%, O

If we focus on a single end P;, we proceed as in [Vi2] and view the knot
at infinity K7 as a braid in S(0, R); or equivalently as a braid in the cylinder
S! x @ where @ is a plane containing X (as in [S-V]). The linking number
k(K (R), K(R)) can be interpreted as the algebraic length e(K (R)) (cf. [Be])
of this braid. We derive from Prop. 5

Corollary 1. Under the assumptions of Prop. 5, and for R large enough,
1) If ¥ has a single end with knot at infinity

1

2 Js

KN = ¢(K) (25)

10



2) If 3 has several ends and their tangent planes at infinity P; are all trans-
verse,

1 .

= / KY =S e(Ki(R) +2 S oli, ))NNIE(K(R), ki (R))  (26)
b2 i 1,417

where o(i,7) is 1 (resp. —1) if P; and P; intersect positively (resp. negatively)

and the N;’s are as in (17).

REMARK. We point out the similarity with the case of a local branch
point ([Vi2]): in this case as well, the date of the normal bundle is given by
the algebraic length of a braid.

5 Estimates for a complete minimal surface
with a single end

In this section, ¥ is a complete minimal surface in R?* of finite total curvature
with a single end. We let g be the genus of ¥ and K be its knot at infin-
ity. The integral formulae for the tangent and normal curvatures together
with the inequality (15) between these curvatures enable us to derive some
estimates.

Proposition 6. Under the assumptions of Cor. 1 1), we have
e(K)| < N —1+2 27)

the equality being attained if and only if ¥ is holomorphic for a parallel com-
plex structure on R*.

REMARK. The inequality (27) is just Rudolph’s slice-Bennequin inequal-
ity ([Ru]).

5.1 Computations inside GJ

We now consider 3 = I'(32) which is a complex curve in G5. We derive from
(20) and (25) that the homology class [¥] verifies

11



(dyeSy +d_S_).(deSy +d_S_)=2d.d_ = %[(29 + N —1)2—e(K)?] (28)
< (G, >=2(dy +d_) =229+ N —1) (29)

We can now write the adjunction formula for ¥ ([G-H]):

a(T) + ¢ (NX) =2 —2g + [X].[2] + st =< (GF), 2 >

where the s’s run through the singular points of > and the my are negative
numbers. It follows from (28) and (29) that

4—4g+129+N—-12—¢e(K)*>229+ N —1).

We derive

Proposition 7. Let X be a complete properly embedded in R* minimal sur-
face of finite total curvature which is not holomorphic for any parallel complex
structure on R*. Then

e(K)* < (29 + N —3)* — 4g.

Equality is attained if the map r:s— G is an embedding.

5.2 The knot at infinity

We now go back to the expression (2) of the end and focus on the second
component; we assume that there exists an integer p, with 0 < p < N and
two complex numbers A and B such that the end is parametrized

2z (2N +o(|2|Y), AzP + BZP + o(|2|F)) (30)

We distinguish two cases in (30).
Ist case: If |A| # |B| in (30), the knot at infinity is the (1V,¢) torus knot;
hence |e(K)| = (N — 1)p. Hence

Proposition 8. If |A| # |B| in (30),

(N-Dlp-1)

9(2) > 5

(31)

Equality occurs in (30) occurs if ¥ is holomorphic for a parallel complex
structure on R%,

12



Proposition 9. If |A| = |B| in (30), then
i)N—p<di<p—1+29, N-p<d <p—-1+2
ii) le] <2p— N —1+42g

Proof. Both 4, and 4_ have a branch point of order N —p at infinity; since d
and d_ are the degrees of these maps, we derive N —p < d_and N—p < d,.
We derive the other inequalities for the degrees (we write it for d, the same
proof works for d_):

dy =d +d —d =N-1+2g—d_<N—-1+29—(N—p)=p—1+2g.

The inequality ii) follows immediately from 1i). O

6 Planar degenerate minimal surfaces

We consider here 1-degenerate minimal surfaces (we will drop the 1 from now
on): by definition their image under the Gauss map sits inside a hyperplane
of CP3. We refer the reader to [Ho-Osl] for a detailed exposition; unlike
[Ho-Osl1]| we only consider planar degenerate minimal surfaces. We rewrite
one of their results

Proposition 10. ([Ho-Osl], Lemma 4.5) Let F : C — R* be a degenerate
minimal surface. Then there exists an orthonormal basis of R* w.r.t. which
we can write F' as

2 (P(2) + AP(2),u(z) + 9(2)) (32)
where P, u and v are holomorphic functions such that
AP'(2)* + 4/ (2)v'(2) = 0 (33)

If moreover we assume F'(X) to be of finite total curvature and complete,
the functions P’, «’' and v’ are polynomials.

Proposition 11. Let F': C — R* be a degenerate minimal map as inProp.
10. We denote by Py the plane generated by the first two coordonates in (32)
and let Pr be the tangent plane at infinity to F(C). If F' is an embedding,
then Py and Pr are not transverse planes.
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Proof. If |A| = 1, then F(C) is a minimal surface inside an Euclidean 3-space
of R*, hence it is a 2-plane. Thus we assume, without loss of generality that
|A| < 1 and that Py and Pr are transverse planes. So we can split R* into a
product Fy X Pr w.r.t. which the end is parametrized

2z (AN + BZN +o(|2|V), 27 4 o(|2]9)) (34)

with ¢ > N and |A| # |B|. The knot at infinity is a torus knot and X is not
embedded (cf. Prop. 8). O

Here is an example where the planes are transverse

Exemple 2. The following map is an immersed degenerate minimal surface

2N?

H:ze (22N 42V ———
z (22 +Z’2N—1

2N 4 z) (35)
It has (N —1)N transverse double points, all positive; the braid at infinity K
is a (2N — 1, N) torus knot and its algebraic length is e(K) = (2N — 2)N.

Proof. It follows from (18) that H is minimal; to check that the braid at
infinity is a (2N — 1, V) torus knot, we rewrite the first two coordinates as
(BRe(2N), Im(2VN)).

A double point of H is the data of a v # 1, with v = 1 and two complex
numbers z1, zo with zo = vz; and such that H(z;) = H(z). We write the
second component of (35) and derive

_ 2N? L2N-1 4~ 2N? 2N-1
N — 171

+z1=— vz +Urvz

After simplifying by 7 — 1, we derive

2N? oy

—mz’l = (36)

Equation (36) has 2NV solutions. If we go through all the v’s, we count twice
every different value of {21, 22} (we get the same double point for v and for
v): in total this gives us N(N —1) double points: this number coincides with
%e(K ), hence we know that all these points are all positive. O]
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7 Minimal surfaces of small total curvature

In this section we restrict ourselves to planar minimal surfaces as in Cor. 3
and we show how the link at infinity can help us determine when the minimal
surface is embedded.

7.1 Embedded minimal surfaces of total curvature —4n

[Ho-Os1] show that if F': ¥ — R* is minimal of total curvature is —4m,
then ¥ is either C or C\{0}; in both these cases, they give a general formula
for the coordinates of F'. We investigate when the surface is embedded.
NB. In this section, what we mean by holomorphic is holomorphic for some
parallel complex structure J on R*.

Proposition 12. A non holomorphic minimal map F from C and of total
curvature —4rn can always be written as
3 2 =2

F:ze (% —a?z — B%,ﬁ% + B% + Baz — paz) (37)

for a, 8 complex numbers with 3 # 0.
It is an embedding if and only if
B, a
37 @ (38)

If (38) is not true, then F(C) has codimension one self-intersections.

Proof. In [Ho-Osl] we also find a general form for immersed surfaces of cur-
vature —4m which is equivalent to (37). Nevertheless we prove (37) here, so
as to fit in with our notations.

We consider the f;’s as in Cor. 3. We assume that f; has the highest degree;
after a rotation in the first component of C?, we can assume

fi=GE=b(E—-c fi=2X

By replacing z by z — %, we can rewrite

fi=(—a)(z+a) fa=2A (39)
Without loss of generality, we can assume

fs=alz+a) fi=8(z—a) (40)

15



We have aff + A = 0; since the knot at infinity is not a torus knot, we have
la| = 8] = \/|A.- We put @ = Re™, 3 = Re"?, after multiplying the second

v Sl
=57 we assume that

f=a«a (41)

coordinate in C? by e

hence
A=-—p (42)

We derive in passing that g # 0.
We let z1, 29 be two different numbers such that
F(z) = F(2) (43)
We introduce
X:zl—zg, Y221+22

and we point out that XY = 2% — z2; this enables us to rewrite the second
component in C? of (43)

% BXY + %BXY +afX —afX =0 (44)

We notice that the sum of the first two terms (resp. of the last two terms)
of (44) is real (resp. imaginary), hence we can rewrite (44) as the following
two equalities

af

aBX —aBX =0 thatis X == (45)

ap
BXY 4+ XY =0 (46)
If we plug (45) into (46), we get

I

Y =—Y 47
: (a7)
We now let the reader check that
X
2 — 2= Z(31/2 + X?)
which enables us to rewrite the first component of F'(z1) = F/(29) as

X o
E(?)YQ + X3 —a’X - X =0. (48)

16



We plug (45) into (48), simplify by X and derive

1—12(3Y2+X2)—a2—g]m2:0 (49)
We derive from (45) and (47) that
= Pxp yro Yyp (50)
af a
We let a = |a|e™ and rewrite (49) using (50)
3P+ ) — faPe - eelst =0 (s1)

The equation (51) has a solution if an only if

@ _ €2iu

af

We recognize the inverse of (38). If (38) is verified, we can rewrite (53) as

Q|

(52)

=3IV + X" = 12(|af* + |B%) (53)

Thus |X| and |Y| belong to a hyperbola H in R?: for every point in H,
the equations yield four values of the type ((X,Y), (—=X,Y), (X,-Y) and
(—X,=Y)). They correspond in turn to two double points of F' (which are
different except if Y = 0). O

The following minimal surface has also curvature —4m:

Exemple 3. The image of the map

C—R*

3
2 (24 2% 2%+ 122)

1s an immersed minimal surface with two transverse double points. Its knot
at infinity is the (2,3) torus knot and it is not holomorphic for any parallel
complex structure.

17



Proposition 13. A non holomorphic minimal immersion of total curvature
—4m from C\{0} can always be put in the form

F:z|—>(az—i—b2+g,alnz—i-ozlnz—l—ﬁz—BZ) (54)
where a is real and o # 0, b # 0
ab= % cb=a (55)
It 1s always an embedding.

Proof. We derive the expression (54) as [Ho-Osl]; we get the identities (55)
by using (18).
Let z; and 29 be two different complex numbers such that

F(Zl) = F(Zg) (56>
We derive from the second component of (56) that In(|z1]) = In(|22]), hence
|21] = [z2] (57)

Hence we write z; = pe® and 2, = pe'2.
We now let 3 = |B]e? and rewrite Im(S2;) = Im(B29) as

sin(y 4 01) = sin(y + 62) (58)
hence
”y—i—@l = (2”+1)7T— (’Y+92)

for some integer n; hence
Z9 = 7721 (59>
where

—2iy _ _

(60)

™| ™

n=—e

We plug (59) into the first component of (56) and get

c c
azy + bz‘l + — = anZl + bﬁZl + __n
Z1 Z1
After multiplying by z,z;, we derive
ailalz? = bl — ei] = Zifan|z1* = bz - (61)
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= nzialzf* — bz '] — ci) (62)

If a|z|* — b|21|*] — cij # 0, we derive that nz; = z;; in turn this implies that
21 = 29 (cf. (59). Hence a|z|* — blz1]*7 — ¢if = 0 and

2 p—
A= (63)
< a? B a? B a?
an—b  blan—0  ba(~5)—bb —BB b
Since « is real, this is impossible. O

The curvature —4r is the only case where we are able to get a complete
classification of embedded surfaces. For larger total curvature, we only get a
couple of partial results which we present now.

7.2 Total curvature —67

We refer the reader to [F-M] or [Bu-Zi| (among many other possible refer-
ences) for material about concordant knots and slice knots. The following
should be clear:

Proposition 14. Let F : C\{0} — R* be a minimal embedding such that
F(X) is complete and of total finite curvature. Then the two knots at infinity
are concordant.

We derive

Proposition 15. Let F': C\{0} — R* be a minimal surface of total cur-
vature —6mw. If F is embedded and not holomorphic, then the two tangent
planes at infinity are not transverse.

Proof. We have d, + d_ = 3. Since F' is not holomorphic neither of d; or
d_ is zero and we derive

We denote by K; (resp. K3) the knot at infinity in the neighbourhood of 0
(resp. infinity). Without loss of generality, we assume that F' is equivalent
to 2% (resp. 1) near infinity (resp. near 0). It follows that K is trivial and
K, is a knot represented by a braid with 2 strings. This braid is a o* for

some integer k; if £ > 1, then K5 is a torus knot and if £ = +1, then K,
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is trivial. The knots K; and K5 are concordant, hence K, is slice: thus it
cannot be a torus knot and e(K3) = 1.

We denote by P; (resp. P») the tangent plane at infinity in the neighbourhood
of 0 (resp. infinity) and we let X be a vector in R* which does not belong to
either P, or P,. Using Cor. 1, we derive

ldy —d_| = [e(K)) + e(Ka) £4| = | £1+0+ +4] > 3
which contradicts (64). O

By contrast, the reader can check using (18) that
Exemple 4. The following map from C\{0} to R* is minimal

1
zr—>(z2+lnz+ln2,2z—2+?) (65)
z

The tangent planes at infinity in Prop. 4 are transverse which implies
that the surface has self-intersections.

7.3 Total curvature —87

In the previous cases, we have found obstructions to embeddedness by con-
sidering the writhe number of the knot. We present here a situation where
it is the topology of the knot at infinity that yields the obstruction. First we
state the obvious

Proposition 16. Let F : C — R* be a minimal map such that F(X) is
complete, embedded and has finite total curvature. Then the knot at infinity
15 slice.

We recall

Theorem 2. ([F-M]) The Alezander polynomial of a slice knot must be of
the form p(t)p(3) for some integral polynomial p(t).

We derive from Prop. 16 and Th. 2

Proposition 17. Let X be a complete minimal surface of genus 0 with a
single end and of total curvature —8m given by

2 (22 4+ P(2) + Q(2), A2* + Bz* + C2* + DZ* + o(|2]*)) (66)
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where |A| = |B|, P and Q are holomorphic polynomials of degree smaller
than 5.
For a generic (C, D) € C?, the surface is not embedded.

REMARK. The condition |A| = |B] is necessary for ¥ to be an embed-
ding.

Proof. If A= B =0, we need |C| = |D|, otherwise the knot at infinity would
be the (3, 5)-torus knot.

We now assume that A # 0. Possible after a change of coordinates, the end
is parametrized by

re s (r°e + o(r®), r* cos 40 + o(r?), 7% cos(30 + ) + o(r?)) (67)
For a generic C| D, i.e. a generic «, the truncated function
e i (7% cos 40, cos(30 + a)) (68)

is injective hence (68) is enough to define the knot at infinity.
We recognize get knots similar to the ones studied in [So-Vi|. In that paper,
we investigated branch points of minimal surfaces in R*; if a disk around
such a branch point p is embedded, we intersect it with a small sphere in R*
centered at p. We called them minimal knots; the simplest ones, which we
called simple minimal knots are knots in the cylinder given by

e 1 (N cosph, cos(qh + a)) (69)

where N, p,q are integers, with ¢ > N, p > N and (N,q) = (N,p) = 1.
Despite the fact that in [So-Vi] N is smaller than the other two integers
and here it is larger, some facts from that paper apply to the knot (68): in
particular, up to mirror symmetry, the knot type of (68) does not depend on
the phase a.

We use the formulae in [So-Vi| to compute a representation of one of the
knots (68) as a braid with 5 strings and derive

B = 0405 0105 05 toyos0y toso o o (70)
To get the Alexander polynomial of 3, we use the software [B-F] developped
by Andrew Bartholomew and Roger Fenn and we derive for the Alexander
polynomial A(t) of B:
2
A(t):t2—2t+3—¥+1 (71)

21



It is clear that A(t) does not verify the property of Th. 2, hence the knot
represented by [ is not slice. This, together with Prop. 16 concludes the
proof.

]
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