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Abstract

The classical Feynman-Kac formula states the connection between linear parabolic

partial differential equations (PDEs), like the heat equation, and expectation of stochas-

tic processes driven by Brownian motion. It gives then a method for solving linear PDEs

by Monte Carlo simulations of random processes. The extension to (fully)nonlinear

PDEs led in the recent years to important developments in stochastic analysis and the

emergence of the theory of backward stochastic differential equations (BSDEs), which

can be viewed as nonlinear Feynman-Kac formulas. We review in this paper the main

ideas and results in this area, and present implications of these probabilistic represen-

tations for the numerical resolution of nonlinear PDEs, together with some applications

to stochastic control problems and model uncertainty in finance.
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1 Introduction

Let us consider the parabolic heat equation:







∂v

∂t
+

1

2
∆xv = 0, on [0, T )× R

d,

v(T, .) = h, on R
d.

(1.1)

It is well-known that the solution to (1.1) is given by:

v(t, x) =

∫

h(y)K(T − t, x, y)dy,

where K(t, x, y) = 1

(4πt)
d
2

e−|x−y|2/4t is the heat kernel on R
d. By introducing the d-

dimensional Brownian W on a probability space (Ω,F ,P), and from the Gaussian dis-

tribution of Wt, we observe that the solution v can be represented also as:

v(t, x) = E
[

h(x+WT−t)
]

, (t, x) ∈ [0, T ]× R
d. (1.2)

The probabilistic representation (1.2) gives a Monte-Carlo method for computing an appro-

ximation of v by the empirical mean:

v(t, x) ≃ v̄N (t, x) :=
1

N

N
∑

i=1

h(x+W i
T−t),

where (W i)1≤i≤N is an N -sample drawn from an (exact) simulation of W . The convergence

of v̄N to v is ensured by the law of large numbers, when N goes to infinity, while the rate of

convergence, obtained from the central limit theorem, is equal to 1/
√
N , and independent

of the dimension d of the heat equation. More generally, let us consider the linear parabolic

partial differential equation (PDE):







∂v

∂t
+ Lv + f = 0, on [0, T ) × R

d,

v(T, .) = h, on R
d,

(1.3)

where L is the second order Dynkin operator:

Lv = b(x).Dxv +
1

2
tr(σσ⊺(x)D2

xv). (1.4)

Under suitable conditions on the functions b, σ, f and h defined on R
d, there exists a unique

solution v to (1.3), which may be represented by the Feynman-Kac formula:

v(t, x) = E

[

∫ T

t
f(Xt,x

s )ds + h(Xt,x
T )

]

, (t, x) ∈ [0, T ] × R
d, (1.5)

where Xt,x is the solution to the (forward) diffusion process,

dXs = b(Xs)ds+ σ(Xs)dWs, s ≥ t,
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starting from x at time t. Notice that the Feynman-Kac formula (1.5) can be easily derived

from Itô’s formula when v is smooth. Indeed, in this case, by defining the pair of processes

(Y,Z):

Yt := v(t,Xt), Zt := σ⊺(Xt)Dxv(t,Xt), 0 ≤ t ≤ T,

and applying Itô’s formula to v(s,Xs) between t and T , with v satisfying the PDE (1.3),

we get:

Yt = h(XT ) +

∫ T

t
f(Xs)ds −

∫ T

t
ZsdWs, 0 ≤ t ≤ T. (1.6)

This equation can be viewed as a backward stochastic equation in the pair of adapted pro-

cesses (Y,Z) w.r.t. the filtration F
W generated by the Brownian motion W , determined

from a terminal condition h(XT ), and originally appeared in [4]. By taking conditional

expectation in (1.6), we retrieve the Feynman-Kac formula (1.5). This probabilistic repre-

sentation leads to a numerical method for solving the linear PDE, relying on Monte-Carlo

simulations of the forward diffusion process X, whose convergence rate does not depend on

the dimension of the problem, hence not suffering in principle of the curse of dimensionality

encountered in deterministic numerical methods. On the other hand, it is also useful for

computing explicitly the solution v in some particular models for X, e.g. geometric Brow-

nian motion in the Black Scholes model for option pricing in finance.

In this paper, we address the problem of nonlinear PDEs, and shall review the recent

developments about their probabilistic representation, i.e. nonlinear Feynman-Kac formu-

lae. We shall first consider in Section 2 the case of semi-linear PDEs, i.e. when nonlinearity

appears only on the first order derivative, and show how it is related to the theory of

backward stochastic differential equations (BSDEs) introduced in [20], and leads to proba-

bilistic scheme for solving semi-linear PDEs. We next consider in Section 3 the challenging

problem of fully nonlinear PDEs, i.e. when nonlinearity enters also on the second order

derivative. Such framework arises in many applications, for example in stochastic control

in finance (portfolio optimization, risk management, model uncertainty). We shall present

the randomization approach for dealing with such nonlinear context, and show how fully

nonlinear PDES are represented in terms of randomized BSDEs with nonpositive jumps.

This provides an original probabilistic scheme for solving fully nonlinear PDEs.

2 Backward SDEs and semi-linear PDEs

2.1 A short overview of BSDEs

Let us introduce some standard notations in the theory of backward stochastic differential

equations (BSDEs). On a complete probability space (Ω,F ,P) on which is defined a d-

dimensional Brownian motion W over a finite time interval [0, T ], and its natural filtration

F = F
W , we denote by:

• PF: σ-algebra of F-predictable subsets of [0, T ]× Ω
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• S
2
F
: set of real-valued càd-làg F-adapted processes Y such that

E
[

sup
0≤t≤T

|Yt|2
]

< ∞,

• L
2
F
(W ): set of Rd-valued PF-measurable processes Z such that

E

[
∫ T

0
|Zt|2dt

]

< ∞.

We are given as data:

• a terminal condition ξ, which is an FT -measurable real-valued random variable

• a generator f = (ft(y, z))0≤t≤T , which is an PF ⊗ B(R× R
d)-measurable real-valued

map, where B(R×R
d) denotes the Borel σ-field of R× R

d.

A (one dimensional) BSDE in differential form is written as

dYt = −ft(Yt, Zt)dt+ ZtdWt, 0 ≤ t ≤ T, YT = ξ, (2.1)

and a solution to (2.1) is a pair (Y,Z) ∈ S
2
F
× L

2
F
(W ) satisfying

Yt = ξ +

∫ T

t
fs(Ys, Zs)ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T. (2.2)

Existence and uniqueness of a solution to the BSDE (2.1) is proved in the seminal paper

[20] under the following Lipschitz and square integrability assumptions:

(H1)

(i) f is uniformly Lipschitz in (y, z), i.e. there exists a positive constant Cf s.t. for all

(y, z, y′, z′):

|ft(y, z) − ft(y
′, z′)| ≤ Cf

(

|y − y′|+ |z − z′|
)

, dt⊗ dP a.e.

(ii) ξ and {ft(0, 0), t ∈ [0, T ]} are square integrable:

E

[

|ξ|2 +
∫ T

0
|ft(0, 0)|2dt

]

< ∞.

Notice that when the generator f does not depend on y and z, the solution to the BSDE

(2.1), which is then simply a backward stochastic equation as in [4], is directly obtained

from the martingale representation theorem applied to the Brownian martingale Mt :=

E

[

ξ +
∫ T
0 fsds

∣

∣Ft], 0 ≤ t ≤ T , which gives the existence of an integrand Z ∈ L
2
F
(W ) s.t.

Mt = M0 +

∫ t

0
ZsdWs, 0 ≤ t ≤ T.

Indeed, by defining

Yt := Mt −
∫ t

0
fsds = E

[

ξ +

∫ T

t
fsds

∣

∣Ft], 0 ≤ t ≤ T,
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we see that (Y,Z) satisfies (2.2). In the general case where f depends on (y, z), the existence

and uniqueness is proved by a fixed point argument under the Lipschitz assumption in

(H1)(i).

Let us now consider the particular case of interest when the generator is linear, i.e. in

the form:

ft(y, z) = δty + αt.z + γt,

for some bounded F-adapted processes (δt) valued in R, (αt) valued in R
d, and (γt) ∈ H

2
F

the set of rela-valued F-adapted processes s.t. E[
∫ T
0 |γt|2dt] < ∞. By discounting and

Girsanov’s change of measure, the solution (in Y ) to the linear BSDE (2.2) is given by the

linear expectation:

Yt = E
Pα[

e
∫
T

t
δsdsξ +

∫ T

t
e
∫
u

t
δuduγsds

∣

∣Ft

]

,

where P
α is the probability measure equivalent to P under which

Wα := W −
∫

αdt, is a P
α − Brownian motion. (2.3)

Such context of linear BSDE arises typically in option pricing in finance, where P
α is the

martingale measure, Y is the fair price for the option payoff ξ, and Z the hedging portfolio.

A trivial remark in that, in this linear case, if ξ ≥ 0 and γ ≥ 0, then the solution Y to

the linear BSDE is also nonnegative. This is the key observation for showing comparison

theorem for BSDEs: given two pairs (ξ, f) and (ξ′, f ′) of terminal data/generators satisfying

(H1), and (Y,Z), (Y ′, Z ′) be the solutions to their BSDEs. Suppose that:

ξ ≤ ξ′ a.s. and ft(Yt, Zt) ≤ f ′
t(Yt, Zt), dt⊗ dP a.e.

Then,

Yt ≤ Y ′
t , 0 ≤ t ≤ T.

Let us next consider another case of interest where the generator ft(y, z) is convex in

z, and is written in the form:

ft(y, z) = δty + sup
a∈A

[

a.z + γt(a)
]

, (2.4)

for some bounded adapted processes (δt), where A is a compact subset of Rd, γt(a) is a

PF ⊗ B(A)-measurable map s.t. ess sup
a∈A

|γt(a)| ∈ H
2
F
. By using comparison theorem for

BSDEs and result for the linear case, one shows that the solution (in Y ) to the BSDE is

expressed as:

Yt = ess sup
α∈A

E
Pα
[

e
∫
T

t
δsdsξ +

∫ T

t
e
∫
u

t
δuduγs(αs)ds

∣

∣Ft

]

, 0 ≤ t ≤ T,

where A is the set of adapted processes α valued in A and P
α is the probability measure

equivalent to P under which the drifted process Wα defined in (2.3) is a P
α-Brownian

motion. Hence, controlled drift problems and risk measures with uncertain drifts are related

to BSDE by choosing a generator in the form (2.4). We refer to [8], [9] or [22] for a more

detailed review and applications of BSDEs.
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2.2 Markov BSDEs and PDEs

We put ourselves in a Markov setting in the sense that we suppose that the terminal data

and generator of the BSDE (2.2) are in the form:

ξ = h(XT ), ft(ω, y, z) = f(Xt(ω), y, z)

where h(x) is some measurable function on R
d, f(x, y, z) is some measurable function on

R
d×R×R

d (we kept the same notation f by misuse), and X is a forward diffusion process

of dynamics:

dXs = b(Xs)ds + σ(Xs)dWs in R
d. (2.5)

Under standard Lipschitz assumptions on the coefficients b : Rd 7→ R
d, and σ : Rd 7→ R

d×d,

there exists a unique strong solution to (2.5) given some initial condition, and we have the

standard estimate:

E
[

sup
0≤t≤T

|Xt|2
]

≤ C(1 + |X0|2).

A forward BSDE is then written as:

Yt = h(XT ) +

∫ T

t
f(Xs, Ys, Zs)ds −

∫ T

t
ZsdWs, 0 ≤ t ≤ T, (2.6)

and under Lipschitz condition on f , and linear growth condition on h, there exists a unique

solution (Y,Z) to the Markov BSDE (2.6). Denoting by (Y t,x, Zt,x)t≤s≤T the solution to

the BSDE (2.6) when X = (Xt,s)t≤s≤T is the solution to (2.5) starting from x at time t,

we notice that

v(t, x) := Y t,x
t , (t, x) ∈ [0, T ]× R

d, (2.7)

is a deterministic function on [0, T ] × R
d, and by the Markov property of the diffusion

process, we have:

Yt = v(t,Xt), 0 ≤ t ≤ T.

Let us now derive formally the PDE satisfied by the function v. By definition of the

Markov BSDE (2.6), we have:

Ys − Yt = v(s,Xs)− v(t,Xt) = −
∫ s

t
f(Xu, Yu, Zu)ds+

∫ s

t
ZudWu,

for all 0 ≤ t ≤ s ≤ T . Assuming that v is smooth, it follows from Itô’s formula:

∫ s

t
(
∂v

∂t
+ Lv)(u,Xu)du+

∫ s

σ⊺(Xu)Dxv(u,Xu)dWu

= −
∫ s

t
f(Xu, Yu, Zu)du+

∫ s

t
ZudWu,

6



where L is the Dynkin operator associated to the diffusionX, and given in (1.4). Identifying

the finite variation terms in “dt” and the Brownian martingale terms in “dW”, we see that

Zt = σ⊺(Xt)Dxv(t,Xt)

and v should satisfy the semi-linear parabolic PDE:







∂v

∂t
+ Lv + f(x, v, σ⊺Dxv) = 0, on [0, T )× R

d,

v(T, .) = h, on R
d.

(2.8)

The main issue in this derivation comes from the fact that in general, the function v is

not smooth, and this is overcome with the notion of viscosity solution: it is proved in [21]

that the function v in (2.7) is the unique viscosity solution to (2.8). Therefore, the BSDE

(2.6) provides a probabilistic representation to the solution of the semi-linear PDE (2.8).

This extends the Feynman-Kac formula (1.5) to the case where f = f(x, y, z) depends on

y, z, and we shall see in the next paragraph how it can be used to design a probabilistic

numerical scheme for computing the solution to the semi-linear PDE (2.8).

2.3 Numerical issues

The first step in the numerical scheme for the resolution of the BSDE (2.6) is the discrete-

time approximation. It is constructed as follows.

• Euler scheme for the forward process. We are given a time grid π := {t0 = 0 < t1 < . . . <

tn = T} of [0, T ], with modulus |π| := maxi=1,...,n∆ti, ∆ti := ti+1 − ti, and approximate

the forward diffusion process X by its Euler scheme Xπ defined as

Xπ
ti+1

:= Xπ
ti + b(Xπ

ti)∆ti + σ(Xπ
ti)∆Wti , i < n, Xπ

0 = X0,

where ∆Wti := Wti+1
−Wti .

• Euler scheme for the backward process. We first approximate the terminal condition YT

= h(XT ) by simply replacing X by its Euler scheme: YT ≃ h(Xπ
T ). Then, from the formal

Euler backward discretization:

Yti = Yti+1
+

∫ ti+1

ti

f(Xs, Ys, Zs)ds−
∫ ti+1

ti

ZsdWs

≃ Yti+1
+ f(Xπ

ti , Yti , Zti)∆ti − Zti∆Wti .

we define the discrete-time approximation of the BSDE as follows:

(1) taking expectation conditionally on Fti on both sides yields

Yti ≃ E
[

Yti+1
|Fti

]

+ f(Xπ
ti , Yti , Zti)∆ti

(2) Multiplying by ∆Wti and then taking conditional expectation gives

0 ≃ E
[

Yti+1
∆Wti |Fti

]

− Zti∆ti.
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This formal approximation argument leads to a backward Euler scheme (Y π, Zπ) of the

form:
{

Zπ
ti = E

[

Y π
ti+1

∆Wti

∆ti

∣

∣Fti

]

,

Y π
ti = E

[

Y π
ti+1

|Fti

]

+ f(Xπ
ti , Y

π
ti , Z

π
ti)∆ti, i < n,

(2.9)

with terminal condition Y π
tn = h(Xπ

tn).

Remark 2.1 The above scheme is implicit as Y π
ti appears in both sides of the equation.

Since f is assumed to be Lipschitz and since it is multiplied by ∆ti, intended to be small,

the equation can be solved numerically very quickly by standard fixed point methods.

Alternatively, we could also consider an explicit scheme by replacing the second equation

in (2.9) by

Y π
ti = E

[

Y π
ti+1

+ f(Xπ
ti , Y

π
ti+1

, Zπ
ti)∆ti|Fti

]

.

This will not change the convergence rate. 2

The discrete-time approximation is measured by the squared error:

E(π)2 := max
i≤n

E
[

|Yti − Y π
ti |

2
]

+

n−1
∑

i=0

E

[

∫ ti+1

ti

|Zt − Zπ
ti |

2dt
]

.

By using Itô’s formula, Gronwall’s lemma and Young inequality, it is proved in [7] and [27]

that under the Lipschitz assumption on the driver f , there exists a constant C independent

of π such that:

E(π)2 ≤ C
(

E
∣

∣h(XT )− h(Xπ
T )|2 +max

i≤n
E
∣

∣Xti −Xπ
ti

∣

∣

2

+
n−1
∑

i=0

E

[

∫ ti+1

ti

|Zt − Z̄ti |2dt
])

, (2.10)

where Z̄ti = 1
∆ti

E
[ ∫ ti+1

ti
Ztdt|Fti

]

. In other words, we have three different error contribu-

tions:

1. Strong approximation of the terminal condition, which depends on the terminal data

and the forward Euler scheme

2. Strong approximation of the forward SDE, which depends on the forward Euler

scheme, but not on the BSDE problem

3. L2-regularity of Z, which is intrinsic to the BSDE problem.

It is well-known, see e.g. [16], that the strong approximation of the forward Euler scheme:

maxi≤n E
∣

∣Xti − Xπ
ti

∣

∣

2
provides an error of order |π|. Consequently, when the terminal

data h is Lipschitz, this also gives an error for E
∣

∣h(XT ) − h(Xπ
T )|2 of order |π|. Finally,

it is proved in [27] that under Lipschitz condition on f , we have the L2-regularity of Z:

8



∑n−1
i=0 E

[ ∫ ti+1

ti
|Zt − Zπ

ti |2dt
]

= O(|π|). Therefore, under Lipschiz assumption on f and h,

the rate of convergence of the discrete-time approximation error E(π) is of order |π| 12 :

E(π) ≤ C|π| 12 .

This convergence rate is clearly optimal and similar to the one obtained for forward SDEs.

The practical implementation of the numerical scheme (2.9) requires the computation

of conditional expectations. The key observation in our Markovian context is that all these

conditional expectations are regressions, i.e.

E
[

Y π
ti+1

|Fti

]

= E
[

Y π
ti+1

|Xπ
ti

]

, E
[

Y π
ti+1

∆Wti |Fti

]

= E
[

Y π
ti+1

∆Wti |Xπ
ti

]

,

which can be approximated by methods from statistics:

• Quantization. Each Xπ
ti is replaced by a quantized version, i.e. a projection on a

finite grid, which is computed in some optimal way based on stochastic algorithm

and Monte-Carlo simulations of Xπ (Kohonen). The conditional expectation is then

reduced to a discrete sum with weights also computed off line as the grid points. We

refer to [1], [19] and the references therein.

• Integration by parts. The conditional expectation is approximated via an integration

by parts formula and Malliavin calculus, see [5].

• Least-square regression. The conditional expectation is approximated by non-parame-

tric regression methods, and the most popular one, known as Longstaff-Schwartz

method [18], consists in the projection on a set of basis functions, with optimal

coefficients computed from empirical least-square based on Monte-Carlo simulations

of Xπ
ti . We refer to [11] for more details and analysis of convergence rate of this

approach.

The advantage of these probabilistic methods, based on Monte-Carlo simulations, is that the

convergence rate does not depend a priori on the dimension of the problem, and therefore

should less suffer from the curse of dimensionality encountered in deterministic procedures.

3 Randomization approach for fully nonlinear HJB equation

3.1 Motivating example

Let us consider the following controlled diffusion example arising from uncertain volatility

model in finance:

Xt,x,α
s = x+

∫ s

t
αudWu, 0 ≤ t ≤ s ≤ T, x ∈ R,

where α is an adapted process valued in A = [a, ā], 0 < a ≤ ā < ∞, denoted α ∈ A,

interpreted as the uncertain volatility of the stock price X. We define the value function

of the stochastic control problem:

v(t, x) := sup
α∈A

E
[

h(Xt,x,α
T )

]

,

9



which is interpreted as the super-replication cost of an option payoff h under uncertain

volatility. The dynamic programming equation (also called Hamilton-Jacobi-Bellman, HJB

in short) for this stochastic control problem (see e.g. [24]) is a fully nonlinear PDE in the

form:

∂v

∂t
+G(D2

xv) = 0, (3.1)

with terminal condition v(T, .) = h, and where

G(M) :=
1

2
sup
a∈A

[a2M ] = ā2M+ − a2M−, M ∈ R.

The equation (3.1) can be viewed as a G-heat equation (reducing to the classical heat

equation when A is a singleton), and based on this observation, Peng [23] has developed a

theory ofG-stochastic calculus with G-Brownian motion, extending the classical Itô calculus

with Brownian motion, and leading to the concept of nonlinear expectation. Denoting by

Bα
t =

∫ t
0 αsdWs, and P

α the law of Bα under P, we notice that (Pα)α is a family of

non dominated probability measures, and this contrasts with the framework of controlled

drift problem in (2.3), which gave rise to equivalent probability measures by Girsanov’s

theorem. Recalling that Brownian motion and Itô calculus are the basic tools for defining

BSDE, Soner, Touzi and Zhang [25] have developed the theory of 2BSDE in connection

with G-Brownian motion by using notions from quasi-sure analysis in a singular measures

framework. However, the main concerns with the theory of G-expectation and 2BSDE is

that (i) it does not cover the general case of HJB equation where control appears both on the

drift and diffusion, (ii) it requires uniform ellipticity condition on the diffusion coefficient,

(iii) it does not lead clearly to an implementable numerical scheme since one cannot simulate

a G-Brownian motion. In the rest of this paper, we shall present an alternative approach

for overcoming these issues.

3.2 BSDE with nonpositive jumps

Let us consider the fully nonlinear PDE of HJB type:



















∂v

∂t
+ sup

a∈A

[

b(x, a).Dxv +
1

2
tr(σσ⊺(x, a)D2

xv)

+ f(x, a, v, σ⊺(x, a)Dxv)
]

= 0, on [0, T )× R
d

v(T, .) = h, on R
d,

(3.2)

where A is a compact metric space, b = b(x, a) is an R
d-valued Lipschitz continuous func-

tion, σ = σ(x, a) is an R
d×d-valued (possibly degenerate) Lipschitz continuous function, f

= f(x, a, y, z), h = h(x) are Lipschitz continuous functions. Under these conditions, there

exists a unique viscosity solution with linear growth condition to (3.2), see [12]. An impor-

tant particular case is when f = f(x, a) does not depend on y, z, and then the PDE (3.2)

corresponds to the dynamic programming equation for the stochastic control problem:

v(t, x) = sup
α∈A

E

[

h(Xt,x,α
T ) +

∫ T

t
f(Xt,x,α

s , αs)ds
]

, (3.3)

10



with the controlled diffusion process in R
d:

Xt,x,α
s = x+

∫ s

t
b(Xt,x,α

u , αu)du+

∫ s

t
σ(Xt,x,α

u , αu)dWu, t ≤ s ≤ T, (3.4)

where W is a d-dimensional Brownian motion on (Ω,F ,F,P), and α ∈ A is the control, i.e.

an F-adapted process valued in A. HJB type equations (3.2) include the G-heat equation

(3.1) and arise in many applications in finance, like portfolio optimization, option pricing

and risk measures under model uncertainty, etc. We refer to [10] or [24] for an expository

treatment of the theory of stochastic control and its applications.

The main issue for a Feynman-Kac type formula of the fully nonlinear PDE (3.2) comes

from the fact that the controlled forward process Xα in (3.4) cannot be simulated for all

values of the control α, and one cannot remove the control process as in the controlled

drift case by Girsanov’s theorem. We present here a control randomization approach,

whose basic idea is to replace the control process by an (uncontrolled) auxiliary state

variable process running over the control set A, hence simulatable, and under which one

can apply Girsanov’s theorem in order to recover all possible values of the original control

process. As we shall see, this method allows us to provide a BSDE representation of

general HJB equation (3.2) in terms of a simulatable forward process formulated under

a single probability measure, hence a non linear Feynman-Kac formula. An important

feature of our approach is that it does not require any ellipticity condition on the diffusion

coefficient. Moreover, by using a randomization with jumps, we are able to derive a practical

probabilistic numerical scheme, which can take advantage of Monte-Carlo methods for

dealing with high dimensional problems, both in state and control space.

Let us introduce a Poisson random measure µ(dt, da) on R+ × A (hence independent

of W ), with jump times (Tk), and marks (ζk), and intensity measure λ(da)dt where λ is a

finite measure supporting the whole set A. We denote by µ̃(dt, da) = µ(dt, da)−λ(da)dt the

compensated martingale measure of µ, and associate to µ the pure-jump process I defined

by:

It = ζi, Tk ≤ t < Tk+1, k ∈ N,

which is also written in differential form as:

dIt =

∫

A
(a− It−)µ(dt, da), t ≥ 0.

We then consider the regime-switching process of dynamics:

dXt = b(Xt, It)dt+ σ(Xt, It)dWt, t ≥ 0.

In other words, we have replaced in the dynamics (3.4), the control α by the exogenous

pure jump process I. Notice that the pair (X, I) is a Markov process valued in R
d ×A on

the probability space (Ω,F ,P) equipped with the Brownian-Poisson filtration G = F
W,µ =

(Gt)0≤t≤T . We next consider the BSDE with jumps, consisting in the search for a triple

11



(Y,Z,U) satisfying:

Yt = h(XT ) +

∫ T

t
f(Xs, Is, Ys, Zs)ds

−
∫ T

t
ZsdWs −

∫ T

t

∫

A
Us(a)µ̃(ds, da), 0 ≤ t ≤ T. (3.5)

Here, the pair (Y,Z) lie in S
2
G
× L

2
G
(W ), and with respect to the Brownian framework,

there is in addition the component U lying in L
2
G
(µ̃), the set of PG ⊗ B(A)-measurable

maps (Ut(a))0≤t≤T such that E[
∫ T
0

∫

A |Ut(a|2λ(da)dt] < ∞. Existence and uniqueness of a

triple solution (Y,Z,U) ∈ S
2
G
× L

2
G
(W ) × L

2
G
(µ̃) to the BSDE with jumps (3.5) is proved

in [26], extending the result of [20]. Moreover, by the Markov property of the forward

regime-switching process (X, I), the component solution Y is written in the form:

Yt = v(t,Xt, It),

for some deterministic function v on [0, T ]×R
d ×A, which satisfies (in the viscosity sense)

the semi-linear integro-partial differential equation (IPDE):

∂v

∂t
+ L̄v +Mv + f(x, a, v, σ⊺(x, a)Dxv) = 0, (t, x, a) ∈ [0, T ) × R

d ×A, (3.6)

where

L̄v(t, x, a) = b(x, a).Dxv +
1

2
tr(σσ⊺(x, a)D2

xv),

Mv(t, x, a) =

∫

A

(

v(t, x, a′)− v(t, x, a)
)

λ(da′).

In other words, the BSDE with jumps (3.5) provides a Feynman-Kac formula for the semi-

linear IPDE (3.6), as proved in [2], thus extending the result of [21]. Moreover, when v is

smooth, we have by Itô’s formula, the connection:

Yt = v(t,Xt, It), Zt = σ⊺(Xt, It−)Dxv(t,Xt, It−),

and Ut(a) = v(t,Xt, a)− v(t,Xt, It−).

The issue is now to go from the semi-linear IPDE (3.6) to the fully nonlinear PDE (3.2),

and the idea is to constrain the jump component U of the BSDE with jumps (3.5) to be

nonpositive. Let us formally derive the arguments of this approach. By constraining the

jump component, this means in terms of the function v (when it is smooth) that:

Ut(a) = v(t,Xt, a)− v(t,Xt, It−) ≤ 0, for all (t, a) ∈ [0, T ]×A,

which would imply that v = v(t, x) does not depend actually on a ∈ A. Thus, the integral

term Mv in (3.6) is removed, and the variable a becomes now a parameter in the PDE

satisfied by v(t, x) on [0, T )× R
d:

∂v

∂t
+ b(x, a).Dxv +

1

2
tr(σσ⊺(x, a)D2

xv) + f(x, a, v, σ⊺(x, a)Dxv) = 0, on [0, T )× R
d,

12



which should hold for any parameter value a ∈ A. By taking supremum over a ∈ A, we

formally expect to retrieve the fully nonlinear HJB equation (3.2).

The rigorous derivation of the above argument is formulated in [15] by means of the class

of BSDE with nonpositive jumps: this consists in a triple (Y,Z,U) ∈ S
2
G
×L

2
G
(W )×L

2
G
(µ̃)

supersolution to:

Yt ≥ h(XT ) +

∫ T

t
f(Xs, Is, Ys, Zs)ds

−
∫ T

t
ZsdWs −

∫ T

t

∫

A
Us(a)µ̃(ds, da), 0 ≤ t ≤ T. (3.7)

such that

Ut(a) ≤ 0 , dP⊗ dt⊗ λ(da) a.e. on Ω× [0, T ] ×A. (3.8)

By supersolution in (3.7), we mean that inequality ≥ holds instead of = as in (3.5), and

this relaxation is done in order to get flexibility for satisfying the non positivity constraint

in (3.8). We are then looking for a minimal supersolution (Y,Z,U) to (3.7)-(3.8) in the

sense that for any other triple (Ỹ , Z̃, Ũ) ∈ S
2
G
× L

2
G
(W ) × L

2
G
(µ̃) satisfying (3.7)-(3.8), we

have:

Yt ≤ Ỹt, 0 ≤ t ≤ T, a.s.

Existence and uniqueness of a minimal supersolution (Y,Z,U) to (3.7)-(3.8) is shown in

[15] by penalization methods. Moreover, it is proved that the solution Y is in the form

Yt = v(t,Xt), (3.9)

for some deterministic function v on [0, T ]×R
d (hence not depending on the state variable

It, and this is the key property), and v is the unique viscosity solution to the nonlinear

PDE (3.2). Therefore, we have a nonlinear Feynman-Kac formula for the solution to the

fully nonlinear PDE (3.2) in terms of BSDE with nonpositive jumps (3.7)-(3.8). The last

paragraph shows how this probabilistic representation provides a numerical scheme for

solving the PDE (3.2).

Remark 3.1 It is also proved in [15] that, in the case where f = f(x, a) does not depend

on y, z, the minimal solution Y to the BSDE with nonpositive jumps (3.7)-(3.8) admits a

dual representation in the form:

Yt = ess sup
ν∈D

E
Pν
[

h(XT ) +

∫ T

t
f(Xs, Is)ds

∣

∣Gt

]

, 0 ≤ t ≤ T,

where D is the set of PG ⊗ B(A)-measurable maps ν = (νt(a))0≤t≤T , valued in [1,∞) and

bounded, and P
ν is the probability measure equivalent to P on (Ω,GT ) whose effect by

Girsanov’s theorem is to change the compensator λ(da)dt of µ under P to νt(a)λ(da)dt

under P
ν, and to leave unchanged the Brownian motion W . Together with (3.9), this

shows that the value function of a stochastic control problem (3.3) admits an alternative

formulation in terms of intensity control. 2
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3.3 Numerical scheme

The discrete-time approximation for the minimal supersolution to the BSDE with non-

positive jumps (3.7)-(3.8) is constructed as follows. First, we observe that the pure jump

process I from the Poisson random measure µ(dt, da) with jump times/marks (Tk, ζk)k
and intensity measure λ(da)dt is perfectly simulated. Indeed, the inter arrival times Sk =

Tk+1 − Tk are i.i.d and follow an exponential law of parameter λ :=
∫

A λ(da), while the

marks ζk are i.i.d. with distribution λ̄(da) = λ(da)/λ, assumed to be simulatable. We thus

simulate I by:

It = I01[0,T1) +
∑

k≥1

ζk1[tk ,Tk+1)(t), t ≥ 0.

We are next given a time grid π := {t0 = 0 < t1 < . . . < tn = T} of [0, T ], with modulus |π|
:= maxi=1,...,n∆ti, ∆ti := ti+1 − ti, and approximate the forward regime-switching process

X by its Euler scheme Xπ defined as

Xπ
ti+1

:= Xπ
ti + b(Xπ

ti , Iti)∆ti + σ(Xπ
ti , Iti)∆Wti , i < n, Xπ

0 = X0,

where ∆Wti := Wti+1
−Wti . We then propose a discrete time approximation explicit scheme

in the form:






























Y π
T = Yπ

T = g(Xπ
T )

Zπ
ti = E

[

Y π
ti+1

∆Wti

∆ti

∣

∣Gti

]

Yπ
ti = E

[

Y π
ti+1

∣

∣Gti

]

+ f(Xπ
ti , Iti ,Yπ

ti ,Zπ
ti)∆ti

Y π
ti = ess sup

a∈A
E

[

Yπ
ti

∣

∣Gti , Iti = a
]

, i = 0, . . . , n− 1.

(3.10)

The interpretation of this scheme is the following. The first three lines in (3.10) correspond

to the scheme (Yπ,Zπ) for a discretization of a BSDE with jumps, as in [6], and exten-

ding the scheme described in paragraph 2.3 (we omit here the computation of the jump

component). The last line in (3.10) for computing the approximation Y π of the minimal

supersolution Y corresponds precisely to the minimality condition for the nonpositive jump

constraint and should be understood as follows. By the Markov property of the forward

process (X, I), the solution (Y,Z,U) to the BSDE with jumps (without constraint) is in the

form Yt = ϑ(t,Xt, It) for some deterministic function ϑ. Assuming that ϑ is a continuous

function, the jump component of the BSDE, which is induced by a jump of the forward

component I, is equal to Ut(a) = ϑ(t,Xt, a)−ϑ(t,Xt, It−). Therefore, the nonpositive jump

constraint means that: ϑ(t,Xt, It−) ≥ ess sup
a∈A

ϑ(t,Xt, a). The minimality condition is thus

written as:

Yt = v(t,Xt) = ess sup
a∈A

ϑ(t,Xt, a) = ess sup
a∈A

E[Yt|Xt, It = a],

whose discrete time version is the last line in scheme (3.10). Notice that the scheme (3.10) is

a dynamic programming type algorithm. The novel feature is that conditional expectation

is taken with respect to the uncontrolled randomized extended state process (X, I), and

supremum with respect to the auxiliary state variable I.
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The discrete-time approximation error is measured by:

Errπ±(Y ) := max
i≤n

(

E

[

(

Yti − Ȳ π
ti

)2

±

])
1

2

It is proved in [13] that

Errπ−(Y ) ≤ C|π| 12 ,

and under additional conditions on b, σ, f and h, namely: b, σ bounded, f = f(x, a, y) does

not depend on z, and is convex in y, and f(., ., 0), g are bounded, we have

Errπ+(Y ) ≤
{

C|π| 16 when f = f(x, a)

C|π| 1

10 otherwise.

In particular,

−C|π| 12 ≤ v(0,X0)− Y π
0 ≤

{

C|π| 16 when f = f(x, a)

C|π| 1

10 otherwise.

The above error bounds are non symmetric as in deterministic methods, and are proved

by using shaking coefficients method of Krylov [17] and switching system approximation of

Barles and Jacobsen [3].

The last step towards an implementable scheme consists in the approximation of the

conditional expectations in (3.10). Here, due to the supremum operation, there is a strong

advantage of using least-square regression methods. Let us briefly recall the basic principle

of this method. From the definition-property of conditional expectation:

E[H|Gti ] = arg inf
V ∈L2(Gti

)
E|H − V |2,

we approximate it by Êti [H] := ϕ̂i(X
π
ti , Iti) with empirical regression function:

ϕ̂i := arg inf
ϕ∈Φ

1

M

M
∑

m=1

(

Hm − ϕ(Xπ,m
ti

, Imti )
)2

where

• (Xπ,m
ti

, Imti )m and (Hm)m are i.i.d. realizations of (Xπ
ti , Iti) and H

• Φ = Span{φℓ : 1 ≤ ℓ ≤ LΦ}, φℓ basis functions on R
d ×A.

Then, ess sup
a∈A

E[H|Gti , Iti = a] is approximated by:

ess sup
a∈A

Êti,a[H] := ess sup
a∈A

ϕ̂i(X
π
ti , a) = ϕ̂i(X

π
ti , âi(X

π
ti))

where âi is determined by:

âi(x) := argmax
a∈A

ϕ̂i(x, a),
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hence in nonparametric form given the choice of the basis functions in Φ. The advantage

of this regression-projection method is that we don’t need to run over the set A in the

optimization over a, e.g. by Newton method, as in finite-difference methods, and this

quite interesting especially in high dimension for the control space A. Moreover, we get

an approximate optimal control in feedback form, i.e. a deterministic function âi(x) of the

state value x at any date ti. Error analysis and numerical illustrations of this algorithm

are studied and performed in [14].

References

[1] Bally V. and G. Pagès (2002): “A quantization algorithm for solving discrete time multidimen-

sional optimal stopping problems”, Bernoulli, 9, 100-1049

[2] Barles G., R. Buckdahn, and E. Pardoux (1997): “Backward stochastic differential equations

and integral-partial differential equations”, Stochastics and Stochastics Reports, 60, 57-83.

[3] Barles G. and E.R. Jacobsen (2007): “Error bounds for monotone approximation schemes for

parabolic Hamilton-Jacobi-Bellman equations”, Math. Computation, 76, 1861-1893.

[4] Bismut J.M. (1973): Analyse convexe et probabilités, thèse, Faculté des sciences de Paris.
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[14] Kharroubi I., Langrené N. and H. Pham (2014): “A numerical algorithm for fully nonlinear

HJB equations: an approch by control randomization”, Monte-Carlo methods and applications,

20(2), 145-165.

[15] Kharroubi I. and H. Pham (2012): “Feynman-Kac representation for Hamilton-Jacobi-Bellman

IPDE”, to appear in Annals of Probability.

16



[16] Kloeden P. and E. Platen (1992): Numerical Solution of Stochastic Differential Equations,

Springer, Series SMAP.

[17] Krylov N. V. (2000): “On the rate of convergence of finite difference approximations for Bell-

man’s equations with variable coefficients”, Probability Theory and Related Fields, 117, 1-16.

[18] Longstaff F. and E. Schwartz (2001): “Valuing american options by simulation : a simple

least-square approach”, Review Of Financial Studies, 14, 113-147.

[19] Pagès G., Pham H. and J. Printems (2004): Optimal quantization and applications to numerical

problems in finance, in Handbook of Computational and Numerical Methods in Finance, , ed. S.T.

Rachev, Birkhauser, Boston.

[20] Pardoux E. and S. Peng (1990): “Adapted solution of a backward stochastic differential equa-

tion”, Systems Control Lett., 14(1), 55-61.

[21] Pardoux E. and S. Peng (1992): “Backward stochastic differential equations and quasilinear

parabolic partial differential equations”, Stochastic partial differential equations and their appli-

cations, (B. L. Rozovskii and R. B. Sowers, eds.), Lect. Notes in Control and Inform. Sci., vol.

176, Springer, Berlin, pp. 200-217.

[22] Peng S. (2003): Nonlinear expectations and risk measures, in Proceedings of the CIME-EMS

summer school Bressanone.

[23] Peng S. (2006): “G-expectation, G-Brownian motion and related stochastic calculus of Ito

type”, Proceedings of 2005, Abel symposium, Springer.

[24] Pham H. (2009): Continuous time stochastic control and optimization with financial applica-

tions, Springer, Series SMAP.

[25] Soner M., Touzi N. and J. Zhang (2011): “The wellposedness of second order backward SDEs”,

Probability Theory and Related Fields, 153, 149-190.

[26] Tang S. and X. Li (1994): “Necessary conditions for optimal control of stochastic systems with

jumps”, SIAM J. Control and Optimization, 32, 1447-1475.

[27] Zhang J. (2004): “A numerical scheme for BSDEs”, Annals of Applied Probability, 14, 459-488.

17


