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Robust control of synchronous motor through AC/DC/AC converters

A. El Magri, F. Giri *, A. Abouloifa, F.Z. Chaoui

GREYC Lab, University of Caen, 14032 Caen, France

ABSTRACT

The problem of controlling synchronous motors, driven through AC/DC rectifiers and DC/AC inverters is
addressed. The control objectives are threefold: (i) forcing the motor speed to track a varying reference
signal in presence of motor parameter uncertainties; (ii) regulating the DC Link voltage; (iii) assuring a
satisfactory power factor correction (PFC) with respect to the power supply net. First, a nonlinear model
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of the whole controlled system is developed in the Park-coordinates. Then, a robust nonlinear controller
is synthesized using the damping function version of the backstepping design technique. A formal
analysis based on Lyapunov stability and average theory is developed to describe the control system
performances. Despite parameter uncertainties, all control objectives are proved to be asymptotically
achieved up to unavoidable but small harmonic errors (ripples).

1. Introduction

Permanent magnet synchronous (PMS) motors are more
suitable (compared e.g. to induction motors) for electric traction
and other applications. Indeed, they possess a better mass/power
ratio, develop a much higher power level and present a more
satisfactory efficiency. These benefits come from the fact that
Joule losses in PMS motors are much less important as no field or
rotor currents are involved. A considerable progress has been
made in power electronics technology leading to reliable power
electronic converters and making possible varying speed drive of
synchronous machines. Indeed, speed variation can only be
achieved for these machines by acting on the supply net
frequency. Until the development of modern power electronics,
there was no effective and simple way to vary the frequency of a
supply net. On the other hand, in the electric traction domain, the
used power nets are either DC or AC but mono-phase. Therefore,
three-phase DC/AC inverters turn out to be the only possible
interface (between the main power supply nets and 3-phase AC
motors) due to their high capability to ensure flexible voltage and
frequency variation. The above considerations illustrate the major
role of modern power electronics in the recent development of
electrical traction applications (locomotives, vehicles, etc.). As
mentioned above, a three-phase DC/AC inverter used in traction is
supplied by a power net that can be either DC or mono-phase AC.
In the case of AC supply, the (mono-phase) net is connected to the
three-phase DC/AC inverter through a transformer and an AC/DC
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rectifier (Fig. 1). The connection line between the rectifier and the
inverter is called DC link.

The control problem at hand is to design a controller ensuring
a wide speed range regulation for the system including the AC/DC
converter, the DC/AC inverter and the PMS motor. The point is
that such system behaves as a nonlinear load vis-a-vis to the AC
supply line. Then, undesirable current harmonics are likely to be
generated in the AC line. These harmonics reduce the rectifier
efficiency, induce voltage distortion in the AC supply line and
cause electromagnetic compatibility problems. The pollution
caused by the converter may be reduced resorting to additional
protection equipments (transformers, condensers, etc.) and/or
over-dimensioning the converter and net elements. However, this
solution is costly and may not be sufficient. To overcome this
drawback, the control objective must not only be motor speed
regulation but also current harmonics rejection. The last objective
is referred to power factor correction (PFC) (Singh, Bhuvaneswari,
& Garg, 2006).

Most previous works on synchronous machine speed control
have simplified the control problem neglecting the dynamics of
the AC/DC rectifier, i.e. focusing only on the set ‘DC/AC inverter-
motor’. This reduced system has been dealt with using several
control strategies ranging from simple techniques, e.g. field-
oriented control (Saleh, Mohammed, & Badr, 2004), to more
sophisticated nonlinear approaches, e.g. feedback linearization
(Kuroe, Okamura, Nishidai, & Maruhashi, 1998), direct torque
control (Pyrhonen, Niemela, Pyrhonen, & Kaukonen, 1998), sliding
mode (Yang, Wang, Liu, Hou, & Cai, 1992), hybrid sliding-mode/
neurofuzzy control (Elmas & Ustun, 2008). A control strategy
that ignores the presence of the AC/DC rectifier suffers at least
from two drawbacks. First, the controller design relies on the
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Fig.1. Schematic representation of single phase AC supply powering 3-phase AC
motor.

assumption that the DC voltage (provided by the AC/DC rectifier)
is perfectly regulated; the point is that perfect regulation of the
rectifier output voltage cannot be ensured ignoring the rectifier
load, which is nothing other than the set ‘DC/AC inverter-motor’.
The second drawback lies in the entire negligence of the PFC
requirement. That is, from a control viewpoint, it is not judicious
to consider separately the inverter-motor association, on one
hand, and the power rectifier, on the other hand.

In the present work, a new control strategy is developed that
simultaneously deals with both involved subsystems, i.e. the
AC/DC inverter and the combination ‘DC/AC inverter-motor’. The
new control strategy is featured by its multi-loops nature and its
robustness against parametric uncertainty. First, a current loop is
designed so that the coupling between the power supply net and
the AC/DC rectifier operates with a unitary power factor. Then, a
second loop is designed to regulate the output voltage of the
AC/DC rectifier so that the DC-link between the rectifier and the
inverter operates with a constant voltage despite changes of the
motor operation conditions. Finally, a bi-variable regulator is
constructed to make the motor velocity track its varying reference
value and to regulate the d-component of stator current to zero
optimizing thus the absorbed stator current. The bi-variable
regulator is designed using the damping function version of the
backstepping technique (Krstic, Kanellakopoulos, & Kokotovic,
1995). Accordingly, additional nonlinear control actions are
designed to dominate the disturbing effect resulting from
parametric uncertainty while preserving the closed-loop system
stability. It will be formally proved that the robust multi-loop
controller thus obtained stabilizes (globally and asymptotically)
the controlled system and ensures quite interesting tracking
properties. More precisely, the motor speed and (d-component of)
stator current will both be shown to track well their references
despite motor parameter uncertainties. Owing to the rectifier
input current and output voltage, it will be demonstrated that the
corresponding steady-state tracking errors are both harmonic
signals with amplitudes depending, among others, on the supply
net frequency. The larger the net frequency is, the smaller the
tracking error amplitudes. Accordingly, if the net frequency is
large enough the PFC requirement will actually be guaranteed up
to a harmonic error of insignificant amplitude. This formally
establishes the existence of the so-called ripples (usually
observed in similar practical applications) and proves why this
phenomenon is generally insignificant. These theoretical results
are obtained making judicious use of adequate control theory
tools including averaging theory and Lyapunov stability (Khalil,
2003). The paper is organized as follows: the system under
study (i.e. the AC/DC/AC converter and synchronous motor
association) is modeled and given a state space representation
in Section 2; the controller design and the closed-loop system
analysis are dealt with in Section 3; the controller performances
are illustrated through numerical simulations in Section 4. For
convenience, the main notations used throughout are described in
Table 1.

Table 1
Main notations.

ci,b ki Design parameters

F Combined rotor and load viscous friction

igiq d- and g-axis stator currents

i Rectifier input current

J Combined rotor and load inertia

K Control action generated by the DC link voltage regulator
Ky Flux motor constant

LR Inductance and resistance of stator winding (PMSM)
ClLq Passive components of input converter

p Number of pole pairs

se(—1,+1) PWM input signal controlling converter IGBTs

T, Machine load torque

Tn Motor torque

u; (i=1,2,3) Average values of s,uglg over cutting periods (duty ratios)
Va,Vq d- and g-axis stator voltages

Vac Rectifier output voltage

Vdcref Reference value of rectifier output voltage vg.

Ve AC line voltage

Vi Lyapunov functions introduced in controller design (i=1...5)
X1 Average rectifier input current, x; =i,

X1 Input current reference, x1*=kv,

X Rectifier output voltage, X>=Vqc

X3 Rotor speed, x3=w

X4 g-Axis stator current, X4=ig

X5 d-Axis stator current, Xs=ig4

y Squared DC link voltage, y =x3 = vA_

Yref Reference value of y; y,efvdcrefz

Z Input current tracking error, z;=x1=x*

Z Squared DC link voltage error, Z;=y — Yrer

Z3 Rotor speed tracking error, z3=m — Wyer

Zs d-Axis current tracking error, zs=ig— igref

[0} Machine rotor angular velocity

W, Power supply net frequency

& Inverse of supply net frequency i.e. £=1/w,

2. Modeling the ‘AC/DC/AC converter-synchronous motor’
association

The controlled system is illustrated by Fig. 2. It includes an
AC/DC boost rectifier, on one hand, and a combination ‘inverter-
synchronous motor’, on the other hand. The inverter is a DC/AC
converter operating, like the AC/DC rectifier, according to the
known pulse wide modulation (PWM) principle.

2.1. ACQ/DC rectifier modeling

The power supply net is connected to an H-bridge converter
which consists of four IGBTs with anti-parallel diodes for
bidirectional power flow mode. This is expected to accomplish
two main tasks: (i) providing a constant DC link voltage and (ii)
providing an almost unitary power factor. Applying Kirchhoff's
laws, this subsystem is described by the following set of
differential equations:

di,. ve 1

dar = E*ﬁsvdc (1a)
dVdC_ 1 . 1.

G = TSleffls (1b)

where i, is the current in inductor L;, v4. denotes the voltage in
capacitor 2C, i; designates the inverter input current,
Ve =+/2 Ecos(wet) is the sinusoidal net voltage (with known
constants E, ®.) and s is the switch position function taking values
in the discrete set {—1,1}. Specifically:

s—{l if Sis ON and S’ is OFF
I |

if S is OFF and §' is ON 19
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Fig.2. AC/DC/AC drive circuit with three-level inverter.

The above (instantaneous) model describes accurately the
physical inverter. Then, it is based upon when constructing
converter simulators. However, it is not suitable for control design
due to the binary nature of the control input s. As a matter of fact,
most existing nonlinear control approaches apply to systems with
continuous control inputs. Therefore, control design for the above
inverter will be performed using the following average version of
(1a)-(1b) (Sira & Silva, 2006):

dx;  ve 1

T E—mez (2a)
dXz 1 1=

dar = Euﬁﬁ—fls (2b)
X1 = lTe, Xy =Vg4, U;=S (ZC)

where x4, X, and u; denote average values over cutting periods of
ie, Vgc and s, respectively.

2.2. Inverter-motor modeling

Such modeling is generally performed in the d-q rotating
reference frame because the resulting components iz and i; turn
out to be DC currents. It is shown in many places (e.g. Wallmark,
2004) that the synchronous motor model, expressed in the d-q
coordinates, is given the following state space form:

dw F 3Ky, T

E=—jw+TjM'q—TL 33
di R. . K 1

d_;’ = —Ilq—pwld—TMw+ 7Va (3b)
di R. o1

d—?:—zld+pwlq+zvd 30)

where vy, v4 denote the averaged stator voltage in dg-coordinate
(Park’s transformation of the triphase stator voltages). The
inverter is featured by the fact that the stator d- and g-voltage
can be controlled independently. To this end, these voltages are
expressed in function of the corresponding control action (see e.g.
Michael, Ryan, & Rik, 1998):

Vg = Vycllz (4a)
Vg = Vgcls (4b)
is = %(uziq+u3id) (4c)
with

U =Ug, U3=1Uy (4d)

The latter represent the average d- and g-axis (Park’s
transformation) of the triphase duty ratio system (si,55,53). The
latter are defined (1c) replacing there S and S’ by S; and S;
(i=1,2,3). Now, let us introduce the state variables:

X3 =,

Then, substituting (4a)-(4b) in (3a)-(3c) yields the following
state space representation of the association ‘inverter-motor’:

dxs F 3Ku T

Xa=1lg, Xs=lig (4e)

E=_jx3+2_jx4_7 (52)
dx R K 1

d_t4 =~ Xa—PX3Xs— TMX3 + X2 (5b)
dx R 1

Ti = = X5 TPX3X4+ [ UsX (50)

The state space equations obtained up to now are put together
to get a state-space model of the whole system including the
AC/DC/AC converters combined with the synchronous motor. For
convenience, the whole model is rewritten here for future
reference:

dxq _ve 1

@ L LU (6a)
dditz = 2%“1"1—4%(1’3"5 +UzXy) (6b)
%=—§x3+%x4—% (60)
dditll :_§x4_px3x5—KTMx3+%u2x2 (6d)
% = —§Xs +PX3X4+ %ung (6e)

3. Controller design
3.1. Control objectives
There are two operational control objectives:

(i) Speed regulation: the machine speed o must track, as closely
as possible, a given reference signal wyy.

(ii) PFC requirement: the rectifier input current i, must be
sinusoidal and in phase (or in opposite-phase) with the AC
supply voltage v..

As there are three inputs at hand, namely u4, u; and us, two
additional control objectives are sought:



(iii) Controlling the continuous voltage v, making it track a given
reference signal vqcrer. This is generally set to a constant value
equal to the nominal voltage entering the inverter.

(iv) Regulating the current iq to a reference value igr, preferably
equal to zero in order to guarantee the absence of d-axis
stator current. This requirement is motivated by the fact
that the developed torque is given by the relation
T=3(Kumig+p(La—Lg)igig)/2, see e.g. Muhammad and Rashid
(2001). Accordingly, torque control should be performed
acting on both iy and ig. But, for the surface-magnet
synchronous motor, the large effective airgap means that
Ly~Ly =L, i.e. iy does not significantly influence T, and so it
is sufficient to regulate it to zero.

3.2. AC/DC rectifier control design

3.2.1. Controlling rectifier input current to meet PFC
The PFC objective means that the input current rectifier should be
sinusoidal and in phase with the AC supply voltage. Accordingly, the
current x; must be forced to tack a reference signal x; of the form:
x5 =kve (7)
At this point k is any positive parameter that is allowed to be
time-varying. Introduce the tracking error:
Z1 =X1—X] (8)
In view of (6a), the above error undergoes the following
equation:
. ve 1 -
Zq :ﬁfﬁlth*x] (9)
To get a stabilizing control law for this first-order system,
consider the quadratic Lyapunov function V; =0.5z7. It can be
easily checked that the time-derivative V is a negative definite
function of z; if the control input is chosen to be
" Li(c121+ (Ve /L1)—X7)
X2

(c1 > 0). (10)

The properties of this control law are summarized in the following
proposition.

Proposition 1. Consider the system, next called current (or inner)
loop, composed of the current Eq. (6a) and the control law (10) where
¢;> 0 is arbitrarily chosen by the user. If the reference x; = kv. and
its first time derivative are available then one has the following
properties:

(i) The current loop undergoes the equation z, = —cyz; with
Z1 =X1—X}. As ¢1 is positive this equation is globally exponen-
tially stable, i.e. z; vanishes exponentially, whatever the initial
conditions.

(ii) If in addition k converges (to a finite value), then the PFC
requirement is asymptotically fulfilled in average, i.e. the
(average) input current x; tends (exponentially fast) to its
reference kv, as t— oo.

3.2.2. DC link voltage regulation

The aim is now to design a tuning law for the ratio k in (7) so
that the rectifier output voltage x, =V, is steered to a given
reference value vgcrer. As mentioned above, vyqer is generally (not
mandatory) chosen to be the constant nominal inverter input
voltage amplitude (i.e. the nominal stator voltage).

3.2.2.1. Relationship between k and x,. The first step in designing
such a loop is to establish the relation between the ratio k (control

input) and the output voltage x,. This is the subject of the
following proposition.

Proposition 2. Consider the power rectifier described by (6a)-(6b)
together with the control law (10). Under the same assumptions as in
Proposition 1, one has the following properties:

(1) The output voltage x, varies, in response to the tuning ratio k,
according to the equation:
dXZ 1
dt T 20x;
(2) The squared voltage (y=x3) varies, in response to the tuning ratio
k, according to the equation:

3
(’<V§+Z1Ve)*R(U3X5+u2X4) an

dy 1, 5, 1
E = EI<V9+ Ezﬂfe +X(X, t) (12)
with

)= 3 13
AX, )f*fxz(ussxs +U2Xq) (13)

Proof. Part 1: The power absorbed by the AC/DC rectifier is given
by the well known expression Pgpsoped=X1Ve. On the other hand,
the power released by the rectifier (toward the load including the
capacity and the inverter) is given by Pejeqsea=U1X1X2. Using the
power conservatism principle, one has Pgpsorbed=Preieasea OT,
equivalently:

X1Ve = U1X1X2 (14)

Also, from (7) to (8) one immediately gets that x;=kv.+z; which
together with (14) yields uix; = (kv2 42z;ve)/x2. This establishes
(11) due to (6b).

Part 2: Deriving y=x3 with respect to time and using (11) yields
relation (12) and completes the proof of Proposition 2. O

3.2.2.2. Squared DC-link voltage regulation. The ratio k stands up as
a virtual control signal in the first-order system defined by (12).
As mentioned before, the reference signal ys évgcmf (of the
squared DC-link voltage x»,=vq4.) is chosen to be constant (i.e.
Vrer = 0), it is given the nominal inverter input voltage value. Then,
it follows from (12) that the tracking error z,=y —y,er undergoes
the following equation:

Zy= %Ezk+ %Ezk cos(2wet)+gz1 COS(Wel) + X, 1)~V (15)

where the fact that v, = v2Ecos(w,t) and v2 = E2(1+ cos(2w,t)).
To get a stabilizing control law for the system (15), consider the
following quadratic Lyapunov function:

V, =0.522 (16)

It is easily checked that the time-derivative V, can be made
negative definite in the state z, by letting:

KE? + kE? coS(2et) +v/2Ez1 COS(wet) = C(—Caza— 1(X, 1))+ CY ref
(17a)

where ¢, >0 is a design parameter. The point is that such
equation involves a periodic singularity due to the mutual
neutralization of the first two terms on the left side of (17a). To
get off this singularity and, besides, to avoid an excessive
chattering in the solution, the two terms in cos(-), on the
left side of (17a), are just ignored. Therefore, the following
approximate and simple solution is considered:

C C.
k= E—Z(*szz — XX, )+ 2 Vre (17b)



Bearing in mind the fact that the first derivative of the control
ratio k must be available (Proposition 1), the following filtered
version of the previous solution is adopted:

: C C.
I<+bl<=bE—2(—szz—)((x, t))+bE—2y,ef (18)

At this point, the regulator parameters (b,c;) are any positive
real constants. The proof of the forthcoming Theorem 1 will make
it clear how these should be chosen for the control objectives to
be achieved. For now, let us summarize our main findings in the
following proposition.

Proposition 3. Consider the control system consisting of the AC/DC
rectifier described by (6a)-(6b) together with the control laws (10)
and (18). Using Proposition 1 (Part 1), it follows that the closed-loop
undergoes, in the (z1,z,,k)-coordinates, the following equation where
z1 =X1—X} and z;=y — Yref:

—Cq 0 0
o 0 A (1)
Z | = C ||z |+ bC |20
! bC -
k 0 —ﬁCz _b k B2
0
0
E2 V2 1 .
+ E/<cos(2wet)+TEz1 cos(wet)0)— _bC Yref
EZ

(19)

The stability of the error system defined by (19) will be fully
analyzed later. But, first, the controller development must be
completed.

3.3. Robust control design of the ‘inverter-motor’ set

3.3.1. Motor model with parameter uncertainties

The mechanical motor parameters T; (load torque) and F
(viscous friction coefficient), are not supposed to be accurately
known. These are just supposed to be varying within known
intervals. Specifically, it is assumed that

F=Fo(1+4F) (20a)

Ty =To(1+47) (20b)

where (Fo,Tio) denote nominal values and (A4frA47) are possibly
varying uncertainties such that

AMIN < fp < AMAX, - AMIN < 4 < AMAX (21)

AMIN A MAX

where and are known bounds. Using (20), Eq. (6¢) can
be rewritten as follows:

dX3 _ FO 3KM TLO
E__TXB+TJX4_T+A1XB+AZ (22)
with
Ay = —I;—OAF
(23)
Ay = —@AL
Jo

Substituting (22) in (6¢)-(6e) gives a new model representa-
tion of the motor:

dx;  F 3Ky Tio

axs _ _fo Km0 T
it j"3+ Pl] X4 ] +¢14 (24a)
dx R K 1

d_t4 =~ Xa—PX3Xs— TMX3 + X2 (24b)
dx R 1

Ti = —IX5 +PX3X4 + Iu?,XZ (24C)
with

pr=[x 1] a=[4 4] (25)

3.3.2. Robust motor speed control

Based on Eqs. (24a)-(24b), a control law will now be
determined, for the control input u,, in order to guarantee a
satisfying speed reference tracking quality, despite the motor
parameter uncertainties. Following the robustified backstepping
design technique (Krstic et al., 1995), let us introduce the speed
tracking error:

Z3 =X3—Wref (26)

In view of (24a), the above error undergoes the following
equation:
. Fo 3Km Tio
23——j X3+ 2] Xq4— j

In (27), the quantity o=(3Ku/(2]))x4 stands up as a (virtual)
control input for the z3-dynamics. Let «* denote the associated
stabilizing function. Eq. (27) suggests the following choice:

F T, .

o= —C3Z3—’<1|(P1|ZZ3+TOX3+%+wref (28)
where || denotes the Euclidean norm of ¢, c3>0 is a design
parameter and k;|¢4|?z; a nonlinear damping term introduced to
dominate the uncertain term (p{A. If & were let equal to o, one
would have

_wref+(p-{-A (27)

23 = —C323— (k1|1 1* 23— 4) (29)
Then, considering the Lyapunov function candidate:
V3 =0.522 30)

One would get the following time-derivative along the
trajectory of (27):
V3 =2323 = 35— (k1| P23— ) A)z3 31
which shows that V5 is a negative definite function of z; in case
A=0. As a=(3Ky/(2]))x4 is a virtual control input, one cannot set

a=o*. Nevertheless, the above expression of the desired trajectory
is retained and a new error is introduced, i.e.

Z4 =0—0* 32
Using (28)-(32), it follows from (27) that the z3-dynamics

undergoes the following equation:

23 =—323— (k1| Q11> 23— T A)+ 24 (33)

The next step consists in determining the control input u, so
that the errors (z3,z4) vanish asymptotically. The trajectory of the
error z4 is first obtained by time-deriving (32):

24 = (BKu/(2))kg—0" (34)
Using (28) and (24a)-(24b) in (34) yields

24 = BR)—Dref—(C3+ k119111223 + (c3 + K111 1P)Za + 9L A+yuy
(35)



with

3Ky (R K
Bx)= —2—1’” <I"4 +DX3Xs + TMXB.)

Fo Fo 3Ku To
+ 2kxz——)<——x + =X ——) 36
< X323 R (36)
F, 3Ky x

Py = <C3+k]|([)1|2+21(]X323—70>([)1, Y= T‘;WTZ (37)

For convenience, the error equations (33) and (35) are
rewritten together as

z23=—(C3+k|p11Dz3—p]A+24 (38a)

Z4 = PX)—D s —(C3+ k1], 1)2z3+(c3+ k111 1*)za+ @I A+yuy
(38b)

To determine a stabilizing control law for (38a)-(38b), let us

consider the following Lyapunov function candidate:

V4 =V3+0.523 39)
Using (33), the time-derivative of V, turns out to be

Vy=—(c3+ki10,1)23 + @l Az3+2324+2424 (40)
Combining (38b) and (40) yields

Va=—(C3+ki1@1 )22 +(@l 23+ @2a) A +[25 + BX) + ey
—(C3+k1191 15223 +(C3 + k11011324 + 71z )24 41)

This shows that for the (z3,z4)-system to be asymptotically
stable, it is sufficient to choose the control u, as follows:

Uy =7~ [~23—BX) + Dre + (3 + k1191 *)*23
—(C3+kq 11 12)za—(Ca+k2151?)24] (42)

where c,>0 is a new design parameter and k.|p,|?z, an
additional nonlinear damping term introduced to dominate the
uncertain term ¢,4 in Eq. (35). From (41) and (42) one gets

Va=—c3B—Cazi—k|p, P —ka| 0, P25 + (0723 + lza)A (43)

The stability analysis of the closed-loop system consisting of
the subsystem (24a)-(24b) and the regulator (42) will be
performed later (see Theorem 1). But first let us end up the

controller development by designing a control law for the
remaining input, i.e. us.

3.3.2. d-Axis current regulation
The d-axis current xs undergoes Eq. (24c) in which the
following quantity:
1
V= I(pxg,x4 +Us3X3) (44a)
acts as a virtual input. As the reference signal igrer is null, it follows
that the tracking error zs=xs — igres undergoes the equation:

Z5= Bz +v
5=-71%
To get a stabilizing control signal for this first-order system,
consider the following quadratic Lyapunov function:
Vs =0.5z2 (45)

It can be easily checked that the time-derivative Vs can be
made equal to —csz2 letting the (virtual) control input be
generated by the following control law:

(44b)

R
V= —Z5—C5Z5

I (with ¢5 >0 a design parameter) (46)

Now, it is readily observed that the actual control input is
obtained substituting (46) in (44) and solving the resulting
equation with respect in u3. Doing so, one gets:

L R
Uz = X <—C525 + s —PX3X4> 47)

Finally, combining (46) and (44b) gives
25 = —C5Z5 (48)
The speed and d-axis current control laws, defined by (42) and

(47) are now analyzed in the following theorem.

Theorem 1. Consider the control system consisting of the subsystem
(24a)-(24c) and the control laws (42) and (47).

(1) The resulting closed-loop system undergoes, in the (z3,z4,25)-
coordinates, the following equation:

z3=—(c3+kilp P)zz—@ A +24 (49a)
Z4=—(Ca+ka |y H)za—p3 A (49b)
25 = —C5Z5 (49C)

with  z3=X3—rer, Za=(3Km/(2])Xa—0", Z5s=X5—lgrep O =
—C323—kq |91 1223+ (Fo /X3 + (Tio /) + @ ref-

(2) The error vector (z3,z4,25) converges exponentially to a compact
neighborhood of the origin [000] and the size of this compact
can be made arbitrarily small by choosing the design parameters
(k1,k2) and (cs3,ca,cs5) sufficiently large.

(3) In the case of no motor parameter uncertainties, ie. A =[0 0]T,
the origin [000] is an exponentially stable equilibrium of the
system (49a)-(49c). Consequently, the error vector [zzzszs]
vanishes exponentially fast, whatever the initial conditions.

Proof. See Appendix A. O

3.4. PFC achievement

In the following theorem, it is shown that, for a specific class of
reference signals, including periodic signals, the PFC requirement
is achieved (in the mean) with an accuracy that depends, among
others, on the network frequency w.. The following notations are
needed to formulate the results:

Zi=[z1 zo K\, Zy=[z3 za z] (50a)
E? bC E 3b 1
h=rc G=50, a2=fE, G=3g = (50b)
A 0 —C1 0 0
A= < X ) eIR® with A= 0 0 q |,
0 A
0 —aq —b
—C3 1 0
A= 0 —c O (500)
0 0 —Cs

f(Z,t):[O (agk cos(2wet)+azz; cos(wet)) 0 0 0O O]TeIRG

(50d)
-3 T
g= [O 5C az 0 O O} e IR® (50e)
bC L
h=|0 1 B2 0 0 0| IR (50f)



4%L
0(Z,t) = (R— LC5)25+9{<2 {Z4+<ij3 Z3+ 7 wref+ +wref}

C+C—E—Ez+ —1—c R+ E+£z
X 3 L] 4 3 2L
RT; (RF 31<,%4> T, N

R
+ -+ Wref + — 1] + < j>wref +('Uref} (50g)

] +

JL 2L

@=[0 0 0 —kilp1> —kalp,> O] cIRS (50h)

&=[03 03 03 @ @, 03]"cIR®3 with 03=[0 0 O]

(50i)

Theorem 2. Consider the system including the AC/DG/AC power
converters and the synchronous motor, connected in tandem as
shown in Fig. 2. For control design purpose, the system is represented
by its average model (6a)-(6e). Let the reference signals Vacres, Wref
and igres be selected such that Vgcrer> 0,(0rer > 0 and igrer=0. Consider
the controller defined by the control laws (10), (42) and (47) where
all design parameters (i.e. c1,C2,C3,C4,C5,k1,ko and b) are positive. Then,
one has the following properties:

(1) The resulting closed-loop system undergoes the state-space
equation:

Z=AZ+Q"Z+PA+f(Z,t)+80(Za, 1)+ Y e (51)

(2) Case of no motor parameter uncertainties, i.e. A=0. If Vgcrer and
wre, as well as their time-derivatives (up to the second order for
Wrep), are bounded and periodic signals with period Nmt/w, (for
some integer N) then, there exists a positive real ¢* such that one
has for 0 <e<e*:

(a) The tracking error z,=y — yr.s and the tuning parameter k are
harmonic signals that continuously depend on &.
(b) Furthermore, one has
. 3 3(03)
lljr(} k(t, &)= 2C ay
where G(03) denotes the mean value of the periodic time
function ¢(0s,t).

(3) Case of constant parameter uncertainties, i.e. A not necessarily
null but time-invariant. Under the same assumptions on Vqcrer
and wyp; the results of Part 2 still hold with an error that can be
made arbitrarily small by letting the design parameters (kq,k;)
and (c3,c4,c5) be sufficiently large.

lirr(} Z(t,e)=0 and (52)
E—

Proof. See Appendix B. O

Remarks 1. (a) As a result of Theorem 1 (Parts 2 and 3), the motor
speed and the d-component of its stator current both converge to
their respective references (if 4=0) or sufficiently close to these
references (when 4 = 0). This is a consequence of the exponential
convergence of the errors (z3,z5) to zero (if 4=0) or to a compact of
zero the size of which can be made arbitrarily small letting the
design parameters x=min(kq,k2) and c=min(cs,c4,c5) sufficiently
large.

(b) From Proposition 3 one gets that the error z; =x;—x; =

—kv, undergoes the equation z; = —cyz; which implies that z;
converges exponentially fast to zero. The importance of Theorem
2 (Parts 2 and 3) lies (partly) in the fact that the (time-varying)
ratio k does converge to a fixed value (up to a harmonic error).
This demonstrates that the PFC requirement is actually fulfilled
with an accuracy that depends on w.. The larger w, is, the more
accurate the PFC quality. It will be seen in the forthcoming

simulation that the usual value w.=50Hz leads to a quite
acceptable PFC quality.

(c) Theorem 2 (Parts 2 and 3) also demonstrates that the
tracking objective is achieved (in the mean) for the DC-link
squared voltage y = x3 = v2_ with an accuracy that depends on the
voltage network frequency we. The class of admissible references
(Vdcre, rer) includes periodic signals with period N7m/we. That is,
these signals must vary slower than the network voltage.

(d) The fact that the tracking error z, = vficfvgdef is harmonic
proves the existence of output ripples. Theorem 2 (Part 2) ensures
that the effect of ripples is insignificant if w, is sufficiently large. It
will be observed through simulations that the value w.=50Hz
leads to sufficiently small ripples.

(e) As pointed out by (20a)-(20c), parameter uncertainty in
model (6a)-(6e) only concerns the mechanical parameters. The
robustness of the controller (defined by (10), (42) and (47)) has
been achieved resorting to the additional nonlinear damping
terms (namely ki |¢;|2z3 and k;|@,|?z4). These have been designed
to dominate the parameter uncertainty effect while preserving
the closed-loop system stability. As a matter of fact, the same
approach could be applied mutatis-mutandis to dominate the
effect of eventual electrical parameters uncertainty. This option
has been discarded to keep the controller complexity at a
reasonable level.

4. Simulation

The experimental setup described by Fig. 3 has been simulated,
within the Matlab/Simulink environment. The system is given the
following characteristics:

Supply network voltage: ve(t)=~/2.Ecos(w.t) single phase
220V/50Hz. AC/DC/AC converters: Ly=15mH; C=1.5mF; mod-
ulation frequency 10 kHz. Synchronous motor: a nominal power
of 3kW and L=9.4mH, R=0.6Q, Kj;=1.29, J,=0.00765 N m/rd/s?,
Fy=0.003819 N m/rd/s, p=2.

The following values of the controller design parameters
proved to be suitable: ¢;=1000, c,=40, c3=30, c4=900, c5=800,
b=100, k1=10, k>=100.

4.1. Controller tracking capability: case of no parameter
uncertainties

The controller performances are evaluated in presence of time-
varying rotor speed reference w,; and load torque T; (Fig. 4).
Specifically, wyer is a filtered step-like signal that steps from O to
100rad/s, at t=0.2s, and from 100 to —100rad/s at t=1s. The
machine load torque T; is also a filtered step-like signal that steps,
at t=0.5s, from O to its nominal value T;o=20Nm. The involved
filters are second order for w,¢s and first order for T;.

The controller performances are illustrated by the curves in
Fig. 5. Curves 1 and 2 show, respectively, the resulting input
current i, and the variation of the ratio k. It is seen that the current
amplitude changes whenever the speed reference or the load
torque vary (compare with Fig. 4). But, the current frequency is
insensitive to these changes (Fig. 5(c)). Furthermore, the current
remains (almost) all time in phase or opposite phase with the
supply net voltage v¢(t) complying with the PFC requirement. This
is particularly demonstrated by Fig. 5(b) which shows that the
ratio k takes a constant value, after the transient periods following
changes in rotor speed reference or in load torque. This confirms
Theorem 2 (Part 1) and Remark 2c. Notice that the ratio k becomes
negative starting from time t=1s because the speed reference has
suddenly fallen down from 100 to —100rad/s. Then the input
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Fig. 4. (a) Rotor speed reference @y (rd/s); (b) machine load torque T, (Nm).

current i, becomes in opposite phase with the supply net voltage
ve which means that the power flow sense is reversed, i.e. the
power produced by the machine is transferred to the grid through
the triphase inverter (which then operates as rectifier) and the
single phase rectifier (which then operates as inverter).

Fig. 5(d) shows that the DC-link voltage x,=v4. is tightly
regulated: it quickly settles down after each change in the
speed reference or load torque. As expected by Theorem 2 (Part 1),
and commented in Remark 2c¢, the DC link voltage vy is
subject to small amplitude ripples oscillating at the supply net
frequency we.

Figs. 5(e) and (f) show that the machine speed, x3=w, and the
d-component of the stator current, xs=iy4, both perfectly converge

to their respective references. These variables are subject to no
ripples, confirming Theorem 1 (Part 1) and Remark 2a. The
tracking quality is quite satisfactory as, for both variables, the
response time (after each change in the speed reference or load
torque) is less than 0.2s.

Finally, the resulting control actions (uq,uy,u3) are illustrated
by Figs. 5(h)-(j). It is particularly seen from Fig. 5(h) that uy is (in
average) sinusoidal with frequency 50 x 2x(rd/s), i.e. the same
frequency as the net voltage v,. This confirms Eq. (10) considering
the fact that z; and k both converge (respectively to zero
and some constant). The control signal u; is (just as z; and k)
disturbed by additive ripples. Similar comments can be made
upon u, and us.
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4.2. Controller robustness against system parameter uncertainties

The controller robustness against uncertainties on system
parameters is progressively checked in the present subsection.
In all forthcoming experiments, the rotor speed reference wy.s
and the machine load torque T; are filtered step-like signals
(Fig. 6). Specifically, wyes steps from 0 to 100rad/s, at t=0.2s,
and T; steps, at t=0.5s, from O to its nominal value T;=20 N m.
The involved filters are a second order for w,e and a first order
for T;.

Controller robustness against load torque uncertainty: The
simulation protocol is such that the true load torque T, is time-
varying as shown by Fig. 7(a). But, in the controller, the load
torque is still supposed to vary according to Fig. 6. A difference of
25% is observed, starting from time t=0.5 s between the supposed
torque and its true value. Figs. 7(b)-(f) show that the controller

ideal performances, obtained in the uncertainty-free case
(Section 4.1), are well preserved in presence of load uncertainty.
Controller robustness against viscous friction coefficient: The
simulation protocol is such that the true viscous friction
coefficient F is changing as shown by Fig. 8(a). Accordingly, the
viscous friction coefficient is subject to a variation of 50% with
respect to its nominal value, 0.003819 N m/rd/s, between t=1 and
1.5s. Such variation is entirely ignored in the controller where
the nominal value is used all time. Figs. 8(b)-(f) show that the
controller still performs well, despite the present uncertainty.

5. Conclusion

The problem of controlling associations including an AC/DC
rectifier, a DC/AC inverter and a synchronous motor has been



addressed. The system dynamics have been described by the
averaged fifth order nonlinear state-space model (6a)-(6e). The
load torque and viscous friction are subject to uncertainties
(20a)-(20c). Based on such a model, the multiloops nonlinear
controller defined by the control laws (10), (42) and (47) has been
designed by a robustified version of the backstepping design
technique and analyzed using tools from the Lyapunov stability
and averaging theory. It has been formally established that the
proposed robust controller achieves the objectives it has been
designed to: (i) almost unitary power factor; (ii) well regulated
DC-link voltage (vqc); (iii) satisfactory rotor speed reference
tracking over a wide range of load torque variation; (iv) tight
regulation of the stator d-axis current. To the author’s knowledge,
it is the first time that a so complete formal design and analysis
framework is developed for synchronous motors control design.
These results have been checked by a simulation study.

Appendix A. Proof of Theorem 1

Part 1 is immediately obtained from (33), (38) and (48). To
prove Part 2, consider the Lyapunov function candidate
V=V,4+V5=0.5(z3+25+22). It readily follows that

V =2323 42424 +2525 = —C3Z§ —C42121—C52523—k] [Pq |ZZ§

—ky| 21725 —(01 23+ Pl 24) A (A1)
V can be bounded from above as follows:

V < —c38—cazi—cszi—(k1 | P53~y 11231 | 4] )

—(kalp,1*Z5— 1,124l | 4] ) (A2)
which in turn implies:
’ 14].)°
V < —c3Z3—caz2—cs2—kq <|</)1 llz3|— —°°>

K1
H I\, 1412 1415

—ky <|<P l1z4]— 2k, ) + ak, + K, (A.3)
or, equivalently:
) Al?
V<-cV+ m (A.4)

2K

where |.|  denotes the L,
K =min(ky, kz).

Recalling that V=0.5 Zf=3zi2, it readily follows from (A.4)
that, whatever the initial condition (z3(0),z4(0),z5(0)) and the
parameter uncertainty vector 4, the vector [z3(t)z4(t)zs(t)] con-
verges exponentially to the following compact:

S HAHoc

2.4

norm and c=min(cs,c4,C5) and

(A5)

It is clear that the size of such compact is inversely
proportional to ck. This proves Part 2.

Finally, if 4=0 one gets from (A.4) that V < —cV which implies
that V =0.5Y"7_ z? vanishes exponentially fast. This establishes
Part 3 and completes the proof of Theorem 1.

Appendix B. Proof of Theorem 2

Part 1: Substituting the right sides of (42) and (47) to u, and us
in (13), one gets:

36(Zz,t)
1= =22 (B.1)

where we have used (50f)-(50g). Substituting the right side of
(B.1) to x(x,t) in (19) gives

. 3 3p7"
Z] =A]Z]+O'(Zz,t)|:0 _T ﬁ:|
T bC1T.
+{O —I(cos(Zwet)+ﬁEz1cos(wet)O} +{0 -1 ﬁ} Yref
(B.2)

where notations (50b)-(50f) have been used. Putting together
(B.2) and (49a)-(49c) in a global state space equation one gets
(51) and proves Part 1.

Part 2: As Ve, Wrer and Tp as well as their derivatives are
constant or periodic (with period Nm/w.), it follows that the
system (51) is periodically time-varying. Therefore, the averaging
theory turns out to be a suitable framework to analyze its stability
(see e.g. Khalil, 2003). To this end, introduce the time-scale
change t7=w,t and the following signal changes:

Nt Nt
W(T) = Z(t), Y;Fef(t) =Yref <2_> > w;Fef(t) = Wref <2—e>
This readily implies that Vier and w;, Tef are in turn constant or
periodic, with period 27, and:
Yref(t) =Y;Fef(27/N), wref(t) = w;Fef(ZT/N) (B-3b)

Also, it is easily seen that W(t) = dW(t)/dt = edZ(t)/dt = eZ(t)
with ¢=1/w,. Then, it follows from (51) that the state vector W
undergoes the following state equation:

W = eAW +¢f1(W, T, 8)+ 6801 (Wa, T, )+ el W

(B.3a)

+&PoA+hyrr(21/N) (using B.3b) (B.4a)
with
foW,1,6) =f(W,e1), 09(W>s,1T,6)=0(W>,,&T) (B.4b)
Po(Wa,T,8) = 0(Wr,81), @o(W>,7,8) = B(W,,¢1) (B.40)
It readily follows from (50d) that
fo(W,1,e)=1[0 (aok COS(27)+axwq cos(r)) 0pr (B.4d)

where the following notations are adopted in coherence with
(50a):

Wi
W= | Wi=(wi w2 Wil Wy=[ws ws Ws]' (B5)
2

According to system averaging theory, one gets stability
results regarding the system of interest (B.4a)-(B.4b) by analyzing
the averaged system defined by

W = eAW + & o(W) + 686 0(W2) + 6B, TW +edy4  where W e IR®

(B.6a)

with
fO(W)d_efllm—/ fiW,1,e)dt (B.6b)
T W lim—t [ oW, v.0d B.6
oW llims [ oW e (B.60)

f 2nN

PoW)=2 11 im-—5 oW, 1,6)dt (B.6d)
Bo(W)Ylim 1 ZnNd) W,1,¢e)dt B.6e
o )_s~0m o(W,7,¢) (B.6e)

Note that the last term on the right side of (48a) has not been
accounted for in (B.6a) because its average value is null, due to the



periodicity (with period 27) of Yie: From (B.6¢), one has

foW)=10 0 o1 (B.7)
In view of (B.7) the average system (B.6a) simplifies to

W = cAW +68Go(Wo) + QLW + 60 A (B.8)

where the following notations are used in coherence with (B.5)
and (50a):

W _ _
W:[W1]’ W1:[W1 wo W}T, sz[wg Wy WS}T
2

(B.9)

In view of (50e) and (50h)-(50i) the vectors g, ¢, and @
assume the following partitions:

&1 _ 03 — 033
= =|_ b= | — B.10

g [03], Po [%1], 0 [%] (B-10a)
with

-3 ro_ — |2 = |2 T
&1= {O 5C ‘13} > P = {_’<1|(P1| —ka 1P, | O] ,
_ . T
P =[P1 P2 05 (B.10b)

This together with (50c) implies that (B.8) can be decomposed
in the following two state equations:

Wi = ey Wi +6g10(W) (B.11a)

WZ = 8A2W2 +8¢€1W2 +860] Y| (Bl 1b)

It is readily checked that the right side of the subsystem
(B.11b) is nothing other than the right side of (49a)-(49b)
multiplied by the positive coefficient ¢. Such multiplication
preserves the stability properties of (49a)-(49b). Therefore, it
follows from Theorem 1 (Part 3) that the origin [000]” is an
exponentially stable equilibrium of the system (B.11b) and,
consequently,

[limWZ(t):O, exponentially and whatever the initial value W;(0)
(B.12)

Using again the fact that vicer and wre; as well as their
derivatives, are periodic (with period N7t/w.), it follows from (50g)
and (B.6¢) that G(W>) is a polynomial function of W,. Then,
(B.12) implies that

tlimﬁo(Wz(t))%ﬁo(Og), exponentially and whatever W,(0)
(B.13)

Now, let us check that A; is in turn Hurwitz. Its characteristic
polynomial is

det(A—A;) = 22 +(c1 +b) % + b(c; +C2)A+beicy (B.14)

Applying for instance the well known Routh’s algebraic
criteria, it follows that all zeros of the polynomial (B.14) have
negative real parts if the coefficients c;,c, and b are positive which
actually is the case. Hence, the matrix A, is Hurwitz implying that
the autonomous part of the linear system (B.11a) is globally
exponentially stable. Then, one gets from (B.13) that the solution
of the nonautonomous system (B.11a) satisfies:

tlim W1 (t)=00(03)A7'g1, exponentially and whatever W1 (0).
(B.15)

Notice the exponential feature of the convergence is due to the
linearity of (B.11a). Combining (B.13) and (B.14), it follows that

state vector

Wt [0'0(03)1‘\1_1& ]  IRS

o, (B.15)

is a globally exponentially stable equilibrium of the average system
(B.8). Now, invoking the averaging theory, e.g. Theorem 10.4 in Khalil
(2003), it follows that there exists a positive real constants €* such
that, if 0 <& <¢€* then, the differential equation (B.4a) has a 2m-
periodic solution W(t)=W(t,€), that continuously depends on ¢
and that
lir% W(t,e)=W* (B.16a)
£

The same result applies to the original differential equation
(B.2) using the relation Z(t)=W(t) with t=wet. That is, Z(t)=Z(t,c)
is (27/w.)-periodic, it depends continuously on ¢ and:
lir% Z(t,e) =W* (B.16b)
&>

This establishes Part 2-a of Theorem 2. To prove Part 2-b, let us
obtain more insight on the equilibrium W*. In coherence with
(50a), this is decomposed as follows:

W*:|:Wifj|, WT:{W’{ w3 W*]T, Wif:{w’é wy W;]T

w3
(B.17)
Then, it readily follows from (B.15) that
Wif =01 (O3)A1_1g1 and W; =03 (B.18a)
Also, it is readily checked using (50c) and (B.10) that
T
_ _ 3b—2C(10(13 -3
k -1 _ -7 ==ves 7
W1 - 61(03)A1 &1 = 61(03) |:O zcaoa] 2Ca0:| (Blgb)
Furthermore, it is obviously seen from (50b) that
3b—2C(10(13 _
“2Caa, 0 (B.18¢c)

Consequently, one gets from (B.16b), (B.17), (B.18b) and
(B.18c) that

lir% Z(t,e)=w; =0 (B.19a)
&>
. . 301(03)
l‘i’% kit,e)=w* = — 2Cay (B.19b)
Finally, notice that
1 2nN
?0(03)=£i£r6 m/0 09(03,7,8)dt (using (B.6¢))
1 2nN
=1irré m/ 0(03,et)dt (using (B.4b)) (B.20a)
£ 0

Introducing the variable change t=w,t, (B.20a) becomes

e 27N /we .
27TN/0 O'(Og,t)dt—O'(Og)

This, together with (B.19a)-(B.19b), establishes Part 2-b.

Part 3: It has already been noticed that the stability properties
of (B.11b) are identical to those of (49a)-(49b). Therefore, it
follows using Theorem 1 (Part 2) that the vector W(t) converges
exponentially to a compact neighborhood of the origin [000]7 and
the size of this compact is inversely proportional to ckx and so can
be made arbitrarily small by letting x = min(ky, k;) and ¢ = min
(c3, €4, Cs) be sufficiently large. Then, following closely the proof of
Part 2 (starting immediately after Eq. (B.12)), it can be readily
checked that all equations from (B.13) to (B.20b) still hold with an
error that is inversely proportional to ck. This establishes Part 3
and completes the proof of Theorem 2.

£—
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