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Abstract—Systems engineering (SE) is a very promising 

approach to facilitate the development of complex systems. This 

explains why several SE processes have been already proposed. 

However, these proposals focus mainly on systems with faultless 

components. Integration of dependability concerns into SE 

processes must be supported by a suitable organization of the 

data which are dealt with during the system life-cycle. A meta-

model which defines the concepts used during this cycle as well as 

the relations between these concepts is a way to rigorously 

describe this organization. 

This article proposes such a meta-model developed for power 

production systems. These systems are phased mission systems 

composed of repairable and multi-state components; moreover, 

several redundancy policies shall be defined for each phase. This 

proposal is illustrated on a small example from a power plant. 

Last, the merit of this contribution to support the integration of 

dependability concerns is shown by proposing a method to build 

systematically, from the instance diagrams derived from the 

proposed meta-model, the Markov Chains which represent the 

dysfunctional dynamic behavior of a system.  

 

Index Terms—System Engineering, Dependability, 

Redundancy Policy, Phased Mission System, UML Class 

Diagram, Markov Chain. 

I. INTRODUCTION 

N the current socio-economical context, where costs, delays 

and dependability are crucial concerns while promising 

technological solutions frequently appear, engineering of 

critical systems is a complex issue that must be thought in the 

framework of systems engineering [1] and [2]. This approach 

permits in particular to avoid that incorrect industrial 

practices, which focus on counting or managing failures 

instead of preventing them, as detailed in [3], are introduced 

during the development of the system. The numerous activities 

of the systems engineering process (requirements analysis, 

functional analysis, risk management, dependability analysis, 

verification and validation, etc.) must be supported 

nevertheless by a suitable organization of the data they 

produce or consume. An efficient solution to describe this 

organization is to develop a meta-model, in the form of a 
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UML/SysML class diagram for instance. A meta-model 

defines the concepts which are used during the engineering 

process as well as the relations between these concepts, then 

ensures data consistency, and facilitates the automatic 

construction of some models from previously defined data. 

Such a model has been already proposed in [4] to support the 

systems engineering (SE) processes defined by the 

International Council on Systems Engineering (INCOSE). 

Unfortunately, this proposal considers only the normal, 

faultless, operation of the system and cannot be used as it is 

for critical systems.  

 

Several worthwhile recent results may be considered to 

remove this limitation, however. A method to integrate two 

classical fault forecasting methods: Failure Mode Effects and 

Criticality Analysis (FMECA) and Fault Tree Analysis (FTA) 

in SE processes, is proposed in [5]. An UML profile, termed 

SOPHIA, for integrating risk analysis in these processes is 

described in [6] while [7] presents a framework for hazard 

analysis of systems of systems software. Last, the 

dysfunctional behavior database defined in [8] allows the 

dysfunctional behaviors be considered through a relevant 

refinement of the failure mode concept, for physical systems 

with non-repairable components. 

Nevertheless, these valuable results are not fully appropriate 

to deal with the class of systems which are considered in this 

work, which focuses on engineering of power production 

systems [9], for the following reasons: • First of all, since a power plant is built for several 

decades, its components must be repairable. This 

constraint is not commonly taken into account in most of 

dependability analysis where only non-repairable 

components are considered. The rare authors who 

discussed this issue ([10] and [11]) do not integrate their 

work into a SE process. • Dependability analysis assumes very often that the 

objective of the system is fixed, which is no more true 

for power plants (and for numerous other critical 

systems: airplanes, chemical processes, etc.) which are 

phased mission systems [12]. • Each component can be activated with several operation 

modes and can fail according to several failure modes 

whatever its current operation mode. As the state of a 

component must describe both its operation and failure 

modes, the components of such systems are multi-state 
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and not merely binary components with one faultless 

state and one faulty state [13]. • This last feature implies that several redundancy policies 

are possible according to the current mission phase. A 

faulty component may be replaced by another component 

which was previously inactive in a given phase and by an 

already active component which changes its operation 

mode (speed increase for instance) in another phase. This 

non-usual kind of redundancy policy may be seen as a 

resilience strategy [14]. 

As depicted on Figure 1, the aim of this paper is to propose a 

meta-model that contains all the relevant concepts for the class 

of systems described above and that shall be connected to a 

meta-model to support SE processes. The result will permit to 

support processes where functional and dysfunctional analysis 

will cooperate in a seamless manner to assess dependability 

attributes, like reliability or unavailability. 

 

 
 

The construction of this meta-model is addressed in the next 

section. The merit of this proposal is illustrated by 

instantiating, in the third section, the meta-model for a small 

phased mission system: a part of the water supply system of 

the steam generator of a power plant, and by building from 

this instantiated model, in the fourth section, a dysfunctional 

model, in the form of Markov Chains, for unavailability 

assessment. Finally, concluding remarks and some outlooks 

are drawn up. 

II. META-MODEL CONSTRUCTION 

To address the problem of dependability analysis 

integration into Systems Engineering processes, this article 

proposes to extend the SE knowledge meta-model defined in 

[4]. This meta-model has been designed to be an aid for 

building models that comply with the SE processes suggested 

by the International Council on Systems Engineering 

(INCOSE). It includes several classes (Context, Need, 

Requirement, FunctionalArchitecture, PhysicalArchitecture, 

Interface, etc.) and relations that can be instantiated to 

describe the main features of a specific system with faultless 

components.  Due to space limitations, it is not possible to 

show completely this meta-model but a part of it is depicted 

by Figure 2.  

 

 
 

It expresses that a system is composed of an organized set 

of components and performs an organized set of functions. 

Functions are performed by components to which they are 

allocated. 

The meta-model proposed in this paper is aiming at 

extending this result by adding the semantics required to 

perform dependability analysis on phased mission systems 

with repairable multi-state components. It is completed by a 

list of modeling constraints and definitions. The meta-model is 

represented by using UML class diagrams [15] and the 

modeling constraints and definitions are expressed in natural 

language and in OCL (Object Constraint Language [16]). 

  

A. Modeling Phased Mission Systems 

As shown at Figure 3, a phased mission system is 

characterized by several phases. The system structure, failure 

and recovery modes, or success criteria can change from one 

phase to another one ([12] and [17]). Components and 

functions are not used similarly during the different phases. 

Characterizing a phase consists in instantiating the links 

Phase-Component and Phase-Function. Indeed, these links 

permit to specify respectively which components must be used 

and which functions must be performed for each phase. 

 

 
 

To simplify the representation, some attributes and links of 

 
 

Fig. 1.  Contribution of the article 

 
 

Fig. 2. Part of the meta-model defined in [4] 

 
 

Fig. 3. Step 1: definition of the system phases 
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the initial meta-model (Figure 2) are removed in Figure 3; 

they must be considered nevertheless in the global model. The 

current phase can be updated by the method setPhase. 

 

Definition 1: Method setPhase. 

 

context System::setPhase(P: Phase) 

pre: self.Phase −>includes(P) 

post: self.currentPhase = P 

 

B. Modeling the Component States 

Each component can be activated and fail according to 

several operation and failure modes. These modes represent 

respectively the functional and dysfunctional properties of the 

component. Moreover, at least one operation mode: inactive 

(noted OFF), and one failure mode: faultless (noted OK) must 

exist (Constraint 1).  

 

Constraint 1: Every component must have at least one 

operation mode noted OFF and one failure mode noted OK.  

 

context Component inv: 

self.operation mode −>one (om | om.name = ’OFF’) 

and self.failure mode −>one(fm | fm.name = ’OK’) 

 

Therefore, a component state is a pair built with one 

operation mode and one failure mode. As depicted on Figure 

4, the possible states of a component are defined by 

instantiating its failure and operation modes.  

 

 
 

An initial state of the component must be also defined as 

stated by the Constraint 2 which guarantees its uniqueness. 

 

Constraint 2: Every component must have one unique 

initial state. 

 

context Component inv: 

self.operation mode 

−>one(om: Operation mode | om.isInit = True) 

and self.failure mode 

−>one(fm: Failure mode | fm.isInit = True) 

 

The link between the classes Phase and Operation mode 

specify the nominal operation mode of a component for the 

considered mission phase. The existence and uniqueness of the 

nominal operation mode of each component involved in a 

given phase is ensured by the Constraint 3. 

 

Constraint 3: A mission phase must define the nominal 

operation mode for each component which is involved in this 

phase. 

 

context Phase inv: 

self.Component.Operation mode 

−>one(om: Operation mode | om = self.nominal) 

 

Moreover, the class diagram represented at Figure 4 permits 

to model the stochastic evolutions of the component in the 

form of transitions from a state (omi, fmi) to a state (omi, fmj). 

These transitions are provoked by failure and repair events and 

are defined as follows (Statement 1). 

Statement 1: Let C be a component, OK be its non-faulty 

failure mode, and (om,fm) be a faulty state of C where the 

attributes failureRate and repairRate are not null: 

• If C is in the faultless state (om,OK), then it can fail 

according to the failure mode fm and the transition 

from (om,OK) to (om,fm) occurs with the specified 

failure rate. 

• If C is in the faulty state (om,fm), then it can be 

repaired and the transition from (om,fm) to (om,OK) 

occurs with the specified repair rate. 

The current state of a component can be updated by the 

method setState defined below. 

 

Definition 2: Method setState. 

 

context  Component::setState(P:  Phase) 

pre: self.Operation  mode.State  −>includes(S) 

post: self.currentState = S 

 

C. Modeling the Effects of Component States on Function 

Achievement 

This subsection introduces the new class Effect and 

enhances the definition of the class Function by adding new 

attributes and methods (Figure 5). The aim of the new class is 

to relate the states of the components that are allocated to a 

function to the complete or partial achievement of this 

function. To meet this objective, a new attribute allocation  

must be added to the list of attributes of the class Function. 

The value of this attribute is the set of components which are 

allocated to the function. 

The class Effect models the contribution of a component in 

a particular state to the achievement of a function to which it 

is allocated. Since this contribution depends on the active 

state, an instance of the class Effect must be defined for every 

 
 

Fig. 4. Step 2: definition of the component states 
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couple (state, function) as stated by Constraint 4. 

Constraint 4: Every state of a component contributes in a 

unique manner to the achievement of each function to which 

this component is allocated. 

 

context Component inv: 

self.function −>forAll(f: Function | 

self.operation mode.state −>forAll(s: State | 

s.effect −>including(f.effect) −>size() = 1))) 

 

As depicted on Figure 5, the attributes of the class Effect are 

achievementRate and isUnacceptable. The first one quantifies 

the contribution of the component, in the considered state, to 

the achievement of the function; in a system where two 

identical pumps operate in parallel to fill in a tank the 

achievementRate for a faultless pump is equal to 50% for a 

faultless pump and 0% for a failed pump, for instance. The 

second attribute points out the states which correspond to 

unsafe conditions; the values of this attribute for the different 

states are defined when instantiating the meta-model but is 

always False for the states which satisfy Constraint 5. 

 

Constraint 5: A disabled (operation mode OFF) or faultless 

(failure mode OK) component has no unacceptable effect. 

 

context Effect inv: 

self.state.operation mode.name = ’OFF’  

or self.state.failure mode.name = ’OK’ 

implies self.isUnacceptable = False 

 

 
 

The new attribute goal of the class Function is a threshold 

on the sum of the achievement rates of the components 

allocated to a function, i.e. a function will be declared 

correctly achieved if and only if the current states of the 

components which are allocated to it provide an overall 

achievement rate greater than this threshold. This attribute 

may be updated when the mission phase changes by the 

method setGoal given below. 

 

Definition 3: Method setGoal. 

context Function::setGoal(newValue: float) 

pre: newValue ≥ 0.0 

post: self.goal = newValue 

Last, the method isSatisfied checks whether the sum of the 

achievement rates of the components allocated to a function, 

in their current states, is greater than goal. 

 

Definition 4: Method isSatisfied(). 

 

context Function::isSatisfied():boolean body:  

self.effect  −>select(e:Effect  | 

e.state.operation mode.component.currentState =  

e.state and self.allocation −>includes( 

e.state.operation    mode.component)).achievementRate 

−>sum() ≥ self.goal 

 

D. Introducing Redundancy Policies 

Using redundant components to continue to perform a 

function despite of the failure of other components that were 

allocated to this function is a well-known and widespread 

strategy to increase dependability [18]. This solution implies 

that the set of components allocated to a function changes 

during operation and that redundancy policies which specify 

these changes are defined. Therefore, a new class Redundancy 

policy as well as new relations must be introduced in the meta-

model and two methods added to the class Function (Figure 

6). These methods dynamicAllocation and 

dynamicDeallocation update the allocation attribute of the 

class Function and are defined below. 

 

 
 

Definition 5: Method dynamicAllocation. 

 

context  Function::dynamicAllocation(C:  Component) 

pre: self.static allocation −>includes(C) 

post: self.allocation  =  self.allocation@pre −>including(C) 

 

Definition 6: Method dynamicDeallocation. 

 

context Function::dynamicDeallocation(C: Component) 

pre: self.static allocation −>includes(C) 

post:self.allocation  =  self.allocation@pre −>excluding(C) 

 
 

Fig. 5. Step 3: definition of the effects 

 
 

Fig. 6. Step 4: definition of the redundancy policies 
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The new class Redundancy policy and the new relations 

where this class is involved permit to specify how the faulty 

components are replaced by redundant components as follows. 

Statement 2: If the aimed function is no more satisfied 

during a given phase, the failed components are deallocated 

whereas the redundant components whose current state is 

declared available (neither failed nor already used for another 

function), are allocated to the aimed function and their current 

state is set to spare. 

It must be noted that, when several redundancy policies are 

possible after a component failure, priorities over these 

policies must be defined. Furthermore, the following two 

constraints are to be satisfied to ensure consistency of the 

model. 

 

Constraint 6: The states whose roles are available or spare 

for a redundancy policy must be linked to the redundant 

components of this redundancy policy. 

 

context Redundancy policy inv:  

self.redundant.operation mode.state −>includesAll  

(self.available   −>union(self.spare)) 

 

Constraint 7: Exactly one spare state must be defined for 

each redundant component. 

 

context Redundancy policy inv:  

self.redundant −>forAll(c: Component | 

c.Operation mode.State −>one(s: State | self.spare 

−>includes(s))) 

 

 
 

 Figure 7 shows the complete meta-model built step by step 

in this section. This model fits the domain needs since it is 

possible to construct, from this class diagram, object diagrams 

for phased mission critical systems with repairable multi-state 

components and several redundancy policies, as it will be 

illustrated in the next section.  

 

III. BUILDING OBJECT DIAGRAMS FROM THE  

META-MODEL 

The example considered in this section comes from a power 

plant: it is a part of the water level control system of the steam 

generator (Figure 8). This system has been previously 

described in [19] and [20], in particular to illustrate 

contributions in dynamic reliability assessment in the latter 

reference. 

Within this system, only the sub-system composed of the 

two feeding turbo pumps FTP1 and FTP2, darkened part of 

Figure 8, will be considered in what follows, for space 

reasons. This sub-system has to perform only one function F: 

To supply enough water to the steam generator. The pumps 

FTP1 and FTP2 may fail and be repaired. To increase 

dependability of the function, the operation mode of each 

pump must be managed dynamically according to redundancy 

policies which will be described later. 

 

 
 

Three instance diagrams completed by tables will be 

necessary to model this system. It must be underlined that the 

instance diagrams for a larger system must be constructed with 

the aid of a dedicated software tool, like for instance arKItect
© 

[21]. 

A. Defining the Mission Phases 

The main mission of the plant is to produce electric power 

and is decomposed in three phases (Table I). Function F is 

mandatory in all phases but only one pump is necessary to 

perform this function during first and third phases. 

 
TABLE I 

PHASES DESCRIPTION 

 

id role description 

P1 To increase the power 

from zero to the nominal 

value 

A single pump is able to 

perform correctly the 

function. 

P2 To produce the nominal 

power 

The two pumps have to 

run together to perform 

correctly the function. 

P3 To decrease the power 

from the nominal value to 

zero 

A single pump is able to 

perform correctly the 

function. 

 

 
Fig. 7. Complete meta-model to support the integration of dependability 

analysis into SE processes 

 
Fig. 8. Diagram of the water level control system and its environment (the 

considered sub-system is darkened) 
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B. Defining the Component States 

According to the first instance diagram (Figure 9), each 

pump has three operation modes: OFF (as every component), 

Run and Overspeed1. It will be assumed that FTP1 is the 

main pump and FTP2 a spare pump for the phases P1 and 

P3; hence, the initial modes of FTP1 and FTP2 are 

respectively Run and OFF. The pumps are considered 

faultless at the initial state; therefore the initial failure mode 

is OK for both and each pump may fail according two failure 

modes called Leak and Rupture. 

 

 
 

Table   II   contains   the    values    of    the    attributes 

(failureRate, repairRate) of the State class instances2. In this 

study, the probability rates are assumed to be constant for a 

couple (operation mode, failure mode). 

 
TABLE II 

FAILURE/REPAIR RATES 

 

Failure 

Operation 
OK Leak Rupture 

OFF 
OFF-OK 

Not relevant 

OFF-Leak 

(0, 0.2) 

OFF-Rupt 

(0, 0.1) 

Run 
Run-OK 

Not relevant 

Run-Leak 

(0.01, 0.1) 

Run-Rupt 

(0.001, 0) 

Overspeed 
Over-OK 

Not relevant 

Over-Leak 

(0.05, 0) 

Over-Rupt 

(0.002, 0) 

 

The first value (e.g. 0.01 for the state Run-Leak) is the 

failure rate of the transition that leads to this state and the 

second one (0.1 for the same state), the repair rate to leave this 

state. These attributes are not relevant for the states of the first 

column which are faultless. It must be noted that a pump can 

fail only if it is active (with a higher probability in the 

1 Overspeed means that the speed of the pump is not the nominal value but 

a higher speed that fits the physical limitations of this component however. 
2 These values are rounded average values obtained from several tens of 

power plants during about forty years. 

operation mode Overspeed than in Run)3. Moreover, the Leak 

and the Rupture can be repaired if the pump is disabled 

whereas only the Leak can be repaired if the pump is in the 

operation mode Run (even if the repair time is longer than in 

OFF), and no repair is possible if the pump is in the operation 

mode Overspeed. As the pumps are assumed identical, only 

one table is necessary. 

 

C. Describing the Effects of the Component States 

The contribution of one pump to the function depends on its 

state. When the pump is disabled (operation mode OFF), this 

contribution is obviously equal to zero. This is also the case 

when the Rupture failure has occurred. The analysis is not so 

simple for the remaining four states: Run-OK, Run-Leak, 

Overspeed-Ok and Overspeed-Leak. 

The attribute goal of function F must be first defined. For 

phased mission systems this goal is usual equal to 100% for 

the most demanding phase, P2 in this study, and to smaller 

values for the other phases. Expert knowledge is mandatory to 

set these values; it will be assumed hereafter that the goal of F 

during the phases P1 and P3 is equal to 60%, i.e. that 60% of 

the maximal water flow is sufficient during these two phases. 

Once the goal set for each phase, it is possible to define the 

values of the attribute achievementRate for every state of a 

pump (Table III). According to this table, when the operation 

mode is Run, function F is achieved at 60% when the pump is 

faultless and 50% when it is leaking. Hence, only one faultless 

pump is necessary to meet the goal of F during the phase P1 

and P3 whereas two running pumps, faultless or leaking, are 

mandatory for the second phase. Last, a faultless over-speeded 

pump is sufficient to meet the goal, whatever the phase. This 

table will permit to define the redundancy policies in the next 

section. 

 
TABLE III 

ACHIEVEMENT RATES FOR THE DIFFERENT STATES OF A PUMP 

 

 OK Leak Rupture 

OFF 0 0 0 

Run 60 50 0 

Overspeed 100 80 0 

 

Moreover it is assumed that the states built over the failure 

mode Rupture are forbidden by taking into account safety. 

Then, the attribute isUnacceptable of each instance of the 

class Effect linked to these states is True. 

 

D. Describing the effects of the component states 

Three redundancy policies are defined to improve the    

dependability of the system. Hence, the class Redundancy 

policy is instantiated three times: 

 

3 The state OFF-Leak (respectively OFF-Rupture) is then not reachable 

from the state OFF-OK but from the state Run-Leak (respectively Run-

Rupture). 

 
Fig. 9. First partial instance diagram for the considered sub-system 
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• R1a is defined for the phases P1 and P3, and consists 

in replacing the pump FTP1 by FTP2, if function F is 

not satisfied and FTP2 is available. 

• R1b is defined for the phases P1 and P3, and consists 

in replacing the pump FTP2 by FTP1, if function F is 

not satisfied and FTP2 is available. 

• R2 is defined for the phase P2, and consists in forcing 

the operation mode of the faultless pump to 

Overspeed if function F is not satisfied because the 

other pump has failed. 

 

It can be noted that, during the second phase, if the two 

pumps fail with the failure mode Leak, according to the table 

III, the function is correctly achieved anyway and this 

failure mode can be repaired in the operation mode Run. 

Then the Leak failure mode does not trigger the redundancy 

policy R2. 

 

 
 

The instance diagram that represents graphically these 

policies and their relations to other class instances has been 

split in Figures 10 and 11, for clarity reasons.  

 

 
 

The attribute priority is not specified because there is no 

concurrency between these redundancy policies. It can be 

noted that for the redundancy policy R2 the two pumps are 

both defined failed and redundant, because they could play 

the two roles: either FTP1 has failed and FTP2 is redundant, 

or FTP2 has failed and FTP1 is redundant. 

The system features during each phase are summarized in 

table IV. 

 
TABLE IV 

SUMMARY OF THE FEATURES OF THE INSTANCES OF THE CLASS Phase 

 

Phase 
Nominal OM Function 

goal 

Redundancy 

policies FTP1 FTP2 

P1 Run OFF 60.0 R1a, R1b 

P2 Run Run 100.0 R2 

P3 Run OFF 60.0 R1a, R1b 

 

IV. USING THE META-MODEL FOR DEPENDABILITY ANALYSIS 

It has been claimed in the introduction that one benefit of a 

meta-model is to ease the automatic construction of some 

specific models from previously defined data. This claim will 

be illustrated in this section where a method to construct 

systematically the continuous Markov Chains (MC) that 

represent the behavior of a phased mission system which 

includes redundant components will be proposed. Continuous 

MCs are indeed common and relevant models to assess 

dependability attributes, like (un)availability; systematic 

construction of such models from instance diagrams is surely a 

positive consequence of the integration of dependability 

concerns into a meta-model for SE processes. This 

construction method is described and exemplified, on the basis 

of the previous example, in the first sub-section, while analytic 

assessment of unavailability, from these chains, is dealt with 

in the second sub-section. It must be underlined that, when 

dealing with larger systems, both steps must be automated. 

Automatic construction of the MC will be based on the 

systematic procedure described below. The reader interested 

in automatic assessment of unavailability from large MC 

models will find more details on this issue in [22].  

 

A. Systematic Construction of MCs from Instance Diagrams 

Modeling the evolutions of a phased mission system with 

repairable components by MCs is a classical approach in the 

field of dependability analysis ([23], [24]). One MC must be 

constructed for each phase and a transition matrix specifies 

how the probabilities are distributed over the states when the 

active phase changes. 

From the instance diagrams presented in section III, it is 

possible to build systematically the MCs depicted in Figures 

12 and 13; the MC of Figure 12 describes the system behavior 

for both phases 1 and 3 whereas this behavior for the second 

phase is given at Figure 13. These MCs have been built 

systematically, to avoid errors that may appear happen when 

no method is employed, according to the following generic 

procedure: 

1) The initial state of the chain is defined from the 

initial states of the components of the system, for the 

considered phase. 

 

 
Fig. 10. Second partial instance diagram for the considered sub-system 

 
Fig. 11. Third partial instance diagram for the considered sub-system 
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2) For each state of the chain, an outgoing transition is 

added for each possible failure or repair event. 

3) If this transition does not lead to a state which has 

been already defined, a new state is introduced by 

taking into account the redundancy policies. 

4) The system is unavailable if the sum of the 

achievement rates of the components in this state is 

smaller than the goal of the function. 

This procedure stops when it is no longer possible to add 

any transition or state. 

 
 

The MC of Figure 12 has been built by using the above-

defined procedure: 

1) The initial states of the pumps are respectively Run-

OK and OFF-OK for the phases 1 and 3 (table IV). 

Then, the initial state of the chain gathers these two 

states. 

2) Two transitions are starting from the initial state of 

the chain to represent the two possible failure modes 

Leak and Rupture. The failure rates are given by the 

first term of the cells Run-Leak and Run-Rupt in the 

table II. 

3) The states 2 and 3 are introduced to represent a 

system where one failure has occurred in one 

component and the other component has been 

activated according to the appropriate redundancy 

policy. As the failure mode Rupture is unacceptable, 

the component for which this failure occurred is 

forced to the operation mode OFF (state 3). 

2) From these new states, the failed pump can be 

repaired with repair rates given by the second term of 

the cells Run-Leak and OFF-Rupt in Table II, what 

leads to the initial state, or the running pump can fail 

with failure rates given by the first term of the cells 

Run-Leak and Run-Rupt in the table II. 

3) The states 4, 5 and 6 are then introduced to model a 

system where failures have occurred in the two 

components. 

2) From these states, the failed pumps can be repaired, 

what leads to the already known states 2 or 3. It shall 

be noted that the probability rate associated to the 

transition from the state 4 to the state 2 (respectively 

6 to 3) is two times the repair rate defined in the cell 

Run-Leak (respectively OFF-Rupt) because the two 

pumps are in the same state; therefore the probability 

to have a pump repaired at a given time, assuming 

that they can be repaired simultaneously, is twice 

better. 

4) As the goal of the function in these phases is equal to 

60.0, the states 5 and 6 correspond to an unavailable 

system because the sum of the achievement rates of 

the two pumps is indeed equal to 50.0 for the state 5 

and 0.0 for the state 6, according to the table III.  

 
 

The MC for the second phase (Figure 13) is built in the 

same fashion. Two faultless pumps are running in the state 1 

and the transition from this state to the state 3 models the 

redundancy policy R2. The states 2 and 4 are identical to those 

of Figure 12 but it shall be underlined that no redundancy 

policy is involved to define these states in the second phase; 

the transitions between the states 2 and 4 are merely provoked 

by failure or repair events. The state 5 differs from the 

corresponding state in Figure 12 because the active pump is 

over-speeded; there is no transition from this state to the state 

3 because the Leak failure cannot be repaired when the 

operation mode is Overspeed. Last, some transition rates are 

different because either two pumps are in the same operation 

mode in the source state of the transition (transition from 1 to 

2, 1 to 3, 4 to 2, 6 to 3) or because the rate defined in the table 

II is different. The darkened states (5 and 6) correspond to an 

unavailable system; the sum of the achievement rates is 

smaller than the goal. 

The  model  of  the  whole  behavior  of  the  system  for  

the three phases is given at Figure 14. This model is composed 

of the three previous MCs as well as three transition matrices 

φi→j that allow the computation of the probability ��� to be in a 

state l of the MC for the phase j at the date tij, where tij is the 

date of a phase change from the phase i to the phase j, from 

the probabilities ���  to be in a state k of the MC for the phase i 

 
Fig. 12. MC for the phases 1 and 3 

 
Fig. 13. MC for the phase 2 
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at the date tij. In our case, these matrices are identity matrices, 

i.e. 

 ∀� ∈ ⟦0,6⟧  ���1(�12) = ��2(�12)��2(�23) = ��3(�23)��3(�31) = ��1(�31)

     (1) 

 

 
 

B. Unavailability Assessment 

 

Once this model obtained, it is possible to compute the 

unavailability of the system by analytic calculus or Monte-

Carlo simulation. The first technique was selected for this 

work because it can be easily applied to small-sized systems 

and provides generic solutions (more details on this issue may 

be found in [22]). 

For the phases 1 and 3, the transition matrix of the MC is 

(cf. Figure 12): 

 

�13 = ⎣⎢⎢
⎢⎢⎡−0.011

0.1

0.1
0

0

0

0.01−0.111

0
0.2

0.1

0

0.001

0−0.111
0

0.1

0.2

0

0.01

0−0.2

0

0

0

0.001

0.01
0−0.2

0

0

0

0.001
0

0−0.2 ⎦⎥⎥
⎥⎥⎤ 

 

Let �13(�) = [�113(�),�213(�),�313(�),�413(�),�513(�),�613(�)], 

be the probability to be in each state of the chain at the date �, �13 is solution of the system of differential equations: 

  ��13(�)�� = �13(�).�13 

 

It can be expressed as: 

 �13(�) = �13(0). ��13� 
 

From this result, the asymptotic unavailability for each one 

of the phases 1 and 3 can be computed from the asymptotic 

probabilities to be in the states 5 and 6 of the chain: 

 �̅13(∞) = �513(∞) + �613(∞) = 9.41 × 10−4 

 

The asymptotic unavailability for the phase 2 can be 

calculated in a similar manner: �̅2(∞) = 7.156 × 10−3. 

 

 The result obtained for a sequence of twelve identical 

missions where the first phase lasts one day, the second 28 

days and the third also 1 day is given at Figure 15. The 

average unavailability is equal to 0.623827%, which 

corresponds to approximately 2 days and 6 hours in absolute 

value. 

 

V. CONCLUSIONS AND OUTLOOKS 

This paper has proposed a meta-model based on [4] to 

support the integration of dependability analysis into system 

engineering processes. This meta-model has been defined for a 

wide class of systems: phased mission systems with multi-

state and repairable components and several redundancy 

policies;  it can be easily specialized to deal with more 

restricted classes of systems, like, for instance, systems with 

binary and non-repairable components or systems whose 

mission comprises only one phase.  

The benefit of this proposal has been shown on a small 

example of a critical system coming from a power plant. A 

systematic procedure to construct MCs which are classical 

models for availability analysis, from object diagrams derived 

from the meta-model, has been defined and exemplified. 

On-going works are aiming to automate the construction of 

object diagrams and MCs to be able to deal with full-scale 

industrial cases. Automatic construction of MCs will take into 

account uncertainties on the failure and repair rates to better 

assess the impact of these uncertainties on the final results 

(probabilities to be in a given state, (un)availability).  

Introduction of new classes, attributes and relations in the 

 
 

Fig. 14. MCs for a mission 

 

�
1→2

 

�
2→3

 

�
3→1

 

 
Fig. 15. Unavailability for twelve consecutive missions 
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meta-model, to integrate the new concepts recently presented 

in the domain of dynamic dependability analysis ([11], [25]), 

is also under investigation. This will allow, in particular, to 

integrate faulty behaviors due to software or hardware 

components of the Instrumentation and Control system, into 

the dependability analysis. 

Finally, validation of this meta-model on case studies larger 

than the small example which has been presented in this paper 

will permit to really assess its usefulness, completeness, and 

flexibility and to estimate correctness and scalability of the 

analysis methods of the derived models.  
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