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∗ Centre Automatique et systèmes, MINES ParisTech, 60 bd St-Michel,
75272 Paris Cedex 06, France (e-mail:
florent.di meglio@mines-paristech.fr).

∗∗Dept. of Mechanical Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Ave, Cambridge MA 02139 USA

(e-mail: dbp@mit.edu).
∗∗∗Department of Engineering Cybernetics, Norwegian University of

Science and Technology, Trondheim, Norway (e-mail:
ulf.jakob.aarsnes@itk.ntnu.no)

Abstract: We present an adaptive observer design for a first-order hyperbolic system of Partial
Differential Equations with uncertain boundary parameters. The design relies on boundary
measurements only, and is based on a backstepping approach. Using a Gradient Descent
technique, we prove exponential convergence of the distributed system and estimation of the
parameter. This method is applied to the estimation of uncertain parameters during the process
of oil well drilling.

1. INTRODUCTION

In this article, we propose a method to estimate bound-
ary parameters for a linear first-order hyperbolic system
of Partial Differential Equations (PDEs) using boundary
measurements. The system is composed of n transport
equations traveling in the same direction and one coun-
terconvective transport equation. As highlighted below,
it is representative of a wide class of multi-flow systems.

One of the most important drawbacks (see Bohm et al.
[1998]) of most of the existing adaptive schemes for PDEs
(see e.g. Bentsman and Orlov [2001], Duncan et al. [1992])
is that they require measurement of the full distributed
state, which is seldom the case in applications. Over
the past decade there has been a steady increase of
interest in adaptive boundary control. Recently, output-
feedback adaptive designs for parabolic PDEs have been
developed in Krstic and Smyshlyaev [2008], Smyshlyaev
and Krstic [2007a,b], Bekiaris-Liberis et al. [2013], Bresch-
Pietri et al. [2012]. Similarly, in this paper, we extend
the backstepping observer of Di Meglio et al. [2013a].
This output-feedback design is particularly relevant to the
problem of UnderBalanced Drilling.

The drilling of an oil well consists of creating a borehole up
to several thousand meters deep into the ground, until an
oil reservoir is reached. The demand for automation of this
process is increasing with the necessity to reach deeper and
less accessible wells, and to improve safety and efficiency of
the operations. One of the main challenges during drilling
lies in the poor knowledge of the “downhole” conditions:
pressure and temperature conditions, permeability and

1 This work was supported by the Norwegian Research Council.

porosity of the reservoir, gas and oil ratios,... In this paper,
we propose a method to estimate unknown parameters
while drilling an UnderBalanced well.

While a well is being drilled, a fluid circulates through
the drilling system. The drilling fluid cools down the
drillbit, and evacuates rock cuttings. More importantly, it
pressurizes the well. In conventional drilling, the pressure
can only be changed by varying its density and viscosity,
or the rate at which it circulates. Conversely, in Managed
Pressure Drilling (MPD), the outflow of drilling fluid is
controlled by a valve, which enables tighter control of the
pressure. UnderBalanced Drilling (UBD) is a sub-category
of MPD, where the goal is to maintain the downhole
pressure below the reservoir pressure. This causes an influx
of oil and gas into the well that needs to be closely
controlled.

The benefits of UBD are manyfold, as described in Ben-
nion and Thomas [1998]. Most importantly, it reduces
formation damage by preventing fracture or clogging of
the reservoir. Besides, compared with MPD, it allows for
better control of the gas influxes, which, when unexpected,
may be extremely damaging 2 . Finally, future production
of a well may be inferred from the production during
UBD. This makes estimation of the reservoir characteris-
tics all the more important. Unfortunately, the dynamics
of the flow during UBD are quite complicated, Rommetveit
and Lage [2001],Petersen et al. [2008]. Up to four phases
(drilling fluid, rock cuttings and produced liquid and gas)
are convected along a several thousand meter-long well,
yielding an inherently distributed configuration.

2 The Macondo blowout was caused by an undetected gas influx,
referred to as a gas kick.



Here, we consider a nonlinear model of the two-phase (gas-
liquid) flow in the well during drilling. When linearized,
the model takes the form of a first-order hyperbolic sys-
tem. The uncertainty on the downhole conditions yields
uncertain boundary parameters in the linearized model.
To address this difficulty, we extend the backstepping
transformation introduced in Di Meglio et al. [2013a] by
considering an adaptation law based on the Gradient De-
scent technique. We prove exponential convergence of both
the parameter estimate and the distributed state, in L2-
norm. Both the controller and the parameter estimators
that we design employ only boundary measurements. This
is the main achievement of this paper. The relevance of
this design is illustrated by simulations on the nonlinear
model with parameters from a realistic UBD scenario.

The paper is organized as follows. In Section 2, we describe
the adaptive observer design and prove convergence of
the proposed scheme. In Section 3, the process of UBD
and the two-phase flow model are described. In Section 4,
we apply the presented design to the specific problem of
reservoir pressure estimation in UBD.

Notations In the sequel, we write ‖f(t)‖δ, for δ ∈ R and
f : [0, 1] × R 7→ Rm (m ∈ N∗), the following modified
L2-norm

‖f(t)‖δ =

√∫ 1

0

eδxf(x, t)T f(x, t)dx

and write ‖f(t)‖ = ‖f(t)‖0 the usual L2-norm.

2. ADAPTIVE OBSERVER DESIGN

In this section, we derive an adaptive observer design for
a somewhat general class of first-order linear hyperbolic
systems. More precisely, we consider systems of (n + 1)
equations of the form

uit(x, t) + λiu
i
x(x, t) =

n∑
j=1

σi,ju
j(x, t) + ωiv, i = 1, ..., n

(1)

vt(x, t)− µvx(x, t) =

n∑
j=1

πju
j(x, t) (2)

that is to say, we consider systems of n transport equa-
tions convecting left to right, coupled with one transport
equation convecting right to left.

Remark 1: For the sake of simplicity in the sequel, we
have considered constant transport velocities λi, µ and
coupling coefficients σi,j , ωi, πi. The results presented here
straightforwardly extend to the case of spatially varying
parameters.

Besides, we consider boundary conditions of the form

ui(0, t) = qiv(0, t) + θi, v(1, t) =

n∑
i=1

ρiu
i(1, t) + U(t)

(3)

where U(t) is the control input and the θi ∈ [θi, θ̄i],
i = 1, ..., n are uncertain parameters. The system output
is y(t) = [u1(1, t) . . . un(1, t) v(0, t)]T ∈ Rn+1. We aim at
estimating each of the uncertain parameter θ relying on
boundary measurements only, i.e. v(0, t) and ui(1, t) for
i = 1, ..., n.

2.1 Adaptive observer equations

We introduce a parameter estimate θ̂(t) and, follow-
ing Di Meglio et al. [2013a], define distributed estimates ûi

and v̂ by the following observer equations

ûit + λiû
i
x =

n∑
j=1

σi,j û
j + ωiv̂ − pi(x)ṽ(0, t)

v̂t − µv̂x =

n∑
j=1

πj û
j − pn+1(x)ṽ(0, t)

ûi(0, t) = qiv̂(0, t) + θ̂i, v̂(1, t) =

n∑
i=1

ρiû
i(1, t) + U(t)

(4)

where we have omitted the (x, t) arguments for the sake of
brevity. The observer gains pi, i = 1, ..., n + 1 are chosen
accordingly to the design presented in Di Meglio et al.
[2013a]. According to this design, provided that the θ
parameters were known, this would ensure that the errors
ũi, v exponentially converge to zero. We can now state the
main result of the paper.

Theorem 1. Define the distributed errors θ̃ = θ − θ̂,
ũi = ui − ûi and ṽ = v− v̂ and introduce (ū(·, θ̃), v̄(·, θ̃)) a
solution of the following ODE

λiū
i
x =

n∑
j=1

σi,j ū
j + ωiv̄ − pi(x)v̄(0, t)

−µv̄x =

n∑
j=1

πj ū
j − pn+1(x)v̄(0, t)

ūi(0, t) = qiv̄(0, t) + θ̃i, v̄(1, t) =

n∑
i=1

ρiū
i(1, t)

(5)

Consider the observer (4) with the following adaptation
law

θ̇(t) = −γΦ(1)T ũ(1, t) (6)

where γ > 0 is an adaptation gain and the transition
matrix Φ(·) is such that ū(x, θ̃) = Φ(x)θ̃. Finally, define
the functional

Γ(t) = ‖ũ(t)‖2 + ‖ṽ(t)‖2 + ‖ū(t)‖2 + ‖v̄(t)‖2 + |θ̃|2 (7)

There exists γ∗ such that, provided 0 < γ < γ∗, then there
exist R, τ > 0 such that

Γ(t) ≤ RΓ(0)e−t/τ , t ≥ 0 (8)

According to this result, exponential estimation of the
unknown parameter θ is provided based on a Gradient
Descent algorithm exploiting the boundary measurement
of u(1, t) and comparing it to the estimated value û(1, t).
As detailed in the proof, this algorithm uses a known
transition matrix Φ which relates the state trajectory
ū(·, θ̃) to the estimation error θ̃. On the other hand, the
observer design is grounded on the measurement of the
bottom variable v(0, t).

Note that it is possible to obtain pointwise exponential
convergence of the considered distributed quantities. For
the sake of clarity of the exposition, we do not provide this
result here. This is a direction for future work.



2.2 Proof of Theorem 1

To prove convergence of the scheme, we first introduce a
tailored backstepping transformation. The stability of the
corresponding target system is then proved via a Lypunov
analysis which gives rise to Theorem 1.

Backstepping transformation and target system We rely
on the following backstepping transformation

T :
(
L2([0, 1],R)

)n+1 →
(
L2([0, 1],R)

)n+1
(9)

(ũi, ṽ) 7→ (α̃i, β̃) (10)

with

α̃i(x, t) =ũi(x, t) +

∫ x

0

ri(x, y)ṽ(y, t)dy (11)

β̃(x, t) =ṽ(x, t) +

∫ x

0

rn+1(x, y)ṽ(y, t)dy (12)

where the kernels ri(·, ·), i = 1, ..., n + 1 are given
in Di Meglio et al. [2013a] and are such that (αi, β) satisfy
the following system

α̃it + λiα̃
i
x =

n∑
j=1

σi,jα̃
j +

n∑
j=1

∫ x

0

gi,j(x, y)α̃j(y, t)dy

β̃t − µβ̃x =

n∑
j=1

πjα̃
j +

n∑
j=1

∫ x

0

hj(x, y)α̃j(y, t)dy

α̃i(0, t) =θ̃i , β̃(1, t) =

n∑
j=1

ρjα̃
j(1, t)

(13)

The existence of such a transformation has been demon-
strated in Di Meglio et al. [2013b]. Similarly, we define(
ᾱi, β̄

)
= T (ūi, v̄) which satisfy

λiᾱ
i
x(x, θ̃) =

n∑
j=1

σi,jᾱ
j(x, θ̃) +

n∑
j=1

∫ x

0

gi,j(x, y)ᾱj(y, θ̃)dy

−µβ̄x(x, θ̃) =

n∑
j=1

πjᾱ
j(x, θ̃),+

n∑
j=1

∫ x

0

hj(x, y)ᾱj(y, θ̃)dy

ᾱi(0, θ̃) =θ̃i , β̄(1, θ̃) =

n∑
j=1

ρjᾱ
j(1, θ̃)

(14)

Lemma 2. There exists a transition matrix Φ(·) such that

ū(x, θ̃) = Φ(x)θ̃, which only depends on the constants
involved in the dynamics (1)–(2). Further, this matrix has
no zero eigenvalues.

Proof: In the sequel, we omit the argument θ̃ for
the sake of clarity. Consider the equations governing ᾱi

(for i = 1, . . . , n) in (14). One can rewrite these equa-
tions as one integro-differential equation bearing on ᾱ. As
it is linear, one obtains straightforwardly the existence
of Ψ1 such that ᾱ(x) = Ψ1(x)ᾱ(0) = Ψ1(x)θ̃. Con-
sequently, considering the equation governing β̄ in (14)
and integrating, one obtains the existence of Ψ2 such
that β̄(x) = Ψ2(x)ᾱ(0) = Ψ2(x)θ̃. Finally, we have that

(ūi(x), v̄(x)) = T−1(ᾱi(x), β̄(x)) = T−1(Ψ1(x)θ̃,Ψ2(x)θ̃).

Consequently, there exists Ψ3 such that v̄(x) = Ψ3(x)θ̃.
Now, consider the equation governing ū in (5), which is a
linear ODE with a space-varying source term multiplying

v̄(0). Therefore, as v̄(x) = Ψ3(x)θ̃, there exists Φ such

that ū(x) = Φ(x)θ̃. One can observe that this transition
matrix only depends on the constants involved in (1)–(2)
because the various transition matrix introduced above
only depends on the constants and kernels in (14). As these
kernels only depend on the backstepping transformation
which are defined according to the constants in (1)–(2),
following Di Meglio et al. [2013b], the result follows. Fi-
nally, the fact that none of the eigenvalues of this matrix is
equal to zero straightforwardly follows from an extension
of Cauchy-Lipschitz theorem to linear integro-differential
equations.

Finally, we define α̌i = α̃i − ᾱi, β̌ = β̃ − β̄ and a

time-varying estimate θ̂(t) such that the complete system
rewrites

α̃it + λiα̃
i
x =

n∑
j=1

σi,jα̃
j +

n∑
j=1

∫ x

0

gi,j(x, y)α̃j(y, t)dy

β̃t − µβ̃x =

n∑
j=1

πjα̃
j +

n∑
j=1

∫ x

0

hj(x, y)α̃j(y, t)dy

α̌it + λiα̌
i
x =

n∑
j=1

σi,jα̌
j +

n∑
j=1

∫ x

0

gi,j(x, y)α̌j(y, t)dy

+ ᾱi
θ̃
(x, θ̃(t))

˙̂
θ(t)

β̌t − µβ̌x =

n∑
j=1

πjα̌
j +

n∑
j=1

∫ x

0

hj(x, y)α̌j(y, t)dy

+
˙̂
θ(t)T β̄θ̃(x, θ̃(t))

α̃i(0, t) =θ̃i , β̃(1, t) =

n∑
j=1

ρjα̃
j(1, t)

α̌i(0, t) =0 , β̌(1, t) =

n∑
j=1

ρjα̌
j(1, t)

Lyapunov analysis We now consider the following Lya-
punov functional candidate

V (t) =

∫ 1

0

e−δx
[
p1|α̃(x, t)|2 + p2|α̌(x, t)|2

]
dx

+

∫ 1

0

eδx
[
β̃(x, t)2 + p3β̌(x, t)2

]
dx+

p4
γ
|θ̃(t)|2

(15)

Taking a time-derivative and using suitable integrations
by parts, the boundary conditions and the update law, one
gets

V̇ (t) = p1

[
|λT α̃(0, t)|2 − e−δ|λT α̃(1, t)|2 − δ

∥∥λT α̃(t)
∥∥2
−δ

]
+ µ

[
eδβ̃(1, t)2 − β̃(0, t)2 − δ

∥∥∥β̃(t)
∥∥∥2
δ

]
+ p2

[
|λT α̌(0, t)|2 − e−δ|λT α̌(1, t)|2 − δ

∥∥λT α̌(t)
∥∥2
−δ

]
+ µp3

[
eδβ̌(1, t)2 − β̌(0, t)2 − δ

∥∥β̌(t)
∥∥2
δ

]
+

∫ 1

0

e−δx
[
p1α̃(x, t)TΛ1(α̃) + p2α̌(x, t)TΛ1(α̌)

]
dx



+

∫ 1

0

eδx
[
β̃(x, t)Λ2(α̃) + p3β̌(x, t)Λ2(α̌)

]
dx

+ p2

∫ 1

0

e−δxα̌(x, t)T ᾱθ̃(x, θ̃(t))
˙̂
θ(t)dx

+ p3

∫ 1

0

eδxβ̌(x, t)
˙̂
θ(t)T β̄θ̃(x, θ̃(t))dx

−p4θ̃TΦ(1)T
[
ū(1, t) + α̌(1, t) +

∫ 1

0

m(1, x)β̌(x, t)dx

]
(16)

with

Λ1(α̃) =


n∑
j=1

[
σ1,jα̃

j(x, t) +

∫ x

0

g1,j(x, y)α̃j(y, t)dy

]
...


(17)

Λ2(α̃) =

n∑
j=1

[
πjα̃

j(x, t) +

∫ x

0

hj(x, y)α̃j(y, t)dy

]
(18)

Using Young’s and Cauchy-Schwartz’s inequality , the fact

that (θ̂, θ) ∈ [θ, θ]2 and the continuity of the variables at

stake, one obtains the existence of constants M and M̃
independent of δ and γ such that∣∣∣∣2∫ 1

0

e−δxα̃(x, t)TΛ1(α̃)dx

∣∣∣∣ ≤M ‖α̃(t)‖−δ∣∣∣∣2∫ 1

0

eδxβ̃(x, t)Λ2(α̃)dx

∣∣∣∣ ≤M(e2δ ‖α̃(t)‖−δ +
∥∥∥β̃(t)

∥∥∥2
δ
)∣∣∣∣2∫ 1

0

e−δxα̌(x, t)TΛ1(α̌)dx

∣∣∣∣ ≤M ‖α̌(t)‖−δ∣∣∣∣2∫ 1

0

eδxβ̌(x, t)Λ2(α̌)dx

∣∣∣∣ ≤M(e2δ ‖α̌(t)‖−δ +
∥∥β̌(t)

∥∥2
δ
)∣∣∣∣2∫ 1

0

e−δxα̌(x, t)T ᾱθ̃(x, θ̃(t))
˙̂
θ(t)dx

∣∣∣∣
≤M(‖α̌(t)‖2−δ + γ2α̃(1, t)2 + γ2

∥∥∥β̃(t)
∥∥∥2
δ
)∣∣∣∣2∫ 1

0

eδxβ̌(x, t)
˙̂
θ(t)T β̄θ̃(x, θ̃(t))dx

∣∣∣∣
≤M(

∥∥β̌(t)
∥∥2
δ

+ γ2α̃(1, t)2 + γ2
∥∥∥β̃(t)

∥∥∥2
δ
)

2θ̃TΦ(1)T
[
α̌(1, t) +

∫ 1

0

m(1, x)β̌(x, t)dx

]
≤ λm(Φ(1)TΦ(1))|θ̃(t)|2 + M̃(|α̌(1, t)|2 +

∥∥β̌(t)
∥∥2
δ
)

This yields the following upper bound

V̇ (t) ≤ −
(
p2e
−δ minλi − p3µeδn|ρ|2 − p4M̃

)
|α̌ (1, t) |2

−
(
p1e
−δ minλi − µeδn|ρ|2 − (p2 + p3) γ2M

)
|α̃ (1, t) |2

−
(
p1 (δminλi −M)− e2δM

)
‖α̃ (t)‖2−δ

−
(
p2 (δminλi − 2M)− p3e2δM

)
‖α̌‖2−δ

−
(
(µδ −M)− p2γ2M

) ∥∥∥β̃ (t)
∥∥∥2
δ

−
(
p3 (δµ− 2M)− p4M̃

)∥∥β̌ (t)
∥∥2
−δ

−
(
p4λm

(
Φ(1)TΦ(1)

)
− p1|λ|

)
|θ̃ (t) |2

in which λm(Φ(1)TΦ(1)) > 0 as Φ(1)TΦ(1) is symmetric
positive and also definite following Lemma 2. Therefore,
choosing

δ >max

{
2M

µ
,

2M

minλi

}
(19)

p1 >max

{
µe2δn|ρ|2

minλi
,

e2δM

δminλi −M

}
(20)

p4 >
p1|λ|

λm(Φ(1)TΦ(1))
(21)

p3 >
p4M̃

δµ− 2M
(22)

p2 >max

{
eδ(p3µe

δn|ρ|2 + p4M̃))

minλi
,

p3e
2δM

δminλi − 2M

}
(23)

γ2 <
p1e
−δ minλi − µeδn|ρ|2

(p2 + p3)M
= (γ?)2 (24)

one obtains the existence of η0 > 0 such that

V̇ (t) ≤ −η0V (t) (25)

Now, using the backstepping transformations (11)–(12)
and their inverse, which are given in Di Meglio et al.
[2013a], and applying Young’s and Cauchy-Schwartz’s
inequalities, one obtains the existence of positive constants
r1, r2, r3, s1, s2 and s3 such that

‖α̃(t)‖2−δ ≤r1 ‖ũ(t)‖2 + r2 ‖ṽ(t)‖2 ,
∥∥∥β̃(t)

∥∥∥2
δ
≤ r3 ‖ṽ(t)‖2

‖ũ(t)‖2 ≤s1 ‖α̃(t)‖2−δ + s2

∥∥∥β̃(t)
∥∥∥2
δ
, ‖ṽ(t)‖2 ≤ s3

∥∥∥β̃(t)
∥∥∥2
δ

and such that similar equations hold for (ᾱ, β̄, ū, v̄) instead

of (α̃, β̃, ũ, ṽ). Consequently, considering (7) and (15), one
obtains the existence of positive constants ρ1 and ρ2 such
that

ρ1Γ(t) ≤ V (t) ≤ ρ2Γ(t)

Therefore, integrating (25), one gets

Γ(t) ≤ V (t)

ρ1
≤ V (0)

ρ1
e−η0t ≤ ρ2

ρ1
Γ(0)e−η0t

and the result follows defining R = ρ2/ρ1 and τ = 1/η0.

We aim at applying the method proposed in Theorem 1 to
reservoir pressure estimation during UBD. Before doing
so, we describe in the next section the process and its
modelling.

3. UBD: MODELLING AND PROCESS
DESCRIPTION

Consider the drilling system schematically depicted in
Fig. 1. It consists of a circulation system: The drilling fluid
is pumped into the top of the drill string, and circulated
out at the bottom at the drilling bit. The drilling fluid
flows up trough the annular section surrounding the drill
string transporting the formation particles, referred as
cutting and cavings, out of the well. The cuttings and any
produced fluids are then separated from the drilling fluid
before it is injected into the drill string again.

In Under-Balanced Drilling operations the downhole pres-
sure is deliberately kept below the reservoir pore pres-



Fig. 1. Drilling process schematic for UBD.

sure 3 , causing continuous inflow of produced fluid from
the reservoir. The reservoir inflow is related to the down-
hole pressure by the Production Index (PI) and pore
pressure. It is highly desirable to do real-time estimation
of the Production Index and pore pressure of the reservoir
for several reasons:

• the lower limit on the allowable downhole pressure is
sometimes given by a constraint on the rate of pro-
duced gas. Hence better estimates of these coefficients
enable a less conservative lower limit or reduce the
risk of breaking this constraint;
• the upper limit on the allowable downhole pressure is

given by the reservoir pressure;
• ultimately, the goal of drilling a production well

is to enable production. Hence good estimates of
these parameters give the necessary information w.r.t.
deciding whether to keep drilling or declaring total
depth;
• the PI significantly affects the dynamics of the sys-

tem.

3.1 Modelling

In the literature, the most used model of multiphase flow
in drilling is the Drift Flux Model (DFM). To keep the

3 I.e. the pressure in the fluids in the reservoir surrounding the
borehole.

Description Symbol

Area of flow A

Velocity of sound, liquid a2L
Slip parameter C0

Choke constant Cv

Hydraulic diameter D

Gravity constant g

Friction factor f

Gas inflow parameter kG
Liquid inflow parameter kL

Reservoir pressure Pres

Separator pressure Ps

Reference liquid pressure p0
Specific gas constant RG

Temperature T (s)

Slip parameter v∞
Choke correction factor Y

Mass fraction, liquid, gas xL,G

Gas compression factor ZG

Liquid density ρL
Reference liquid density ρL,0

Inclination φ(s)

Table 1. List of parameters

complexity of the model manageable, the fluids in the well
are typically lumped into a gas and a liquid phase and
the energy equation ignored thereby reducing the number
of distributed states to 3 (see Fjelde and Rommetveit
[2003],Lage and Fjelde [2000]). We stress that this model
requires tuning to actual data or a high fidelity model
before use.

3.2 The drift flux model:

The model consists of expressing the mass conservation
law for the gas and the liquid separately, and a combined
momentum equation. The drilling fluid, oil and water are
lumped into one single liquid phase. For k = L,G,m
denoting liquid, gas or mixture, we denote αk the volume
fractions, ρk the densities, vk the superficial velocities,
and P the pressure. All of these variables are functions
of time and space. We denote t ≥ 0 the time variable, and
s ∈ [0, L] the space variable, corresponding to a curvilinear
abscissa with s = 0 corresponding to the bottom hole and
x = L to the outlet choke position (see Fig. 1).

The dynamics equations are as follows,

∂αLρL
∂t

+
∂αLρLvL

∂x
= 0, (26)

∂αGρG
∂t

+
∂αGρGvG

∂x
= 0, (27)

∂αLρLvL + αGρGvG
∂t

+
∂P + αGρGv

2
G + αLρLv

2
L

∂x

= −ρmg sinφ(s)− 2fρmvm|vm|
D

. (28)

In the momentum equation (28), the term ρmg sin θ rep-

resents the gravitational source term, while − 2fρmvm|vm|
D

accounts for frictional losses. The parameters are detailed
in Table 1. The mixtures are given as

ρm = αGρG + αLρL, vm = αGvG + αLvL. (29)

Along with these distributed equations, algebraic relations
are needed to close the system.



αL + αG = 1 vG = C0vm + v∞, (30)

ρG = ZGRGTP ρL = const. (31)

where ZG, RG, T are the gas compression factor, specific
gas constant and temperature respectively, and C0, v∞ are
parameters giving the slip between the velocity of the gas
and liquid phase. For relatively homogeneous operating
conditions, setting C0, v∞ constant should be satisfactory.

Boundary Conditions Boundary conditions on the left
(downhole) boundary are given by the mass-rates of liquid
injected from the drill string on the one hand, and gas
flowing in from the reservoir on the other hand. The influx
of gas depends on the pressure difference between the
reservoir and the bottom of the well.

AαL(0)ρL(0)vL(0) = WL,inj , (32)

AαG(0)ρG(0)vG(0) = kG max(P (0)−Pres, 0). (33)

Here Pres is the reservoir pore pressure and kG is the
production index (PI).

The topside boundary condition is given by a choke
equation relating topside pressure to mass flow rates
Murdock [1962]

AαL(L)ρL(L)vL(L) +AαG(L)ρG(L)vG(L)

= Cv(Z)

√
P (L)− Ps

xL√
ρL

+ xG

Y 2√ρG
, (34)

where xL,G denotes the mass fraction of liquid and gas, Cv
the choke opening given by the manipulated variable Z and
Y is a correction factor for gas flow. Changing the choke
opening is the primary control actuation for the drilling
system.

3.3 Reformulation under a quasilinear form and
linearization

Using an appropriate set of variables, e.g. ξ = (αG, ρG, vG),
the system can be put in quasilinear form

∂ξ

∂t
+A(ξ)

∂ξ

∂x
= G(ξ) (35)

Considering small perturbations δξ around an equilibrium
profile ξ̄, the linearized system can be rewritten as (1),(2)
where (u, v) is obtained from δξ using a linear change
of coordinates. Similarly, the nonlinear boundary condi-
tions (32)–(34) can be rewritten as

hl(ξ(0, t), Pres) = 0, hr(ξ(L, t)) = 0 (36)

Again, considering small perturbations δξ, δPres around
reference values ξ̄, P̄res yields

∂hl
∂ξ

(
ξ̄(0), P̄res

)
δξ +

∂hl
∂Pres

(
ξ̄(0), P̄res

)
δPres = 0 (37)

which yields, after an appropriate coordinate transfor-
mation, boundary conditions of the form (3) in which
δPres = θ is uncertain. For details on the linearization
of (35),(36), the interested reader is referred to Di Meglio
et al. [2012].

We stress that, in all rigor, the obtained linearized PDE
system presents space-varying coefficients, which is not the
case of (1)–(2). However, we claim that Theorem 1 can be
straightforwardly extended to this case. This is another
direction of future work.
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Fig. 2. Evolution of the normalized estimate of the reser-
voir pressure P̂res

4. RESERVOIR PRESSURE ESTIMATION IN UBD

In this section, we aim at illustrating Theorem 1 and
the merits of the proposed results by using the adaptive
law (6) to estimate reservoir pressure during UBD. We
briefly present an extension of the observer design to
the considered nonlinear system. Although Theorem 1
only deals with a linear coupled transport PDE, one can
expect that the obtained result will also hold locally in all
likelihood.

4.1 Adaptive observer for the nonlinear system

We consider a 2200 meter long well, with a reservoir pres-
sure Pres = 225 bar. At the left (bottom) boundary, only
the pressure is being measured. At the right boundary, we
assume full measurement of all the states. The observer
is a copy of the original model with linear output error
injection terms, i.e.

∂û

∂t
+A(û)

∂û

∂x
= G(û)− L(x)(P̂ (0)− P (0)) (38)

and the observer boundary condition is designed by di-
rectly injecting the measurement P (0) into Equation (33).
The observer gains L(·) are chosen such that, when lin-
earized, Equation (38) yields (4). Finally, the update
law (6) is used to estimate Pref . Although no proof of
convergence has been derived for the nonlinear system, one
can reasonably expect the observer to perform well when
the system is close to steady-state and during smooth tran-
sients. The following simulations give promising results in
that regard.

4.2 Simulations

The observer is initialized with a 10% error on the reservoir
pressure, i.e. P̂res−Pres

Pres
= 0.1. During the simulation,

the outlet valve opening Z, defined in Equation (34)
is gradually opened to generate a transient behavior.
Figure 2 shows the normalized evolution of the estimated
reservoir pressure, which converges as expected. Figure 3
pictures the evolution of various states of interest of the
model at the outlet.
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velocity) at the right boundary.

5. PERSPECTIVES

The proposed adaptive observer is, to the best of our
knowledge, the first analytical result on combined state
and parameter estimation for UnderBalanced Drilling op-
erations. The presented simulations are relatively promis-
ing as the method, while designed for linear system, seems
to apply to the nonlinear flow model. However, it is crucial
to notice that the reservoir pressure was, in the presented
simulations, the only source of uncertainty. The method
needs to be tested against, e.g. high-fidelity simulators,
from which our simulation model will significantly differ.
This will induce other non-modeled sources of uncertainty
(e.g. on in-domain parameters), for which the adaptation
law will try to compensate, yielding false estimate of the
parameters. Further analysis is required to quantify the
impact of other modelling errors and the robustness of the
proposed approach.

Other direction of future work include extension of the
adaptive observer for linear coupled transport equations
to space-varying coefficients and proof of pointwise con-
vergence.
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