N

N
N

HAL

open science

High gain observer for a class of non-triangular systems
Mondher Farza, Mohammed M’Saad, Moncef Triki, Tarek Maatoug

» To cite this version:

Mondher Farza, Mohammed M’Saad, Moncef Triki, Tarek Maatoug. High gain observer
Systems and Control Letters,
10.1016/j.sysconle.2010.09.009 . hal-01059914

for a class of non-triangular systems.

HAL Id: hal-01059914
https://hal.science/hal-01059914

Submitted on 8 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

2010, 60, pp.27-35.


https://hal.science/hal-01059914
https://hal.archives-ouvertes.fr

High gain observer for a class of non-triangular systems

M. Farza®*, M. M’Saad?, M. Triki*®, T. Maatoug®

2 GREYC, UMR 6072 CNRS, Université de Caen, ENSICAEN, 6 Bd Maréchal Juin, 14050 Caen Cedex, France
b ENIS, Département de Génie électrique, BP W, 3038 Sfax, Tunisia

Keywords:

Nonlinear systems

MIMO systems
Observability for any input
High gain observers

ABSTRACT

This paper presents a high gain observer for a class of MIMO nonlinear systems involving some
uncertainties. The latter is particularly composed of cascade subsystems where each subsystem is
associated with a subset of the output variables, and assumes a triangular dependence on its own state
variables and may depend on the state variables of all other subsystems. The main contribution consists in
extending the available results to allow more interconnections between the subsystems. Of fundamental
interest, it is shown that the underlying observation error exponentially converges to zero in the absence
of uncertainties. Moreover, the observation error can be made as small as desired by properly specifying
the observer design parameter in the case where uncertainties are considered.

1. Introduction

This paper presents a state observer for nonlinear systems that

are diffeomorphic to

{)'c =Ax+ o, x) + £(t)

y=C

where the terms are defined as follows.

Q

(1 where y, € RPk fork =1, ..., g and hence

e x denotes the state of the system and is composed as follows

1

e The matrices A and C are respectively given by

X
2
X
x=| . | er" withx = € R™ A
: A=
q
X A
"El 0 Iy, 0
here xf = € R withx¥, e Rfork=1,...,q, i = . : -
where x; ; with x;; or q, i with 4, = | ° ) @)
Xi’pk P O ka
Lo g j=1, ., pewith >0 me = 31 prhe = n; pe > o .- 0 O
Tand A, > 2 d
e u and y, respectively, denote the input and the output of the an
system. The output is particularly composed as follows G
C=
G
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e ¢(u, x) denotes the nonlinear function field which is composed
as follows

¢'(u, %)
s =700 cw
¢%(u, %)
<p'f(u,x)
with ¢*(u, x) = <p§(1.t,x) R™
w’ik(ﬁ,X)

where the function <p{‘(u, X) € RPk is differentiable with respect
to x and assumes the following structural dependence on the
state variables.

e Forl<i<\ —1:

k k 1 ,2 k—1
o (U, x) = @ (U, X", x°, ..., x" ",
k k k k+1 _k+2
X1, Xy oo x0T T2 XD, (4)
e Fori= Ag:
k k 1 .2
@ W, %) = @5 (U, x,x%, ..., x7). (5)

e £(t) is a completely unknown function with the following
structure:

0 0]

g2 (t gkt
in=|° .() e R" with& (t) = 82.() € R™

#(t) & (0)

where the functions Ef‘(t) € RPk are given by

«__]O fork=1,...,qandi=1,..., A, — 1

& = e(t) fork=1,...,qandi= A

where the gi(t)’s, k = 1,...,q are unknown bounded
functions, i.e.

IB>0; Ve >0; e(®) < B. (6)

The observer design problem for nonlinear dynamical systems has
received a remarkable attention over the last years. More specifi-
cally, four approaches have been pursued to design observers for
nonlinear systems. The first approach, which has met a great suc-
cess in the past, is based on the Kalman filter which is used as a
nonlinear observer [1]. The success of such an approach is mainly
due to its underlying implementation simplicity independently of
the system complexity. Nevertheless, there is a major drawback of
this approach that would be worth mentioning, namely, the lack of
guaranteed stability. The second approach is that based on lineariz-
able error dynamics where state transformations are exhibited in
order to put the considered systems in a form where the nonlinear-
ities depend only on the inputs and the outputs [2-8]. The result-
ing class of systems constitutes a subclass of system (1) with the
particularity that the function ¢ only depends on the input u and
output y. The third approach is based on the LMI techniques and
has been the subject of many studies over the past decade [9,10].
The involved systems are composed of a constant linear part and
a nonlinear part that is assumed to be globally Lipschitz. The ob-
server gain is determined through the resolution of a LMI problem
and thereby the observer design is closely related to the feasibility
of the involved LMI problem. The latter is by no means known a
priori and is to be determined numerically as pointed out in [11].
The fourth approach is based on the observable canonical forms
and uses the concept of observability for any input [12]. This con-
ceptrises from the well-known fact that unlike linear systems, the
observability of nonlinear systems does depend on the inputs. A

necessary and sufficient condition for the observability for any in-
put of single-output-input affine nonlinear systems has been es-
tablished in [13]. The involved systems are characterized by the
well-known triangular form and are included in the class of sys-
tems (1) with p = 1. The triangular canonical form is composed
of a fixed linear dynamics component together with a nonlinear
triangular controlled one. This canonical form makes it possible to
design a high gain observer under some global Lipschitz assump-
tion on the controlled part. The gain of the observer is determined
from a usual algebraic Lyapunov equation. Many generalizations
of this result to systems with many outputs have been proposed in
[14-21]. Other approaches that do not fall in the above four classes
can be found in [22-24].

The aim of this contribution is to extend the available results
by proposing a canonical form that characterizes a large class of
nonlinear systems that are observable for any input. It is worth
pointing out two remarks.

e Inthe absence of uncertainties, the class of systems (1) extends
that considered in [19] in two directions. First, each subsystem
is allowed to be multi-output unlike in [19] where all the sub-
systems are single-output. Second, the nonlinearity structure is
no longer triangular as in [ 19]. More specifically, the nonlinear-
ity intervening in the last equation of each subsystem depends
on all the state variables. Furthermore, it is worth noticing that
the class of systems considered in [21] is diffeomorphic to sys-
tem (1) with ¢ = 1. This means that all the outputs belong to
the same subsystem in [21].

e In the presence of uncertainties, system (1) includes the class
of systems considered in [20]. Recall that many systems involv-
ing unknown inputs can be put in the form (1) allowing thereby
to design nonlinear observers that simultaneously estimate the
state variables and the unknown inputs (see [25] for instance).

This paper is organized as follows. In Section 2, one first shows
that system (1) is indeed observable for any input. Then some
notations and definitions with a technical lemma are given. Finally,
the structure exhibited by system (1) is discussed in order to
emphasize the main contributions with respect to the available
results. The observer design is developed in Section 3 with a full
stability and convergence analysis. Simulation results are given
in Section 4 to show the performances of the proposed observer.
Finally, concluding remarks are given in Section 5.

2. Preliminaries

After showing that system (1) is observable for any input,
one introduces some variables used in the observer equations.
A particular emphasis is put on a technical lemma needed in
the proof of the main result, namely, the convergence of the
observation error. Finally, one discusses the structure of the
considered class of systems and puts forward some novelties
exhibited by this structure in comparison with previous works
related to high gain observer design. The difficulties in the observer
design raised by the considered structure are emphasized and
the technique behind achieving the observer synthesis is roughly
explained.

2.1. Observability for any input

The time derivative of the (A, — 1) first components of the
subsystem k, fork = 1, ..., g, can be described as follows:

ok k k 1 k=1 k Lk k
xi=xi+1+<pi(u,x,...,x JX Xy, e Xy
k+1k+2 q :
XL x, X)), i=1000, -1

k
Vi = X1.



k =k

X1 X Xll
X2 ] . Xk _ 2 ) o ,-(2<
Letx = with x* = and x = withx =] . |be
a K - -
X X5y X Xrk

two trajectories of system (1) associated with the outputs y =

y1=x] y1=%]
y2 = X% _ g =% .

andy = , respectively. In order to show that
vq =4 yg=X

system (1) is observable (for any input), it suffices to show that:
y=y=—X=2X.
Indeed, suppose that y = y. Then, one obviously has

X=y=p=% fork=1,...,q. (7)

In particular, for k = 1, one has

X; =X (8)
Differentiating each term of Eq. (8) with respect to time gives
X+ @1 (U, X1, Y2, -, Vq)

2 Y- 9)

X; +(p11(u7x%7y27 .o 7yq) =
= )_(; + (pll(u’ xLyZ’ ...

The last equality comes from (7) and yields

X =% (10)

Differentiating again each term of Eq. (10) with respect to time and
taking into account the triangular structure of <,021 with respect to y

and x; yields
X3 = X3 (11)

Repeating the same process until i = A; — 1yieldsx};, = X} .
Thus, one has x! = x!. Note that the last equation of the block
(corresponding to i = Aq) is not used. Now, it suffices to use the
process described above for the remaining subsystems, for k =
2, ..., q, from the first equation of the subsystem associated with
x% until the equation associated with x’;k_l.At the end of each stage,

one gets x* = X*; the equality between both trajectories x and X is
established at the last stage corresponding to the block q.

2.2. Some definitions and notations

Fork =1,...,q,let Ax(6) be the diagonal matrix defined by:

1
v eémk—ulpk) (12)

where 6 > 0 is a real number and one defines §, which indicates
the power of 6 as follows:

d 3
5k=2q—k<]_[ (Ai—5)> fork=1,...,q—1 (13)

. 1
Ar(0) = diag (ka, Elpk, ..

i=k+1
8g=1

Note that foranyk = 1,...,q — 1, one has

% _ (her = 2) s (14)
5 = \ Mt T 5 ) Ok

Since Ay > 2, one has (A1 —32) > 1 and therefore the &'s

constitute a decreasing sequence of positive real numbers, i.e.

§128>-->8=1 (15)

One also defines the following sequence of scalar numbers for
k=1,...,qandi=1, ..., A

of =k + (-1
1
withof = —(ue — D+ (A — D81 +1 (1 - zk—_l) (16)

where 0 < 1 < 1can be chosen arbitrarily small.
Itiseasytoseethatai" >0,fork=1,...,qandi=1,..., .
Indeed, for k = 1, one has

ol =0 +({i—-1)8
= (i—1)8;
> 0 fori> 1sinced; > 0. 17)

For k > 2, one has

) 1
O’ik = (A — 1)81 — (A — 1)8’( +n (1 - 2k—1)

= (A1 — D81 — (A — D

Je—1 Ok )
= (A — 1)é1 — - T3 according to (14)
R )
> (M= 1D — 373 according to (15)
= (A1 —2)81 2 0. (18)

Similarly to the Aj’s, one defines fork = 1, ...
matrices Ay's as follows:

, q the diagonal
A(8) = 6771 A(6)

0 M

di ! I ! I —1 I (19)
= diag | —1I,,, — I, - - -, .

e Pk ook Pk I Pk
Note that, according to the definition of the ai"'s given by (16), one
has

1
O’)’fk = ()\1 - 1)81 +7](1 - F)

and therefore one has

ol = ! ! fork, =1 20
0y, — 0y =1 ST T gk ork,l=1,...,4. (20)
This means that whatever is the difference between A and A, the
difference between ofk and le, (which are the powers of 6 on the
last rows of Ax(6) and A(0), respectively) can be made as small
as desired by choosing n small enough (very close to zero).

Now, taking into account the structures of A(6), A(f) and
Ay, respectively, given by (19), (12) and (2), one can show that the
following identities hold:

o AO)AALN(O) = AO)AAL (0) = 0% A, 1)
o 07IGALNO) = AN (O) = G

Another matrix that shall be used in the observer equation is Sy and
it is the unique solution of the algebraic Lyapunov equation

Sk + ALSk + SkAr = CL G (22)

where Ay and C; are defined in (2) and (3), respectively. It can
be shown that the explicit solution of (22) is symmetric positive
definite and in particular, one has [13,17]

S G = (Gl - Grly)T

Akl

- fori=1,..., A (23)

Wherec;;k = ’()\'—)’
LAk —1)!



In what follows, one shall denote by AK . and A¥ ., the smallest and
largest eigenvalues of Sy, respectively. The variables Ay and Apax
shall respectively denote the smallest and largest eigenvalues of S

defined as follows:
S = diag(S1, S2, ..., Sg). (24)

Before ending this section, one shall give a technical lemma needed
in the proof of our main result. This lemma allows to provide a
sequence of reals that reflects in some sense the interconnections
between the subsystem nonlinearities.

Lemma 2.1. Let
k

i_ )0 (u X)=0
1’3‘1 = f J ) = 05)
1 otherwise
fork,1 =1,...,q,i = 1,..., sy andj = 2, ..., A. Then, the
sequence of real numbers oi" defined by (16) is such that
) )
ifX,Y —1thena—g’<__’__'<<_i. 26)

2 2 24

Proof of Lemma 2.1. This shall be done using the following two
facts. First, according to the state dependence given by (4) and (5),
thecasewherex, = 1fork,l e {1,...,q}andj € {2,..., A}
occurs if and only if one of the following three situations is met

e k > [and i takes any value in {1, ..., Ay}; this traduces the
triangular like structure of the overall system.

ek =landi € {1,...,A,} withi > j; this is related to the
triangular structure of each subsystem with respect to its
variables.

e k < landi = Ay; this allows the last layer of each subsystem to
depend on all state variables.

Second, it follows from (16) that

8 Sk
1k
GT T,
8 Sk
=0l + (- Doi—of— (- Do -3

= —()\1 — 1)51 + (I - 1)51 + ()\k - 1)8k — (l — 1)8k

1 1 S bk
TN\ )T 27

1 1 1
= )\k_l__ 3+ ]_)\l__ Si+n prani g K

(27)

Let us now check condition (26) by considering the three cases
listed above using (27).

e The case k > I and i takes any value in {1, ..., Ax}. Let us first
note that since k > [, one has k > 2 and hence equality (27)
becomes

) )
i k I k
iT T T

38 1 1 1
Mog)km gyt g

S-1 8 1 1 :
- 3 +7 =T according to (14)

1
S'?F
= (-2 =

IA

1
— F) according to (15)

m o no__"

21 S T = o

e Thecase k = landi € {1,..., A} withi > j. Equality (27)

becomes
& 8
1 k 1 k . n
-0 ——— —=(J—i— 18 < —§ 1< ——.
=0 —5 -5 =0 )3k K < 2
e The case k < land i = Ay. Equality (27) becomes
& 8
R

Ok 1 1 1
a R ey KAl St
Sk O 1 1
=S-—5 -5 *n k=1~ i1

I
)
)

< _1+F(1_2k ') sinced, > §; > 1
n 1 .
S—l—l—zk1 1—5 sincel — k> 1
n

S_l_'_?
n
<—-1+-=
- 2
noo.
< —— sincen <1
2
<1
=T

This ends the proof of the lemma. O

Remark 2.1. Lemma 2.1 is the main key feature for the next
developments, namely, for proving the convergence of the
observer that we shall propose for system (1). Indeed, it is worth
mentioning that under the classical Lipschitz condition on the
nonlinearities, the main issue consists in proving that the norm
of each (px x p;) block entry of the following n, x n; matrix:
9‘%‘%/\,((9)%@, x)A,_l(Q), where Ay and A, are defined by
(19), can be made arbitrarily small for relatively high values of
6 (>1). Taking into account the diagonal structure of the matrices
Ay and Ay, itis easy to see that the block matrix entry located at the
ith row and the jth column is either zero (if X,’fjf’ = 0), or depends
& %

only on @ through a multiplying term equal to ™ fol-3 -3

Thanks to Lemma 2.1, such a term can be made arbitrarily small
for & > 1 since the power of 6 is negative.

2.3. Discussion of the considered class of systems

The structure of system (1) exhibits three novelties with respect
to available contributions related to high gain observer design (see
for instance [19] and the reference list therein).

(i) The output of each block may be a vector and is not necessary
a single signal.

(ii) The last differential equation in each block may depend on all
the state and therefore the overall system does not assume a
triangular structure.

(iii) The last differential equation in each block may involve some
uncertainties.

In order to motivate item (i), consider the following example:

)‘(1 = X3
X3 = X5 + u(x3 +x4)
X5 = —U(Xs + Xg) + UXg (28)

Y1 =X



)'(2 = X4

X4 = X6 + U(X3 — X4)

. 29
Xg = —U(X5s — Xg) (29)
Y2 = X2

X7 = Xg + u(xs + Xg)

)'(g = U(Xs + X5) (30)
Y3 = X7.

It is easy to see that the overall system composed of the three
blocks (28)-(30) is not in the form (1) since the second equation
of the second block does depend on the second component of the
first block and vice versa. Let us perform a simple rearrangement
by grouping together the first two outputs x; and x,. Indeed,

1 1 1
X =X X =X X = X
setx! = (T ) ol = (T ) 0kl = (T ) 4t =
X2 =% X2 = %4 X32 = X6
X 2
X7 =X
x? ,X2=<}

7
X5 =X
X3 2 8

be written in the following form

). Using these notations, system (28)-(30) can

211
X1 =%

- _Ja_ ()N
Y1 =X _(yz)

Xy = x% + ”(x;,l + x;,z)
X = ”(X;,l + x;,z) (32)
Y2 = X%

which is clearly in the form (1) with ¢ = 2, the overall output
y = G;) ,p1 = 2and p, = 1. In item (ii), the non-triangular
structure of system (1) is put forward. Such a structure results from
the dependence of the last equation of each block on the whole
state. Such a feature constitutes the main novelty in system (1)
with respect to existing works related to the observer design, e.g.
the class of systems considered in [19] is similar to system (1)
but it assumes a triangular structure without uncertainties. The
techniques used in this paper to prove the main result are similar
to those usually adopted when designing high gain observers (see
[19,21] for instance). In these works, the expressions of the
variables 8, and oi" given by (13) and (16) differ from those given
in this paper. Indeed, in [ 19], these variables are defined as follows:

k—1

§=[]r fork=2,....qwiths; =1 (33)
i=1

of =is k=1,....qandi=1,..., 0. (34)

With §; and oi", respectively, defined as in (33) and (34), the
inequality (26) given in Lemma 2.1 is by no means fully checked.
More precisely, one cannot check this inequality in the three cases
described in the proof of lemma but it can only be proved in the
first two cases, i.e. k > land k = I For the third case (k < I)
which induces the non-triangular structure of the overall system,
inequality (26) does not hold. Let us check all these statements by
considering the three cases of Lemma 2.1. First of all, using the
expressions of the variables §;’s and oi"'s given by (33) and (34),
respectively, one has:

. 3 &

1 .
ol ok 20 %k s s, — L
(A )

e k > I: one has

e O Ok
o, —0; —— — —
J ! 2 2
8 Sk
<My —6k— = ——
=MoL O o 2
TR .
=641 — 6k — 575 according to (33)
8 8
—51 — % since thed,'s given by (33)
define a non-decreasing sequence
< 0.
e k=1landj < i: one has
3 & .
oj'—oi"—i—i <(f—i—1)8<—-6<0
e k < landi = Xy: in this case, one shall show that inequality

(26) cannot be satisfied even with j = 2. This means that the
last layer of each block must have the same triangular structure
as the other layers of the block. Indeed, one has:

O’»’—O’-k—ﬁ—% = (‘—1)51—()\’(—{-1)5’(
J ! 2 2 2 2
.1 Ok
(-3

8= b1 — =

v v
N .
[ |
N D=
. S~
> o
[ |
> &
[ |
YR=C g

In item (iii), one focuses on the system uncertainties. The
consideration of the uncertainties in the last equation of each block
gives rise to difficulties in the observer design similar to those
described when dealing with item (ii). It is well known that in the
case of a single block, one can design a high observer which allows
to obtain an estimation error with an ultimate bound that can be
made as small as desired by choosing relatively high values for
the design parameter 6. For system (1), there are two additional
difficulties that should be addressed. The first is related to the non-
triangular dependence assumed in the last equation where each
uncertainty appears. The tools used to cope with problem have
been described above. The second major problem deals with the
fact that the A;’s are not necessarily equal for k = 1, ..., q. This
difficulty was surmounted thanks to property (20). More details
are of course given in the proof of our main result in the next
section.

3. Observer design

As generally assumed in the high gain observer design [26,13,
27,21,20,28], one considers the following Lipschitz assumption.

Assumption 1. ¢(u, x) is a globally Lipschitz nonlinear function
with respect to x uniformly in u.

Remark 3.1. Assumption 1 would be too restrictive since the
Lipschitz conditions are in general locally satisfied. However, these
conditions can be omitted in the case where the system state
trajectory lies in abounded set £2. In such a case, one can extend the
nonlinearities ¢ (u, x) into @ (u, x) in such a way that the restriction
of @(u, x) coincides with ¢(u, x) on £2 and @(u, x) becomes global
Lipschitz on the whole state R". Prolongation techniques were



used in [26,13] and have been recently detailed in [29,19]. As the
description of these techniques is not the subject of this work, one
shall assume that the prolongations are achieved if necessary and
system (1) will be considered on R".

Bearing in mind the high gain design concept, a candidate observer
for system (1) is described by the following dynamical system
Ak ~ ~
X = AR+ o W, B) — 0% A.1(0)S, [ Cie*
fork=1,...,q (35)

where u and y are respectively the inputs and outputs of system
(1), X € R" denotes the state estimate given by

A sk
xl

!
5 S ek X2
x=1] . | eR" with&* = € R™
A.q k
X x5,
ok
xz,l
and & =] : | eR¥
ok
xi,pk
wherefcffjeR,forkzl,...,q, i=1,...,0 j=1,...,prand

hence Y7_, m, = n,& € R™ denotes a state estimate up to an
output injection, namely,

k {x'{ fori=1

Xi = Ak .
x; fori=2,...,

and e € R™ is the ith component of the observation error vector
and is defined by

ek = jk — xk.

The following result provides the fundamental properties of the
observer.

Theorem 3.1. Assume that system (1) satisfies Assumption 1, then
VM > 0; 36y > 0; VO > 6y; Irg > 0; g > 0; oy > 0 such that
forke{1,...,q}

[R5 (6) — x(E) || < Ao "(|R(0) — Xx(0)|| + ot B

for every admissible control u s.t. ||u]looc < M, where 8 is the upper
bound of | ek|l given in (6). Moreover, Ay is a polynomial in
0, limg_, o g = +00 and limy_, o, g = 0.

Proof of Theorem 3.1. Set the estimation error e(t) = X(t) — x(t)
and let e*(t) be the kth subcomponent of e(t). For writing
convenience and as long as there is no ambiguity, one shall omit
the time t for each variable. One has:

—o*(u, x) — 0% A1), ¢l Crek — E* (36)

where u is an admissible control such that ||u|l,, < M where
M > 0 is a given constant.
Fork=1,...,q,set

ek = Aek + <p"(u, X)

& = Ap(0)e (37)

where Ay (0) is given by (19).
From Eq. (36) and using identities (21) and (37), one gets

=k 1= A~
e = Aw(0)AAk(0) & + Ar(0) (9" (u, B) — ¢* (u, )
— A (0)E* — 0% A (0) AL (9)S,  ClCeAr(0) e
= 0% A" — 0%s, 'l G + A@) (0", B)
9" (u, %)) — A(O)E". (38)

Set
Ve(@) = &k 5,8 (39)

where S, is given by (22) and let V(e) = Zz:1 Vi(e¥) be the
candidate Lyapunov function.
Note that one has:

V(@) < Amaxllell’. (40)

And recall that A ,,x denotes the largest eigenvalue of the matrix S
given by (24).

In what follows, the value of the design parameter 6 will
assumed to be greater than or equal to 1,i.e.6 > 1.

The time derivative of the function Vj is given by

V, = 28K 5,8"
= 20%& s A" — 20%& T g
+28 5, 40(0) (6" (1, B) — 9" (u, ) — 28 S AL(0)F",
Using the algebraic Lyapunov equation (22) yields
Ve = —0%&¥ 5.8k — ghe¥ I g et

+289 5, A1(0) (0 (1, B — 9*(u, %)) — 28 S AL ()"

< —0%&" 5.8 + 28" 5. AL(0) (9 (1, B)
— ¢, %) — 28" S, A (6)E"
< —0%Vi + 2[ISi€"]| [| A(®) (@" (u, )
— * (W, )| + 2[5k 1| Ax(6)3"|
A
1 .
< -0V +2 MY Fn«o{‘(u, %) — ofu, )|
i=1 !
+2 [ )k \/\TkL
max ea{<+<xk—1)5k
where o} = ok + (i — 1)8) is as given in (16).

In addition, taking into account Assumption 1, i.e. the bounded-
ness of Z—f, one has
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where p, = sup { /x € R"and ||u]|e < M} and the
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X,"in's have the same definition as in Lemma 2.1. Such an inequality
may be rewritten as follows
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where aj' is defined as in (16), i.e. Gj’ = O’ll + (— 14,
Finally, one obtains

Vi < —0%V, + ZPkMS\/‘TkZ Z Z Xij 6%~ N

i=1 I=1 j=2

[k / _
+ 2y Mmax v"ea{<+<xk—1)5k




Mooq4 M )
= —0%Vi + 2pk/usy/ 0%V Z Z Z Xl’f}l
% 0%t =3~ /981\/,4_2 /)"r(naxf

where ps =/ imax

Amin

Moreover, according to Lemma 2.1, one has
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and taking into account (41) and (42), one has
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Moreover, let

Vi=6%V, and V*=

q
D Vi
k=1

it follows from (15) that
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And inequality (43) becomes

Vi < —Vi + 2pepsd ZQMZZZ\/W
i=1 I=1 j=2
+ 2/ Amaxy/ Vi Q(M o
q M
= -V +2)\kPkM59_2%\/VT:ZZ\/VT*
=1 j=2
+ 2/ mae Vi em o
q M
—Vi + 2hoinsf VY Y WV
=1 j=2

+ 2\/ )\max

IA

0»1 =151

< -V 4+ 2nxkpkuse‘1/v,;«/v*
+2 max 90»1 9—1d
< -V +2n)~k,0kM59 Ay
+2 max 90»1 o—181 "
Hence,

n
—V* 4+ 2n%pusd "WV 4 Zq\/)\max«/_ P

O G1=1d
2N e
= - <1 —2n°pust 2 ) Vi + zqug(k1ﬂl)81

where p = max{p, for 1 <k < q}.

V<

Gor+0u=18y

(42)

(44)

Furthermore, using (45) for 6 high enough such that
<1 — 2n2,0,u59_%> >0
yields
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This leads to

VV(e) =< exp <—

0(1 —2n’pusd™

Gl r) V(2(0))

2
+ 2q \Y )\max,B
(1 = 212 pjush~ 37 )91+ =Dé1)
and therefore one obtains fork =1, ..., q

VViE () < V(@)
< 0(1 — 2n2ppusd~21)
exp | — 2

IA

r) V(&(0))
2q \Y A'FHEX/B

(1 — 2n2 pusf~ 21 )9 (1+Ga—1s1)

In other respects, it follows from Eqgs. (37) and (39) that
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Using (40) and according to (50), one has
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and combining (49) and (50), one has
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Finally, using inequalities (48) and (52), one obtains
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And from (42) and (51), one gets
ekl = 0%Vt g

0 <1 — 2n2,0,u59_2%>
x exp | — 5 t

lleCO) I

2qpus0 1 V0 )

B
(1 - 2n2pM59‘zlq> 901131




0 1 2 3 4 5 6 7

TIME (s)

0.5

x

TIME(s)

Fig. 1. Noisy measurements of x] and 3.

n
01 —2n’pusd =20
< OO+ oy <_ ( z,o,us )t> [le(0) ]|

2qus
(1= 2m2pjus6 20 )91

+ (53)

This ends the proof of the theorem with the parameters 6y, Ag, (Lo
and By given by
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It is worth noticing that the observation error converges
exponentially to zero in the absence of uncertainties and can be
made as small as desired in the presence of uncertainties. Indeed,
the observation error remains in a ball with a radius proportional
to 91%,]. However, and as well known for high gain observers (see
e.g. [13,20]), very large values of the design parameter 6 are to be
avoided in practice since the observer may become noise sensitive.
Thus, the choice of 6 is a compromise between fast convergence
and sensitivity to noise and it is generally achieved using a trial
and error strategy.

4. An example

In the following, simulation results are given to show the
effectiveness of the proposed observer design using the following
multi-output nonlinear system:

X =x) —x] +x5u
Xy = X3 — X,
1 2
.1 1 X2 X3 (54)
X3 = —X3 — - +u+ et
3 TIr e 1+ 022 1(t)
Y1 = X%
xf = x% —x;x; —xf + ux;
1 1
%) 2 X3 3
X, = —X; — —u+&(t 55
= e T T ol 2(0) (55)
Y2 = X%
where u(t) = 5sin(2wt), e1(t) = 0.1cos(t) and &,(t) = 0.5

sin(t).

Itis worth noticing that system (54)—(55) isin the form (1), with
q=2,p1 =p, =1, = 3and A, = 2, and is not included in
the classes of systems considered in [21,19]. Moreover, the state
trajectory of the system is bounded and Assumption 1 holds (see
Remark 3.1).

The corresponding observer (35) is given by

1 2
~ R X, +xju
(% ay
il I C2 I VPR
X3 0 —X3 — g =5 tu
1+ (xy) 14 (x5)
— 07 ATNO)STICT &Y —y1) (56)
o I
) = (%) + 21 2!
522 0 _522 _ 2 4 3 _
2 2 5132 $1)2
14 (x;) 14 (x3)
—0%2A,1(0)S,'CI (% — y2) (57)
where
3 2
s;'cl=1(3) and s;'cl = (1) according to (23)
1
and

A7N(0) = diag(1, 61, 6%1) and
A2_1(9) = diag(1, 952) according to (12).

The values of §; and 8, are computed according to (13) and are
5qh=686=1

The observer (56)-(57) has been simulated using the data,
corresponding to the input u and output measurements y; and y,,
issued from simulation of system (54)-(55). The simulation has
been carried out with an observer gain & = 12 using the following
initial values X1(0) = %}(0) = xf(0) = 0k = 1,2andi =
1, ..., M X)(0) = %3(0) = X2(0) = 0.5. Of practical interest, each
measured variable has been corrupted by an additive Gaussian
noise with zero mean value and a standard deviation equal to 0.1.
The underlying noise realizations are given in Fig. 1.

Fig. 2 shows the true time evolutions of the state variables
Xy, x} and x5 (issued from model simulation) with their respective
estimates provided by the observer. Note the good agreement
between the simulated and estimated values of the state variables
in spite of the presence of the uncertainties &1 (t) and &, (t) as well
as noise measurements.

5. Conclusion
This paper presents a high gain observer design for a large

class nonlinear MIMO systems including some uncertainties. The
main contribution consists in relaxing the long standing triangular



NsMULATED

ESTIMATED |
02, 1 2 3 4 5 6 7
TIME(s)
1.5 T T T T
1
05
S
0
-0.5
p _“:\SIMULA ED
! NESTIMATED
1. i i i i i i
N > 3 4 5 6 7
TIME(s)
4 T T T T
3 L ‘r‘\ 4
2t
aa || «—ESTIMATED
1’1‘ ! 1
0
-1 /
“~—SIMULATED
-2 i i i i i i
0o 1 > 3 4 5 6 7
TIME(s)

Fig. 2. Comparison of the simulated and estimated non-measured states.

structure assumption. Indeed, the class of systems is composed
of cascade subsystems such that the time derivative of the last
component of each subsystem may depend on the whole state of
the system. Moreover, each subsystem is associated with a subset
of the outputs. In the absence of uncertainties, one recovers a
canonical form that characterizes a large class of nonlinear systems
that are observable for any input, namely, those particular forms
considered in [19,21].

From a fundamental point of view, it is shown that the ob-
servation error converges exponentially to zero in the absence of
uncertainties and can be made arbitrarily small by properly spec-
ifying the observer gain design parameter when the uncertainties
are considered. Simulation results have been reported to illustrate
the proposed observer accuracy performances in the presence of
uncertainties and noise measurements.

The account for uncertainties is particularly motivated by in-
coming studies on the observer design for systems with unknown

inputs. Let us however emphasize that the problem of seeking state
transformations, that bring systems that are observable for any in-
put into the form (1), has not been investigated here and is still
open.
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