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Nested Dichotomies with probability sets for multi-class
classification

YANG Gen1and DESTERCKE Sébastien and MASSON Marie-Hélène

Abstract. Binary decomposition techniques transform a multi-class

problem into several simpler binary problems. In such techniques, a

classical issue is to ensure the consistency between the binary as-

sessments of conditional probabilities. Nested dichotomies, which

consider tree-shaped decomposition, do not suffer from this issue.

Yet, a wrong probability estimate in the tree can strongly biase the

results and provide wrong predictions. To overcome this issue, we

consider in this paper imprecise nested dichotomies, in which binary

probabilities become imprecise. We show in experiments that the ap-

proach has many advantages: it provides cautious inferences when

only little information is available, and allows to make efficient com-

putations with imprecise probabilities even when considering generic

cost functions.

1 Introduction

The usual goal of machine learning algorithms is to learn, from a

set of data, a model that will provide accurate predictions on new

data. Most current techniques focus on achieving a better rate of ac-

curacy while preserving the determinacy of predictions, even if they

are based on few information. However, in some applications of ma-

chine learning (e.g. medical diagnosis, image recognition for intel-

ligent vehicles, risk analysis), the reliability of predictions is as es-

sential as their accuracy. In such cases, providing indeterminate but

more reliable predictions makes sense. For example, in the problem

of obstacle recognition for vehicles, it is preferable to state “I do not

know” rather than predicting “no obstacles” if the available informa-

tion is not sufficient to reliably say that there is an obstacle.

There are two main approaches to make indeterminate predictions

in a classification problem: integrating costs of indeterminacy in the

decision making [8] and considering imprecise probabilities as es-

timates rather than precise probabilities [6]. The former approach,

close in spirit to rejection methods [3], does not really allow to dif-

ferentiate between rejection due to ambiguity (almost uniform prob-

ability estimated from lots of data) and rejection due to lack of in-

formation (probability issued from little and/or imprecise data). It

also tends to mix costs of errors (e.g., of predicting no obstacle when

there is a pedestrian) with costs of being indeterminate (e.g., costs

of partial predictions). On the other hand, the latter approach based

on imprecise probabilistic estimates [21] perfectly makes the differ-

ence between indeterminacy due to ambiguity and lack of informa-

tion (the less data we have, the larger the estimated probability set)

and uses costs only to model error costs. However, integrating costs

of errors in such methods is computationally challenging, which is
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an important drawback, since applications where indeterminacy and

reliability are important will typically include such costs.

In this paper, we propose a classification method relying on im-

precise probabilities and extending the notion of nested dichotomies

[13] (a particular binary decomposition) to such models. This method

has the advantage that it can make indeterminate classification, while

having a computational burden similar to its precise counterpart, even

when non-trivial costs are considered in the decision making.

We first introduce some basic notions of multi-class classifica-

tion and establish some notations in Section 2. We then present the

“nested dichotomies” technique in Section 3, before detailing in Sec-

tion 4 how imprecise probabilities can be integrated in the method to

provide indeterminate (set-valued) predictions. Finally, experiments

provided in Section 5 show that using our approach provide cautious

but informative predictions, in the sense that we add indeterminacy

mainly when determinate predictions are unreliable.

2 Context and definitions

2.1 Notations

We consider the multi-class classification problem, where we want

to learn the conditional probability function px(·) : Y → [0, 1] of

the class y ∈ Y (Y = {ω1, . . . , ωk}) given m input features x ∈
X = X1 × . . . × Xm. p is usually learnt from a set of data D =
(xi, yi)i∈[1;n]. For simplification purpose, we will drop the subscript

x and will denote px(y) by p(y) when there is no risk of confusion.

For each class y ∈ Y , we assume that a cost function cy : Y → R

is defined, where cy(y
′) is the cost of predicting y when y′ is the

true class. The expected cost EY (cy) of predicting/selecting y is then

defined as follow:

EY (cy) =
∑

y′∈Y

p(y′)cy(y
′)

A common cost for y is the unitary cost such that cy(y
′) = 1

if y′ 6= y and 0 otherwise. It is related to the indicator function Iy
(Iy(y

′) = 1 if y = y′, 0 otherwise) through the equality cy = −Iy+
1. By using this, we have EY (Iy) = p(y) = −EY (cy) + 1.

Making prediction can also be seen as establishing a preference

order ≻ over the classes to find the most preferred one. This order is

derived from the expected cost such that y ≻ z (read “y is preferred

to z”) if the expected cost of choosing y is less than the one of z :

y ≻ z ⇔ EY (cy) < EY (cz) (1)

Since EY is linear, y ≻ z is also equivalent to :

y ≻ z ⇔ EY (cz − cy) > 0. (2)



Eq. (2) can be interpreted as follows: y is preferred to z when

exchanging y for z is costly (i.e., has a positive expected cost). We

could note that, if cy, cz are unitary, this is equivalent to compare

the probability values p(y), p(z) (y ≻ z if p(y) > p(z)). The se-

lected class is therefore the maximal element of the ordering ≻, i.e.,

argmaxy∈Y EY (cy). This is this view (constructing an order ≻)

that we will extend when using probability sets.

Example 1 The interest of cost functions is to model the costs of

making a wrong decision (i.e., making a prediction different from

the truth). For example, consider the problem of obstacle recognition

where a vehicle needs to recognize in situation x whether it faces a

pedestrian (p), a bicycle (b) or nothing (n) (i.e. Y = {p, b, n}).

As both pedestrian and bicycle are obstacles to be avoided, a con-

fusion between p and b is not very important. Predicting p or b when

there is nothing becomes more costly (the vehicle makes a manoeu-

vre which is not necessary). Finally, predicting n when there is an

obstacle p or b is a big mistake that could cause an accident. This

kind of information can easily be expressed using non unitary cost

functions. The following table provides an example of 3 cost func-

tions modelling these information, as well as an example of their

difference :

truth
cy(y′) y′ = p y′ = b y′ = n

cp 0 1 2
cb 1 0 2
cn 4 4 0

cp − cn -4 -3 2
cb − cn -3 -4 2
cb − cp 1 -1 0

With these cost functions, we have translated the fact that a con-

fusion between a pedestrian and a bicycle has little effect, whereas a

confusion with the absence of obstacle is penalizing.

2.2 Binary decomposition

Binary decomposition techniques [11] have proved to be good ap-

proaches to solve the multi-class problem (for a review of methods,

see [1]). Such techniques propose to decompose the original (diffi-

cult) multi-class problem into a set of simpler and easier-to-solve bi-

nary problems. Binary decomposition consists in forming ℓ pairs of

events {Ai, Bi} (i ∈ [1, ℓ]) where Ai∩Bi = ∅ and Ai, Bi ⊆ Y and

to estimate whether a class y belong to Ai or Bi for all i = 1, . . . , l
instead of directly estimating the joint p(y) for each y ∈ Y . There-

fore, for each pair we must solve a binary classification problem and

estimate p̂(Ai | {Ai, Bi}) = αi and p̂(Bi | {Ai, Bi}) = 1 − αi,

using what is usually called the base classifier. From these condi-

tional estimates can be derived the following constraints on the joint

probability:











∑

y∈Ai
p̂(y) = αi

∑

y∈Ai∪Bi
p̂(y) (i = 1, . . . , l)

∑

y∈Y p̂(y) = 1
(3)

A frequent problem with such a general set of estimated condi-

tional probabilities is that the constraints (3) are most of the time

inconsistent [15, 23, 10], in the sense that no feasible solution will

exist. How to solve this inconsistency is not an obvious problem

and there is no unique best solution, even when one allows proba-

bilities to become imprecise [10]. A usual strategy is to find a joint

probability by minimizing a given distance [15, 23] to the estimates

p̂(Bi | {Ai, Bi}). One particular type of binary decomposition does

not have this problem and always provide consistent constraints:

nested dichotomies [13], on which we will focus. As the constraints

induced by this decomposition are ensured to be consistent, we drop

theˆsign and will use p in the rest of the paper.

3 Nested dichotomies : how it works

The principle of nested dichotomies is to form a tree structure using

the class values y ∈ Y . A nested dichotomy consists in recursively

partitioning a tree node C ⊆ Y into two subsets A and B, until ev-

ery leaf-nodes correspond to a single class value (card(C) = 1). The

root node is the whole set of classes Y . As shows the next example,

this partitioning makes it straightforward to get the global multi-class

problem probability distribution (in contrast with other decomposi-

tions [15, 23]).

Example 2 Let us consider again the example of obstacle recog-

nition. Figure 1 pictures a nested dichotomy tree together with the

conditional probability constraints.

Y = {p, b, n}

C = {p, b}

{p}

p(p | C) = 0.6

{b}

p(b | C) = 0.4

p({p, b}) = 0.7

{n}

p(n) = 0.3

Figure 1. A probabilistic nested dichotomy

In this example, in order to estimate the original multi-class prob-

lem probability p(y = p), we need to calculate :

p(y = p) = p(y ∈ {p, b} | Y )× p(y = p | y ∈ {p, b})
= 0.7× 0.6 = 0.42.

We can see that to compute the joint probability of a given class,

we just need to multiply the conditional probabilities of the branches

that links this class (leaf node) to the root (Y ). The full joint can then

be obtained by doing that for every class.

3.1 The construction of the dichotomy tree

The main issue when building the tree is that there are many possi-

ble tree structures to choose from. In the cases where we have prior

knowledge about the class structure (such as in ordinal classifica-

tion [17]), the nested dichotomies are very adapted as they can natu-

rally account for this additional information.

When there is no such prior knowledge, there are two ways to deal

with this issue : one is to use an ensemble of dichotomy structures

[14]. We will not consider ensemble method in this work, as our goal

is to study the extension of dichotomy tree to imprecise probabilities.

Ensembling over such models is left for future works.

Another approach when no prior knowledge is available, is to use

statistics or data mining on the training dataset. [19] reviews several



ways to build binary tree using separability measures. The basic idea

of such techniques is to group classes according to their statistical

similarity, in order to build binary problems whose subsets of classes

are well separated. A commonly used approach (retained in this pa-

per) is to build a k× k distance matrix M between every pair ωi, ωj

of classes and then to use hierarchical clustering techniques to obtain

the tree. The next matrix

M p b n

p 0 2 5
b 2 0 6
n 5 6 0

illustrates a distance matrix for our obstacle recognition example,

where n is further away from the other classes, suggesting that p, b
should be kept together.

3.2 Classification with nested dichotomies

Let us now detail how prediction and inferences can be obtained

using conditional probabilities estimated for each partition (using a

base probabilistic classifier). Note that for a given node C partitioned

into A,B, we have p(A | C) = 1− p(B | C) by duality.

The inferences in nested dichotomies are made using the expected

costs defined in Section 2.1. Assume we have a split {A, B} of a

node C, and a real-valued cost function c : {A,B} → R defined on

{A,B}. We can compute the (local) expectation associated with the

node C by :

EC(c) = Ep(|C)(c) = p(A | C)c(A) + p(B | C)c(B). (4)

Now, if we start from a cost function c : Y → R defined on

the classes (i.e. leaf nodes), then using the law of iterated expecta-

tion with nested conditioning sets [4, P. 449], we can apply Eq. (4)

recursively from the leafs to the root Y , in order to get the global

expectation. This is because we can view any expected cost EC as-

sociated with a node C as a cost function c(y) = E(| C = y) on

C.

Example 3 In Example 2, to decide between “pedestrian” and

“nothing” with the tree pictured in Figure 1, we just need to com-

pute the expected cost E{p,b,n}(cn − cp) as recalled in Section 2.1.

Local expectation computations are noted under the nodes of Figure

2. Finally we have :

Y = {p, b, n}

C = {p, b}

p

p(p | C) = 0.6

b

p(b | C) = 0.4

p({p, b}) = 0.7

n

p(n) = 0.3
E{p,b,n}

= 3.6 · 0.7 − 2 · 0.3

4 3

−2
E{p,b}

= 4 · 0.6 + 3 · 0.4

= 3.6

Figure 2. Expectation computation for cn − cp.

As shown in the Figure 2, we have

E{p,b,n}(cn − cp) = 0.7 · 3.6− 0.3 · 2 = 1.92 > 0

Therefore we have p ≻ n, as choosing n instead of p is costly.

4 Imprecise nested dichotomies

Clearly the accuracy of a nested dichotomy will heavily depends on

the tree structure. Indeed, a wrong estimate of one conditional proba-

bility may biase the whole structure, leading to unreliable and poten-

tially wrong inferences. Therefore it seems interesting to replace the

precise estimates by interval-valued ones, the width of which reflects

the lack of information.

Such intervals define an imprecise probabilistic classifier that we

study in this section. We will see that one advantage of this classifier,

in contrast with other imprecise probabilistic classifiers [24], is that

it can handle generic and unitary costs with the same computational

complexity. Moreover, this complexity is of the same order as its pre-

cise counterpart. In the rest of this section, we explain how to make

indeterminate predictions from such imprecise nested dichotomies.

4.1 Generalization to imprecise probability

We now allow every local model to be imprecise, that is to each node

C can be associated an interval [p(A | C); p(A | C)], precise nested

dichotomies being retrieved when p(A | C) = p(A | C) for every

node C. By duality of the imprecise probabilities [21, Sec.2.7.4.], we

have p(A | C) = 1 − p(B | C) and p(A | C) = 1 − p(B | C).
Such an imprecise nested dichotomy can be associated to a set P
of joint probabilities, obtained by considering all precise selection

p(A | C) ∈ [p(A | C); p(A | C)] for each node C. This set can then

be associated with lower and upper expectations [EY (c);EY (c)]
such that

EY (c) = min
p∈P

EY (c) = min
p∈P

∑

y∈Y

p(y)c(y),

EY (c) = max
p∈P

EY (c) = max
p∈P

∑

y∈Y

p(y)c(y).

Given a cost function c, computing E and E can be done as in

the precise case shown in section 3.2. For instance, the lower local

expected cost of a node C becomes :

EC(c) = min

(

p(A | C)c(A) + p(B | C)c(B);

p(A | C)c(A) + p(B | C)c(B)

)

(5)

Similarly to Section 3.2, the law of iterated expectation can be

applied to compute EY and EY [21, Sec. 6.3.5] [7] recursively by

going from the leaves to the root. The upper expected cost EY is

obtained by replacing min by max in (5) since we have the duality

E(c) = −E(−c).
Moreover, as for the precise version, lower/upper probabilities of

a class correspond to p(ω) = E(Iω) and p(ω) = E(Iω).

Example 4 We consider Example 3 in the imprecise probabilities

framework : now all conditional probabilities estimated by the local

base classifiers are interval-valued (see Figure 3). Let us see how the

expected cost EY (cb − cp) is calculated :

Similarly than in the precise case, by using (5) and knowing that :

E{p,b}(cb − cp) = min
(

0.6− 0.4; 0.7− 0.3
)

= 0.2

We have :

E{p,b,n}(cb − cp)

= min
(

0.2 · 0.8 + 0 · 0.2; 0.2 · 0.5 + 0 · 0.5
)

= 0.1 > 0



Y = {p, b, n}

C = {p, b}

p

[0.6; 0.7]

b

[0.3; 0.4]

p(p, b) = [0.5; 0.8]

n

[0.2; 0.5]
E{p,b,n} =

0.1

1 −1

0
E{p,b} =

0.2

Figure 3. Example of nested dichotomies with imprecise probabilities

As the example shows, computing with imprecise nested di-

chotomies is as easy as with precise one: lower and upper estimates

are still multiplicative along a branch. This is in contrast with other

imprecise models, where adding imprecision makes inferences com-

putationally costly.

4.2 Decision making with imprecise nested
dichotomies

Since EY and EY are not linear, Eqs. (1) and (2) used as decision

criteria in the precise case, are no longer equivalent in the imprecise

one.

Actually, there are several ways to extend the classical expected

cost criterion to imprecise probabilities [20]. They can be grouped

in two groups depending on the type of decision : some rules give a

unique output class (e.g. maximin), other may give a set of possible

optimal classes (e.g. interval dominance, maximality). In our work,

we concentrate on the second one, as we are interested in indeter-

minate but reliable predictions. These rules consist in constructing a

partial order ≻ over classes and then to select the maximal ones in

this order.

Definition 1 (Maximality) Under the maximality criterion,

ωi ≻M ωj ⇔ E(cωj
− cωi

) > 0. (6)

This criterion extends Eq. (2). Eq. (6) can be interpreted as fol-

lows: ωi is preferred to ωj if exchanging ωi for ωj has a positive

lower expected cost. The (possibly) imprecise decision YM obtained

from this criterion is

YM =
{

ωi ∈ Y |6 ∃ωj : ωi ≻M ωj

}

.

In Example 4, we have that p ≻M b. Note that obtaining the order ≻
requires to perform k(k− 1) computations (one for each pair). Also,

while maximality has strong theoretical justifications [21, Sec. 3.9.],

other decision criteria such as interval dominance may be preferred

if computational time is an important issue (e.g., when the number of

classes is high).

Definition 2 (Interval dominance) Under interval dominance cri-

terion,

ωi ≻ID ωj ⇔ E(cωi
) < E(cωj

). (7)

The interval dominance criterion extends Eq. (1). The (possibly)

imprecise decision YM obtained from this criterion is

YID =
{

ωi ∈ Y |6 ∃ωj : ωi ≻ID ωj

}

.

Using this rule as our prediction criterion requires to compare lower

expectation bounds of every class cost with the minimal upper bound,

thus requiring only 2k computations.

It is known that y ≻ID z implies y ≻M z, but not the re-

verse [20], hence interval dominance is more conservative than max-

imality. For instance, the tree pictured in Figure 3 is such that

Ep,b,n(cp) = 1.2 and Ep,b,n(cb) = 0.88, so we do not have

p ≻ID b. This is due to the fact that probabilities used within P
to reach upper and lower expectations are most of the time different,

hence interval dominance comparisons are done for different prob-

abilities, while maximality comparisons are not. The latter makes

more sense in our framework, as we assume that there is one true but

ill-known probability. Therefore, we will use the maximality crite-

rion in our experiments.

5 Experiments

In this section, our method is tested on 14 datasets of the UCI ma-

chine learning repository [2], whose details are given in Table 1. As

base classifiers, we use the common naive Bayes classifier (NBC)

and its imprecise counterpart, the naive credal classifier (NCC),

which despite their simplicity provide good accuracies. For details

on the NCC, we refer to [24]. This is sufficient in the present study,

in which our goal is to compare the imprecise nested dichotomies to

their precise and multi-class counterparts.

Name (C)ont/(D)isc features # instances # classes

balance-scale D 625 3

car D 1728 4

lymph D 148 4

LEV D 1000 5

nursery D 12960 5

zoo D 101 7

soybean D 562 15

iris C 150 3

wine C 178 3

grub-damage C 155 4

page-blocks C 5473 5

glass C 214 6

ecoli C 336 8

pendigits C 10992 10

Table 1. data set details

5.1 Experimental set-ups

5.1.1 Discretization

As NBC and NCCs cannot handle continuous variables natively, con-

tinuous features in data sets (data sets with C in second column of Ta-

ble 1) were discretized. We chose to discretize all continuous features

by dividing their domain in 8 intervals of equal width. We did not use

a supervised discretization method such as Fayyad and Irani [12], as

the classes changes between the initial multi-class problem and each

binary sub-problem.

5.1.2 Class distance

To apply Section 3.1 approach, we need to define a distance to es-

tablish the distance matrix used in the hierarchical clustering. Let us



denote by pωi
(Xj = x) = occ

j
i
(x)/occi the empirical probability that

feature Xj takes value x given that the class is ωi, with occji (x) the

number of samples (x, y) of data set D for which x
j = x when

y = ωi, and occi the number of samples for which y = ωi. Once

these probabilities have been estimated (note that we have to estimate

them to build the naive classifiers anyway), we define distance Mi,i′

between classes ωi and ω′
i as

∀ωi, ω
′
i ∈ Y,Mi,i′ =

∑

j∈[1;m]

H(pωi
(Xj), pω′

i
(Xj)),

where H is the Hellinger distance. H is defined for two probability

distributions P and Q as H(P,Q) =
√

1−BC(P,Q), where BC
is the Bhattacharyya coefficient :

BC(P,Q) =
∑

x∈X

√

P (x)Q(x).

There are other distances between probability distributions we could

use [5], yet our goal is not to make a comparative study of those

distances, and we will see that the Hellinger distance provides good

results.

Once the distance is defined, we use different hierarchical cluster-

ing linkage criteria (maximum, minimum, average [16, Sec. 14.3],

Ward [22]) to build the tree, and select the one yielding the best pre-

dictive accuracy on the learning dataset.

5.2 Tests and results

This section summarizes the results of the test. Each result is ob-

tained by a 10-fold cross validation on the (possibly discretized) data

set. As we can make indeterminate predictions, we will use perfor-

mance measures adapted to the comparison of indeterminate and de-

terminate classifiers. We will also concentrate on unitary costs, as

such measures are only valid for unitary costs and as the used bench-

mark data sets do not come with pre-defined costs.

5.2.1 Performance comparison

In order to fairly compare precise methods and imprecise ones, we

need to evaluate both the precision and the accuracy at the same time.

The idea is to penalize the imprecise prediction according to its im-

precision level. Hence, we use a utility-discounted accuracy (u65)

introduced by [25]. Let xi, yi(i = [1;n]) be the set of test data and

Yi our (possibly imprecise) predictions, then u65 is

u65 =
1

n

n
∑

i=1

−1.2d2i + 2.2di,

where di = 1Yi
(yi)/|Yi| is the discounted accuracy (1Yi

(yi) is

the indicator functions that has value 1 if yi ∈ Yi and 0 otherwise).

Compared to the discounted accuracy, u65 accounts for the fact that

making the cautious statements that we are in Yi (without saying

more) is preferable to give as precise prediction a purely random

guess within Yi (see [25] for details). Also, u65 is less in favour of

indeterminate classifiers than the F1 measure proposed by Del Coz et

al. [8], meaning that we remain quite fair to the determinate classifier.

In the experiments whose results are given in Table 2, we used

three methods: nested dichotomies with the naive Bayes classi-

fier (ND+NBC), nested dichotomies with the naive credal classifier

(ND+NCC) and the naive credal classifier (NCC). This allows us to

compare the precise and imprecise dichotomy, as well as the impre-

cise dichotomy with its multi-class counterpart.

u65 (rank)

Data ND + NBC NCC ND + NCC

balance-scale 91.68% (1) 90.72% (3) 90.98% (2)

car 84.09% (3) 88.11% (1) 86.72% (2)

lymph 80.41% (1) 59.02% (3) 67.58% (2)

LEV 58.20% (3) 61.50% (1) 60.69% (2)

nursery 90.58% (3) 91.02% (1) 90.99% (2)

zoo 96.04% (1) 77.96% (3) 84.85% (2)

soybean 81.85% (2) 84.12% (1) 80.68% (3)

iris 94.67% (3) 95.47% (2) 95.60% (1)

wine 96.63% (1) 94.72% (3) 95.06% (2)

grub-damage 49.68% (3) 52.90% (2) 53.81% (1)

page-blocks 91.36% (3) 92.01% (1) 91.69% (2)

glass 60.75% (2) 60.51% (3) 65.43% (1)

ecoli 76.49% (1) 58.11% (3) 74.83% (2)

pendigits 70.25% (3) 87.3% (1) 71.61% (2)

average rank 2.14 2 1.86

Table 2. Comparison of discounted accuracy (u65) for the methods
ND+NBC, NCC and ND+NCC.

First, we can notice that our imprecise classifier yields the best

average rank over the 14 data sets. However, using Demsar’s ap-

proach [9] by applying the Friedman test on the ranks of algorithm

performances for each dataset, we find a value of 0.57 for the chi-

squared test with 2 degree of freedom, so the p-value is 0.75 and

we cannot reject the null hypothesis, meaning that all methods have

comparable performances in terms of accuracy. Yet, our approach

has several advantages that we now detail.

5.2.2 Gain of accuracy on indeterminate predictions

The main goal of indeterminate classifiers is to make indeterminate

predictions including the true class on cases (and ideally only on

those) where the determinate classifier fails. To show that this is in-

deed the case here, Figure 4 displays, on the instances where the

ND+NCC made indeterminate predictions, the percentage of times

the true class is within the prediction, both for the ND+NBC and

ND+NCC.
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Figure 4. Accuracy of the methods “ND+NBC” and “ND+NCC” when a
imprecise prediction is made by “ND+NCC”.



We observe an important gain in accuracy on indeterminate pre-

dictions for all data sets, except on balance-scale for which the gain

is lower. While an imprecise classifier will always be more accurate

than its precise counterpart, we can notice that on those instances

where the imprecise classifier is indeterminate, the accuracy of its

precise counterpart is usually much lower than the average obtained

for the whole data set displayed in Table 2 (e.g., page-blocks drops

from 90% to 50%). This clearly shows that using imprecise estimates

in the nested dichotomies is sensible, as indeterminate predictions are

made on instances that are hard to classify for the precise method.

5.2.3 Comparison of indeterminacy with NCC

Figure 5 displays, for the ND+NCC and NCC, the percentage of

indeterminate predictions. We can see that for all data sets, the

ND+NCC method is more determinate than NCC, while keeping

comparable performances (see Tab. 2). While the gain remains

marginal in many data set, it can nevertheless be significant for some

data sets (ecoli, glass, lymph, grub-damage, soybean, zoo).
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Figure 5. Percentage of set-valued predictions made by NCC and
ND+NCC.

6 Conclusions

In this paper, we have introduced the notion of imprecise nested di-

chotomies and how to perform efficient inferences from them. Our

experiments show that nested dichotomies have a very interesting

behaviour: they allow to be cautious on hard to predict instances

for precise classifiers, while being more determinate than imprecise

multi-class approaches. More importantly, they remain efficient even

when integrating error costs in the inferences, while other imprecise

probabilistic classifiers tipycally necessitate more complex computa-

tions to do that.

In future works, we intend to explore other approaches to build the

dichotomy tree, as well as the application of ensemble approaches

in the imprecise context. We would also like to explore to which

measure the efficiency of imprecise nested dichotomies can be im-

proved, e.g., by suing results on label trees [18]. Finally, we intend to

apply nested dichotomies on structured classes (e.g., ordinal regres-

sion [17]).
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[9] J. Demšar, ‘Statistical comparisons of classifiers over multiple data
sets’, The Journal of Machine Learning Research, 7, 1–30, (2006).

[10] S. Destercke and B. Quost, ‘Combining binary classifiers with impre-
cise probabilities’, in Proceedings of the 2011 international conference

on Integrated uncertainty in knowledge modelling and decision making,
IUKM’11, pp. 219–230, Berlin, Heidelberg, (2011). Springer-Verlag.

[11] T.G. Dietterich and G. Bakiri, ‘Solving multiclass learning problems
via error-correcting output codes’, Journal of Artificial Intelligence Re-

search, 2, 263–286, (1995).
[12] U.M. Fayyad and K.B. Irani, ‘Multi-interval discretization of

continuous-valued attributes for classification learning’, in IJCAI, pp.
1022–1029, (1993).

[13] J. Fox, Applied Regression Analysis, Linear Models, and Related Meth-

ods, Sage.
[14] E. Frank and S. Kramer, ‘Ensembles of nested dichotomies for multi-

class problems’, ICML 2004, 39, (2004).
[15] T. Hastie and R. Tibshirani, ‘Classification by pairwise coupling’, The

Annals of Statistics, 26, 451–471, (1998).
[16] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical

learning, volume 2, Springer, 2009.
[17] J.C. Huhn and E. Hullermeier, ‘Is an ordinal class structure useful in

classifier learning?’, International Journal of Data Mining, Modelling

and Management, 1(1), 45–67, (2008).
[18] Baoyuan Liu, Fereshteh Sadeghi, Marshall Tappen, Ohad Shamir, and

Ce Liu, ‘Probabilistic label trees for efficient large scale image classi-
fication’, in Computer Vision and Pattern Recognition (CVPR), 2013

IEEE Conference on, pp. 843–850. IEEE, (2013).
[19] A. C. Lorena and A. De Carvalho, ‘Building binary-tree-based multi-

class classifiers using separability measures’, Neurocomputing, 73(16-
18), 2837–2845, (October 2010).

[20] M. Troffaes, ‘Decision making under uncertainty using imprecise prob-
abilities’, International Journal of Approximate Reasoning, 45(1), 17–
29, (May 2007).

[21] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman
and Hall.

[22] J.H. Ward Jr, ‘Hierarchical grouping to optimize an objective func-
tion’, Journal of the American statistical association, 58(301), 236–
244, (1963).

[23] T.F. Wu, C.J. Lin, and R.C. Weng, ‘Probability estimates for multi-class
classification by pairwise coupling’, Journal of Machine Learning Re-

search, 5, 975–1005, (2004).
[24] M. Zaffalon, ‘The naive credal classifier’, Journal of statistical plan-

ning and inference, 105(1), 5–21, (2002).
[25] M. Zaffalon, G. Corani, and D. Mau, ‘Evaluating credal classifiers by

utility-discounted predictive accuracy’, International Journal of Ap-

proximate Reasoning, 53(8), 1282 – 1301, (2012).


