
HAL Id: hal-01059913
https://hal.science/hal-01059913

Submitted on 2 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Meta-model to Support the Integration of
Dependability Concerns into Systems Engineering

Processes: an Example from Power Production
Pierre-Yves Piriou, Jean-Marc Faure, Gilles Deleuze

To cite this version:
Pierre-Yves Piriou, Jean-Marc Faure, Gilles Deleuze. A Meta-model to Support the Integration of
Dependability Concerns into Systems Engineering Processes: an Example from Power Production.
IEEE Systems Journal, 2014, PP (99), pp.SCH-ISJ-RE-13-02551.R3. �10.1109/JSYST.2014.2328663�.
�hal-01059913�

https://hal.science/hal-01059913
https://hal.archives-ouvertes.fr

ISJ-RE-13-02551 1

Abstract—Systems engineering (SE) is a very promising

approach to facilitate the development of complex systems. This

explains why several SE processes have been already proposed.

However, these proposals focus mainly on systems with faultless

components. Integration of dependability concerns into SE

processes must be supported by a suitable organization of the

data which are dealt with during the system life-cycle. A meta-

model which defines the concepts used during this cycle as well as

the relations between these concepts is a way to rigorously

describe this organization.

This article proposes such a meta-model developed for power

production systems. These systems are phased mission systems

composed of repairable and multi-state components; moreover,

several redundancy policies shall be defined for each phase. This

proposal is illustrated on a small example from a power plant.

Last, the merit of this contribution to support the integration of

dependability concerns is shown by proposing a method to build

systematically, from the instance diagrams derived from the

proposed meta-model, the Markov Chains which represent the

dysfunctional dynamic behavior of a system.

Index Terms—System Engineering, Dependability,

Redundancy Policy, Phased Mission System, UML Class

Diagram, Markov Chain.

I. INTRODUCTION

N the current socio-economical context, where costs, delays

and dependability are crucial concerns while promising

technological solutions frequently appear, engineering of

critical systems is a complex issue that must be thought in the

framework of systems engineering [1] and [2]. This approach

permits in particular to avoid that incorrect industrial

practices, which focus on counting or managing failures

instead of preventing them, as detailed in [3], are introduced

during the development of the system. The numerous activities

of the systems engineering process (requirements analysis,

functional analysis, risk management, dependability analysis,

verification and validation, etc.) must be supported

nevertheless by a suitable organization of the data they

produce or consume. An efficient solution to describe this

organization is to develop a meta-model, in the form of a

P.-Y. Piriou and J.-M. Faure are with Ecole Normale Superieure of

Cachan, France (e-mail: {pierre-yves.piriou; jean-marc.faure}@lurpa.ens-

cachan.fr)

G. Deleuze is with Electricite de France R&D, Clamart, France (e-mail:

gilles.deleuze@edf.fr)

UML/SysML class diagram for instance. A meta-model

defines the concepts which are used during the engineering

process as well as the relations between these concepts, then

ensures data consistency, and facilitates the automatic

construction of some models from previously defined data.

Such a model has been already proposed in [4] to support the

systems engineering (SE) processes defined by the

International Council on Systems Engineering (INCOSE).

Unfortunately, this proposal considers only the normal,

faultless, operation of the system and cannot be used as it is

for critical systems.

Several worthwhile recent results may be considered to

remove this limitation, however. A method to integrate two

classical fault forecasting methods: Failure Mode Effects and

Criticality Analysis (FMECA) and Fault Tree Analysis (FTA)

in SE processes, is proposed in [5]. An UML profile, termed

SOPHIA, for integrating risk analysis in these processes is

described in [6] while [7] presents a framework for hazard

analysis of systems of systems software. Last, the

dysfunctional behavior database defined in [8] allows the

dysfunctional behaviors be considered through a relevant

refinement of the failure mode concept, for physical systems

with non-repairable components.

Nevertheless, these valuable results are not fully appropriate

to deal with the class of systems which are considered in this

work, which focuses on engineering of power production

systems [9], for the following reasons: • First of all, since a power plant is built for several

decades, its components must be repairable. This

constraint is not commonly taken into account in most of

dependability analysis where only non-repairable

components are considered. The rare authors who

discussed this issue ([10] and [11]) do not integrate their

work into a SE process. • Dependability analysis assumes very often that the

objective of the system is fixed, which is no more true

for power plants (and for numerous other critical

systems: airplanes, chemical processes, etc.) which are

phased mission systems [12]. • Each component can be activated with several operation

modes and can fail according to several failure modes

whatever its current operation mode. As the state of a

component must describe both its operation and failure

modes, the components of such systems are multi-state

A Meta-model to Support the Integration of

Dependability Concerns into Systems Engineering

Processes: an Example from Power Production

Pierre-Yves Piriou, Jean-Marc Faure, Member, IEEE, and Gilles Deleuze

I

ISJ-RE-13-02551 2

and not merely binary components with one faultless

state and one faulty state [13]. • This last feature implies that several redundancy policies

are possible according to the current mission phase. A

faulty component may be replaced by another component

which was previously inactive in a given phase and by an

already active component which changes its operation

mode (speed increase for instance) in another phase. This

non-usual kind of redundancy policy may be seen as a

resilience strategy [14].

As depicted on Figure 1, the aim of this paper is to propose a

meta-model that contains all the relevant concepts for the class

of systems described above and that shall be connected to a

meta-model to support SE processes. The result will permit to

support processes where functional and dysfunctional analysis

will cooperate in a seamless manner to assess dependability

attributes, like reliability or unavailability.

The construction of this meta-model is addressed in the next

section. The merit of this proposal is illustrated by

instantiating, in the third section, the meta-model for a small

phased mission system: a part of the water supply system of

the steam generator of a power plant, and by building from

this instantiated model, in the fourth section, a dysfunctional

model, in the form of Markov Chains, for unavailability

assessment. Finally, concluding remarks and some outlooks

are drawn up.

II. META-MODEL CONSTRUCTION

To address the problem of dependability analysis

integration into Systems Engineering processes, this article

proposes to extend the SE knowledge meta-model defined in

[4]. This meta-model has been designed to be an aid for

building models that comply with the SE processes suggested

by the International Council on Systems Engineering

(INCOSE). It includes several classes (Context, Need,

Requirement, FunctionalArchitecture, PhysicalArchitecture,

Interface, etc.) and relations that can be instantiated to

describe the main features of a specific system with faultless

components. Due to space limitations, it is not possible to

show completely this meta-model but a part of it is depicted

by Figure 2.

It expresses that a system is composed of an organized set

of components and performs an organized set of functions.

Functions are performed by components to which they are

allocated.

The meta-model proposed in this paper is aiming at

extending this result by adding the semantics required to

perform dependability analysis on phased mission systems

with repairable multi-state components. It is completed by a

list of modeling constraints and definitions. The meta-model is

represented by using UML class diagrams [15] and the

modeling constraints and definitions are expressed in natural

language and in OCL (Object Constraint Language [16]).

A. Modeling Phased Mission Systems

As shown at Figure 3, a phased mission system is

characterized by several phases. The system structure, failure

and recovery modes, or success criteria can change from one

phase to another one ([12] and [17]). Components and

functions are not used similarly during the different phases.

Characterizing a phase consists in instantiating the links

Phase-Component and Phase-Function. Indeed, these links

permit to specify respectively which components must be used

and which functions must be performed for each phase.

To simplify the representation, some attributes and links of

Fig. 1. Contribution of the article

Fig. 2. Part of the meta-model defined in [4]

Fig. 3. Step 1: definition of the system phases

ISJ-RE-13-02551 3

the initial meta-model (Figure 2) are removed in Figure 3;

they must be considered nevertheless in the global model. The

current phase can be updated by the method setPhase.

Definition 1: Method setPhase.

context System::setPhase(P: Phase)

pre: self.Phase −>includes(P)

post: self.currentPhase = P

B. Modeling the Component States

Each component can be activated and fail according to

several operation and failure modes. These modes represent

respectively the functional and dysfunctional properties of the

component. Moreover, at least one operation mode: inactive

(noted OFF), and one failure mode: faultless (noted OK) must

exist (Constraint 1).

Constraint 1: Every component must have at least one

operation mode noted OFF and one failure mode noted OK.

context Component inv:

self.operation mode −>one (om | om.name = ’OFF’)

and self.failure mode −>one(fm | fm.name = ’OK’)

Therefore, a component state is a pair built with one

operation mode and one failure mode. As depicted on Figure

4, the possible states of a component are defined by

instantiating its failure and operation modes.

An initial state of the component must be also defined as

stated by the Constraint 2 which guarantees its uniqueness.

Constraint 2: Every component must have one unique

initial state.

context Component inv:

self.operation mode

−>one(om: Operation mode | om.isInit = True)

and self.failure mode

−>one(fm: Failure mode | fm.isInit = True)

The link between the classes Phase and Operation mode

specify the nominal operation mode of a component for the

considered mission phase. The existence and uniqueness of the

nominal operation mode of each component involved in a

given phase is ensured by the Constraint 3.

Constraint 3: A mission phase must define the nominal

operation mode for each component which is involved in this

phase.

context Phase inv:

self.Component.Operation mode

−>one(om: Operation mode | om = self.nominal)

Moreover, the class diagram represented at Figure 4 permits

to model the stochastic evolutions of the component in the

form of transitions from a state (omi, fmi) to a state (omi, fmj).

These transitions are provoked by failure and repair events and

are defined as follows (Statement 1).

Statement 1: Let C be a component, OK be its non-faulty

failure mode, and (om,fm) be a faulty state of C where the

attributes failureRate and repairRate are not null:

• If C is in the faultless state (om,OK), then it can fail

according to the failure mode fm and the transition

from (om,OK) to (om,fm) occurs with the specified

failure rate.

• If C is in the faulty state (om,fm), then it can be

repaired and the transition from (om,fm) to (om,OK)

occurs with the specified repair rate.

The current state of a component can be updated by the

method setState defined below.

Definition 2: Method setState.

context Component::setState(P: Phase)

pre: self.Operation mode.State −>includes(S)

post: self.currentState = S

C. Modeling the Effects of Component States on Function

Achievement

This subsection introduces the new class Effect and

enhances the definition of the class Function by adding new

attributes and methods (Figure 5). The aim of the new class is

to relate the states of the components that are allocated to a

function to the complete or partial achievement of this

function. To meet this objective, a new attribute allocation

must be added to the list of attributes of the class Function.

The value of this attribute is the set of components which are

allocated to the function.

The class Effect models the contribution of a component in

a particular state to the achievement of a function to which it

is allocated. Since this contribution depends on the active

state, an instance of the class Effect must be defined for every

Fig. 4. Step 2: definition of the component states

ISJ-RE-13-02551 4

couple (state, function) as stated by Constraint 4.

Constraint 4: Every state of a component contributes in a

unique manner to the achievement of each function to which

this component is allocated.

context Component inv:

self.function −>forAll(f: Function |

self.operation mode.state −>forAll(s: State |

s.effect −>including(f.effect) −>size() = 1)))

As depicted on Figure 5, the attributes of the class Effect are

achievementRate and isUnacceptable. The first one quantifies

the contribution of the component, in the considered state, to

the achievement of the function; in a system where two

identical pumps operate in parallel to fill in a tank the

achievementRate for a faultless pump is equal to 50% for a

faultless pump and 0% for a failed pump, for instance. The

second attribute points out the states which correspond to

unsafe conditions; the values of this attribute for the different

states are defined when instantiating the meta-model but is

always False for the states which satisfy Constraint 5.

Constraint 5: A disabled (operation mode OFF) or faultless

(failure mode OK) component has no unacceptable effect.

context Effect inv:

self.state.operation mode.name = ’OFF’

or self.state.failure mode.name = ’OK’

implies self.isUnacceptable = False

The new attribute goal of the class Function is a threshold

on the sum of the achievement rates of the components

allocated to a function, i.e. a function will be declared

correctly achieved if and only if the current states of the

components which are allocated to it provide an overall

achievement rate greater than this threshold. This attribute

may be updated when the mission phase changes by the

method setGoal given below.

Definition 3: Method setGoal.

context Function::setGoal(newValue: float)

pre: newValue ≥ 0.0

post: self.goal = newValue

Last, the method isSatisfied checks whether the sum of the

achievement rates of the components allocated to a function,

in their current states, is greater than goal.

Definition 4: Method isSatisfied().

context Function::isSatisfied():boolean body:

self.effect −>select(e:Effect |

e.state.operation mode.component.currentState =

e.state and self.allocation −>includes(

e.state.operation mode.component)).achievementRate

−>sum() ≥ self.goal

D. Introducing Redundancy Policies

Using redundant components to continue to perform a

function despite of the failure of other components that were

allocated to this function is a well-known and widespread

strategy to increase dependability [18]. This solution implies

that the set of components allocated to a function changes

during operation and that redundancy policies which specify

these changes are defined. Therefore, a new class Redundancy

policy as well as new relations must be introduced in the meta-

model and two methods added to the class Function (Figure

6). These methods dynamicAllocation and

dynamicDeallocation update the allocation attribute of the

class Function and are defined below.

Definition 5: Method dynamicAllocation.

context Function::dynamicAllocation(C: Component)

pre: self.static allocation −>includes(C)

post: self.allocation = self.allocation@pre −>including(C)

Definition 6: Method dynamicDeallocation.

context Function::dynamicDeallocation(C: Component)

pre: self.static allocation −>includes(C)

post:self.allocation = self.allocation@pre −>excluding(C)

Fig. 5. Step 3: definition of the effects

Fig. 6. Step 4: definition of the redundancy policies

ISJ-RE-13-02551 5

The new class Redundancy policy and the new relations

where this class is involved permit to specify how the faulty

components are replaced by redundant components as follows.

Statement 2: If the aimed function is no more satisfied

during a given phase, the failed components are deallocated

whereas the redundant components whose current state is

declared available (neither failed nor already used for another

function), are allocated to the aimed function and their current

state is set to spare.

It must be noted that, when several redundancy policies are

possible after a component failure, priorities over these

policies must be defined. Furthermore, the following two

constraints are to be satisfied to ensure consistency of the

model.

Constraint 6: The states whose roles are available or spare

for a redundancy policy must be linked to the redundant

components of this redundancy policy.

context Redundancy policy inv:

self.redundant.operation mode.state −>includesAll

(self.available −>union(self.spare))

Constraint 7: Exactly one spare state must be defined for

each redundant component.

context Redundancy policy inv:

self.redundant −>forAll(c: Component |

c.Operation mode.State −>one(s: State | self.spare

−>includes(s)))

 Figure 7 shows the complete meta-model built step by step

in this section. This model fits the domain needs since it is

possible to construct, from this class diagram, object diagrams

for phased mission critical systems with repairable multi-state

components and several redundancy policies, as it will be

illustrated in the next section.

III. BUILDING OBJECT DIAGRAMS FROM THE

META-MODEL

The example considered in this section comes from a power

plant: it is a part of the water level control system of the steam

generator (Figure 8). This system has been previously

described in [19] and [20], in particular to illustrate

contributions in dynamic reliability assessment in the latter

reference.

Within this system, only the sub-system composed of the

two feeding turbo pumps FTP1 and FTP2, darkened part of

Figure 8, will be considered in what follows, for space

reasons. This sub-system has to perform only one function F:

To supply enough water to the steam generator. The pumps

FTP1 and FTP2 may fail and be repaired. To increase

dependability of the function, the operation mode of each

pump must be managed dynamically according to redundancy

policies which will be described later.

Three instance diagrams completed by tables will be

necessary to model this system. It must be underlined that the

instance diagrams for a larger system must be constructed with

the aid of a dedicated software tool, like for instance arKItect
©

[21].

A. Defining the Mission Phases

The main mission of the plant is to produce electric power

and is decomposed in three phases (Table I). Function F is

mandatory in all phases but only one pump is necessary to

perform this function during first and third phases.

TABLE I

PHASES DESCRIPTION

id role description

P1 To increase the power

from zero to the nominal

value

A single pump is able to

perform correctly the

function.

P2 To produce the nominal

power

The two pumps have to

run together to perform

correctly the function.

P3 To decrease the power

from the nominal value to

zero

A single pump is able to

perform correctly the

function.

Fig. 7. Complete meta-model to support the integration of dependability

analysis into SE processes

Fig. 8. Diagram of the water level control system and its environment (the

considered sub-system is darkened)

ISJ-RE-13-02551 6

B. Defining the Component States

According to the first instance diagram (Figure 9), each

pump has three operation modes: OFF (as every component),

Run and Overspeed1. It will be assumed that FTP1 is the

main pump and FTP2 a spare pump for the phases P1 and

P3; hence, the initial modes of FTP1 and FTP2 are

respectively Run and OFF. The pumps are considered

faultless at the initial state; therefore the initial failure mode

is OK for both and each pump may fail according two failure

modes called Leak and Rupture.

Table II contains the values of the attributes

(failureRate, repairRate) of the State class instances2. In this

study, the probability rates are assumed to be constant for a

couple (operation mode, failure mode).

TABLE II

FAILURE/REPAIR RATES

Failure

Operation
OK Leak Rupture

OFF
OFF-OK

Not relevant

OFF-Leak

(0, 0.2)

OFF-Rupt

(0, 0.1)

Run
Run-OK

Not relevant

Run-Leak

(0.01, 0.1)

Run-Rupt

(0.001, 0)

Overspeed
Over-OK

Not relevant

Over-Leak

(0.05, 0)

Over-Rupt

(0.002, 0)

The first value (e.g. 0.01 for the state Run-Leak) is the

failure rate of the transition that leads to this state and the

second one (0.1 for the same state), the repair rate to leave this

state. These attributes are not relevant for the states of the first

column which are faultless. It must be noted that a pump can

fail only if it is active (with a higher probability in the

1 Overspeed means that the speed of the pump is not the nominal value but

a higher speed that fits the physical limitations of this component however.
2 These values are rounded average values obtained from several tens of

power plants during about forty years.

operation mode Overspeed than in Run)3. Moreover, the Leak

and the Rupture can be repaired if the pump is disabled

whereas only the Leak can be repaired if the pump is in the

operation mode Run (even if the repair time is longer than in

OFF), and no repair is possible if the pump is in the operation

mode Overspeed. As the pumps are assumed identical, only

one table is necessary.

C. Describing the Effects of the Component States

The contribution of one pump to the function depends on its

state. When the pump is disabled (operation mode OFF), this

contribution is obviously equal to zero. This is also the case

when the Rupture failure has occurred. The analysis is not so

simple for the remaining four states: Run-OK, Run-Leak,

Overspeed-Ok and Overspeed-Leak.

The attribute goal of function F must be first defined. For

phased mission systems this goal is usual equal to 100% for

the most demanding phase, P2 in this study, and to smaller

values for the other phases. Expert knowledge is mandatory to

set these values; it will be assumed hereafter that the goal of F

during the phases P1 and P3 is equal to 60%, i.e. that 60% of

the maximal water flow is sufficient during these two phases.

Once the goal set for each phase, it is possible to define the

values of the attribute achievementRate for every state of a

pump (Table III). According to this table, when the operation

mode is Run, function F is achieved at 60% when the pump is

faultless and 50% when it is leaking. Hence, only one faultless

pump is necessary to meet the goal of F during the phase P1

and P3 whereas two running pumps, faultless or leaking, are

mandatory for the second phase. Last, a faultless over-speeded

pump is sufficient to meet the goal, whatever the phase. This

table will permit to define the redundancy policies in the next

section.

TABLE III

ACHIEVEMENT RATES FOR THE DIFFERENT STATES OF A PUMP

 OK Leak Rupture

OFF 0 0 0

Run 60 50 0

Overspeed 100 80 0

Moreover it is assumed that the states built over the failure

mode Rupture are forbidden by taking into account safety.

Then, the attribute isUnacceptable of each instance of the

class Effect linked to these states is True.

D. Describing the effects of the component states

Three redundancy policies are defined to improve the

dependability of the system. Hence, the class Redundancy

policy is instantiated three times:

3 The state OFF-Leak (respectively OFF-Rupture) is then not reachable

from the state OFF-OK but from the state Run-Leak (respectively Run-

Rupture).

Fig. 9. First partial instance diagram for the considered sub-system

ISJ-RE-13-02551 7

• R1a is defined for the phases P1 and P3, and consists

in replacing the pump FTP1 by FTP2, if function F is

not satisfied and FTP2 is available.

• R1b is defined for the phases P1 and P3, and consists

in replacing the pump FTP2 by FTP1, if function F is

not satisfied and FTP2 is available.

• R2 is defined for the phase P2, and consists in forcing

the operation mode of the faultless pump to

Overspeed if function F is not satisfied because the

other pump has failed.

It can be noted that, during the second phase, if the two

pumps fail with the failure mode Leak, according to the table

III, the function is correctly achieved anyway and this

failure mode can be repaired in the operation mode Run.

Then the Leak failure mode does not trigger the redundancy

policy R2.

The instance diagram that represents graphically these

policies and their relations to other class instances has been

split in Figures 10 and 11, for clarity reasons.

The attribute priority is not specified because there is no

concurrency between these redundancy policies. It can be

noted that for the redundancy policy R2 the two pumps are

both defined failed and redundant, because they could play

the two roles: either FTP1 has failed and FTP2 is redundant,

or FTP2 has failed and FTP1 is redundant.

The system features during each phase are summarized in

table IV.

TABLE IV

SUMMARY OF THE FEATURES OF THE INSTANCES OF THE CLASS Phase

Phase
Nominal OM Function

goal

Redundancy

policies FTP1 FTP2

P1 Run OFF 60.0 R1a, R1b

P2 Run Run 100.0 R2

P3 Run OFF 60.0 R1a, R1b

IV. USING THE META-MODEL FOR DEPENDABILITY ANALYSIS

It has been claimed in the introduction that one benefit of a

meta-model is to ease the automatic construction of some

specific models from previously defined data. This claim will

be illustrated in this section where a method to construct

systematically the continuous Markov Chains (MC) that

represent the behavior of a phased mission system which

includes redundant components will be proposed. Continuous

MCs are indeed common and relevant models to assess

dependability attributes, like (un)availability; systematic

construction of such models from instance diagrams is surely a

positive consequence of the integration of dependability

concerns into a meta-model for SE processes. This

construction method is described and exemplified, on the basis

of the previous example, in the first sub-section, while analytic

assessment of unavailability, from these chains, is dealt with

in the second sub-section. It must be underlined that, when

dealing with larger systems, both steps must be automated.

Automatic construction of the MC will be based on the

systematic procedure described below. The reader interested

in automatic assessment of unavailability from large MC

models will find more details on this issue in [22].

A. Systematic Construction of MCs from Instance Diagrams

Modeling the evolutions of a phased mission system with

repairable components by MCs is a classical approach in the

field of dependability analysis ([23], [24]). One MC must be

constructed for each phase and a transition matrix specifies

how the probabilities are distributed over the states when the

active phase changes.

From the instance diagrams presented in section III, it is

possible to build systematically the MCs depicted in Figures

12 and 13; the MC of Figure 12 describes the system behavior

for both phases 1 and 3 whereas this behavior for the second

phase is given at Figure 13. These MCs have been built

systematically, to avoid errors that may appear happen when

no method is employed, according to the following generic

procedure:

1) The initial state of the chain is defined from the

initial states of the components of the system, for the

considered phase.

Fig. 10. Second partial instance diagram for the considered sub-system

Fig. 11. Third partial instance diagram for the considered sub-system

ISJ-RE-13-02551 8

2) For each state of the chain, an outgoing transition is

added for each possible failure or repair event.

3) If this transition does not lead to a state which has

been already defined, a new state is introduced by

taking into account the redundancy policies.

4) The system is unavailable if the sum of the

achievement rates of the components in this state is

smaller than the goal of the function.

This procedure stops when it is no longer possible to add

any transition or state.

The MC of Figure 12 has been built by using the above-

defined procedure:

1) The initial states of the pumps are respectively Run-

OK and OFF-OK for the phases 1 and 3 (table IV).

Then, the initial state of the chain gathers these two

states.

2) Two transitions are starting from the initial state of

the chain to represent the two possible failure modes

Leak and Rupture. The failure rates are given by the

first term of the cells Run-Leak and Run-Rupt in the

table II.

3) The states 2 and 3 are introduced to represent a

system where one failure has occurred in one

component and the other component has been

activated according to the appropriate redundancy

policy. As the failure mode Rupture is unacceptable,

the component for which this failure occurred is

forced to the operation mode OFF (state 3).

2) From these new states, the failed pump can be

repaired with repair rates given by the second term of

the cells Run-Leak and OFF-Rupt in Table II, what

leads to the initial state, or the running pump can fail

with failure rates given by the first term of the cells

Run-Leak and Run-Rupt in the table II.

3) The states 4, 5 and 6 are then introduced to model a

system where failures have occurred in the two

components.

2) From these states, the failed pumps can be repaired,

what leads to the already known states 2 or 3. It shall

be noted that the probability rate associated to the

transition from the state 4 to the state 2 (respectively

6 to 3) is two times the repair rate defined in the cell

Run-Leak (respectively OFF-Rupt) because the two

pumps are in the same state; therefore the probability

to have a pump repaired at a given time, assuming

that they can be repaired simultaneously, is twice

better.

4) As the goal of the function in these phases is equal to

60.0, the states 5 and 6 correspond to an unavailable

system because the sum of the achievement rates of

the two pumps is indeed equal to 50.0 for the state 5

and 0.0 for the state 6, according to the table III.

The MC for the second phase (Figure 13) is built in the

same fashion. Two faultless pumps are running in the state 1

and the transition from this state to the state 3 models the

redundancy policy R2. The states 2 and 4 are identical to those

of Figure 12 but it shall be underlined that no redundancy

policy is involved to define these states in the second phase;

the transitions between the states 2 and 4 are merely provoked

by failure or repair events. The state 5 differs from the

corresponding state in Figure 12 because the active pump is

over-speeded; there is no transition from this state to the state

3 because the Leak failure cannot be repaired when the

operation mode is Overspeed. Last, some transition rates are

different because either two pumps are in the same operation

mode in the source state of the transition (transition from 1 to

2, 1 to 3, 4 to 2, 6 to 3) or because the rate defined in the table

II is different. The darkened states (5 and 6) correspond to an

unavailable system; the sum of the achievement rates is

smaller than the goal.

The model of the whole behavior of the system for

the three phases is given at Figure 14. This model is composed

of the three previous MCs as well as three transition matrices

φi→j that allow the computation of the probability ��� to be in a

state l of the MC for the phase j at the date tij, where tij is the

date of a phase change from the phase i to the phase j, from

the probabilities ��� to be in a state k of the MC for the phase i

Fig. 12. MC for the phases 1 and 3

Fig. 13. MC for the phase 2

ISJ-RE-13-02551 9

at the date tij. In our case, these matrices are identity matrices,

i.e.

 ∀� ∈ ⟦0,6⟧ ���1(�12) = ��2(�12)��2(�23) = ��3(�23)��3(�31) = ��1(�31)

 (1)

B. Unavailability Assessment

Once this model obtained, it is possible to compute the

unavailability of the system by analytic calculus or Monte-

Carlo simulation. The first technique was selected for this

work because it can be easily applied to small-sized systems

and provides generic solutions (more details on this issue may

be found in [22]).

For the phases 1 and 3, the transition matrix of the MC is

(cf. Figure 12):

�13 = ⎣⎢⎢
⎢⎢⎡−0.011

0.1

0.1
0

0

0

0.01−0.111

0
0.2

0.1

0

0.001

0−0.111
0

0.1

0.2

0

0.01

0−0.2

0

0

0

0.001

0.01
0−0.2

0

0

0

0.001
0

0−0.2 ⎦⎥⎥
⎥⎥⎤

Let �13(�) = [�113(�),�213(�),�313(�),�413(�),�513(�),�613(�)],

be the probability to be in each state of the chain at the date �, �13 is solution of the system of differential equations:

 ��13(�)�� = �13(�).�13

It can be expressed as:

 �13(�) = �13(0). ��13�

From this result, the asymptotic unavailability for each one

of the phases 1 and 3 can be computed from the asymptotic

probabilities to be in the states 5 and 6 of the chain:

 �̅13(∞) = �513(∞) + �613(∞) = 9.41 × 10−4

The asymptotic unavailability for the phase 2 can be

calculated in a similar manner: �̅2(∞) = 7.156 × 10−3.

 The result obtained for a sequence of twelve identical

missions where the first phase lasts one day, the second 28

days and the third also 1 day is given at Figure 15. The

average unavailability is equal to 0.623827%, which

corresponds to approximately 2 days and 6 hours in absolute

value.

V. CONCLUSIONS AND OUTLOOKS

This paper has proposed a meta-model based on [4] to

support the integration of dependability analysis into system

engineering processes. This meta-model has been defined for a

wide class of systems: phased mission systems with multi-

state and repairable components and several redundancy

policies; it can be easily specialized to deal with more

restricted classes of systems, like, for instance, systems with

binary and non-repairable components or systems whose

mission comprises only one phase.

The benefit of this proposal has been shown on a small

example of a critical system coming from a power plant. A

systematic procedure to construct MCs which are classical

models for availability analysis, from object diagrams derived

from the meta-model, has been defined and exemplified.

On-going works are aiming to automate the construction of

object diagrams and MCs to be able to deal with full-scale

industrial cases. Automatic construction of MCs will take into

account uncertainties on the failure and repair rates to better

assess the impact of these uncertainties on the final results

(probabilities to be in a given state, (un)availability).

Introduction of new classes, attributes and relations in the

Fig. 14. MCs for a mission

�
1→2

�
2→3

�
3→1

Fig. 15. Unavailability for twelve consecutive missions

ISJ-RE-13-02551 10

meta-model, to integrate the new concepts recently presented

in the domain of dynamic dependability analysis ([11], [25]),

is also under investigation. This will allow, in particular, to

integrate faulty behaviors due to software or hardware

components of the Instrumentation and Control system, into

the dependability analysis.

Finally, validation of this meta-model on case studies larger

than the small example which has been presented in this paper

will permit to really assess its usefulness, completeness, and

flexibility and to estimate correctness and scalability of the

analysis methods of the derived models.

REFERENCES

[1] N.-G. Leveson, Engineering a Safer World: Systems Thinking Applied to

Safety, J. Moses, Ed. MIT Press, Cambridge (Massachusetts), 2011, pp.

3–72; 307-348.

[2] Y.-Y. Haimes, Risk Modeling, Assessment, and Management, P. Sage

Ed., WILEY, Hoboken (New Jersey), 2009

[3] R.-W.-A. Barnard, “What is wrong with Reliability Engineering”,

INCOSE, 2008

[4] F. Pfister, V. Chapurlat, M. Huchard, C. Nebut, and J.-L. Wippler, “A

proposed meta-model for formalizing systems engineering knowledge,

based on functional architectural patterns,” Systems Engineering, vol.

15, pp. 321–332, autumn 2012.

[5] R. Guillerm, N. Sadou, and H. Demmou, “Combining FMECA and

Fault Trees for declining safety requirements of complex systems,” in

ESREL 2011, C. G. Soares, Ed., Troyes (France), September 2011, pp.

1287–1293.

[6] D. Cancila, F. Terrier, F. Belmonte, H. Dubois, H. Espinoza, S. Gérard,

and A. Cuccuru, “SOPHIA: a modeling language for model-based safety

engineering,” in MoDELS ACES-MB, Denver, Colorado, USA, October,

6th 2009, pp. 11–25.

[7] J. Michael, M.-T. Shing, K. Cruickshank, and P. Redmond, “Hazard

analysis and validation metrics framework for system of systems soft-

ware safety,” Systems Journal, IEEE, vol. 4, no. 2, pp. 186–197, 2010.

[8] P. David, V. Idasiak, and F. Kratz, “Reliability study of complex

physical systems using SysML,” International Journal in Reliability

Engineering and System Safety, vol. 95, no. 4, pp. 431 – 450, 2010.

[9] R. Billinton and N. Allan, Reliability Evaluation of Power Systems,

Springer, 1996

[10] D.-C. Raiteri, G. Franceschinis, M. Iacono and V. Vittorini, “Repairable

fault tree for the automatic evaluation of repair policies”, International

Conference on Dependable Systems and Networks, Florence (Italy) July

2004, pp.659-668

[11] P.-Y. Chaux, J.-M. Roussel, J.-J. Lesage, G. Deleuze, M. Bouissou,

« Towards a unified definition of Minimal Cut Sequences », in DCDS

2013, York (UK), Paper n°1, 6 pages, September 2013

[12] G.-R. Burdick, J.-B. Fussell, D.-M. Rasmuson, and J.-R. Wilson,

“Phased mission analysis: A review of new developments and an

application,” IEEE Transactions on Reliability, vol. R-26, pp. 43–49,

April 1977.

[13] G. Levitin, A. Lisnianski, H. Ben-Haim and D. Elmakis, “Redundancy

Optimization for Series-Parallel Multi-State Systems”, in IEEE

Transactions on Reliability, vol. 47, No. 2, pp 165-172, June 1998

[14] Y.-Y. Haimes, “On the Definition of Resilience in Systems”, in Risk

Analysis, vol. 29, No. 4, pp 498-501, 2009

[15] OMG, Uml 2.0 Infrastructure specification, Object Management Group,

2005.

[16] ——, Uml 2.0 OCL specification, Object Management Group, 2003.

[17] L. Meshkat, L. Xing, S.-K. Donohue, and Y. Ou, “An overview of the

phase-modular fault tree approach to phased mission system analysis,”

in Proceedings of the International Conference on Space Mission

Challenges for Information Technology, Pasadena, CA, USA, July 2003,

p. 10.

[18] A. Villemeur, Reliability, Availability, Maintainability and Safety

Assessment, Methods and Techniques. Wiley, 1992.

[19] M. Kothare, B. Mettler, M. Morari, P. Bendotti, and C.-M. Falinower,

“Level control in the steam generator of a nuclear power plant,” in

Decision and Control, 1996, Proceedings of the 35th IEEE (10 pages),

vol. 4, Kobe, Hyogo, Japan, December 11th-13th 1996, pp. 4851–4856.

[20] H. Zhang, B. de Saport, F. Dufoura, and G. Deleuze, “Dynamic

reliability: Towards efficient simulation of the availability of a feedwater

control system,” in NPIC-HMIT 2012, San Diego, USA, July 22-26

2012.

[21] H. Aboutaleb, M. Bouali, M. Adedjouma, and E. Suomalainen, “An

integrated approach to implement system engineering and safety

engineering processes: Sasha project,” in ERTS’2012, Toulouse, France,

February 2nd 2012.

[22] W.-J. Stewart, Introduction to the Numerical Solution of Markov Chains.

Princeton University Press, 1994.

[23] M. Alam, U.-M. Al-Sagaaf, and M. Ubaud, “Quantitative reliability

evaluation of repairable phased-mission systems using Markov

approach,” IEEE Transactions on Reliability, vol. R-35, no. 5, pp. 498–

503, December 1986.

[24] K.-E. Murphy, C.-M. Carter and A.-W. Malerich, “Reliability analysis

of phased-mission system: A correct approach,” in RAMS, 2007.

[25] A. Rauzy, “Sequence algebra, sequence decision diagrams and dynamic

fault trees,” Reliability Engineering and System Safety, vol. 96, no. 7,

pp. 785–792, 2011.

Pierre-Yves Piriou received an

Engineering Degree (Mechatronic and

Complex Systems) from the Institut

Superieur de Mecanique de Paris and a

Master Degree in Complex Systems

Engineering from the ENS Cachan in

2012. He is a PhD student at the Ecole

Normale Superieure de Cachan. His

research concerns the assessment of

dependability attributes of I&C architectures.

Jean-Marc Faure received the Ph.D.

degree from the Ecole Centrale de Paris in

1991. He is currently Professor of

Automatic Control and Automation

Engineering at the Institut Superieur de

Mecanique de Paris and researcher at

Ecole Normale Superieure de Cachan,

France. His research fields are modeling,

synthesis and analysis of Discrete Event Systems (DES) with

special focus on formal verification and test methods to

improve dependability of critical systems. J.-M. Faure is

member of the IEEE and Associate Editor of the Journal T-

ASE since 2012. He is chair of the steering committee of the

IFAC workshops series “Dependable Control of Discrete

Systems”. He has served in many committees of IFAC and

IEEE conferences.

Gilles Deleuze received an Engineering

Degree (Naval & Nuclear Engineering)

from ENSTA (Ecole Nationale Superieure

de Techniques Avancees) in 1986 and a

Technology Management Degree from

Paris IX University in 1987. He is project

leader and senior researcher in the R&D

labs of Electricite de France, Industrial

Risks Management Department. He currently works on the

implementation of risk assessment frameworks the

improvement of the modeling of I&C systems in probabilistic

safety assessment and co-development of Dependability and

System Engineering. Previously, he worked for THALES in

the field of electronic components and systems dependability

for space, avionics and military equipment.

	I. Introduction
	II. Meta-model Construction
	A. Modeling Phased Mission Systems
	B. Modeling the Component States
	C. Modeling the Effects of Component States on Function Achievement
	D. Introducing Redundancy Policies

	III. Building Object Diagrams from the Meta-model
	A. Defining the Mission Phases
	B. Defining the Component States
	C. Describing the Effects of the Component States
	D. Describing the effects of the component states

	IV. Using the Meta-Model for Dependability Analysis
	A. Systematic Construction of MCs from Instance Diagrams
	1) The initial state of the chain is defined from the initial states of the components of the system, for the considered phase.
	2) For each state of the chain, an outgoing transition is added for each possible failure or repair event.
	3) If this transition does not lead to a state which has been already defined, a new state is introduced by taking into account the redundancy policies.
	4) The system is unavailable if the sum of the achievement rates of the components in this state is smaller than the goal of the function.

	B. Unavailability Assessment

	V. Conclusions and Outlooks
	References

