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The computation of wavelet-Galerkin

three-term connection coefficients on a

bounded domain

Abstract

Computation of triple product integrals involving Daubechies scaling functions may be necessary when

using the wavelet-Galerkin method to solve differential equations involving nonlinearities or parameters

with field variable dependence. Numerical algorithms for determining these triple product integrals,

known as three-term connection coefficients, exist but tend to suffer from ill-conditioning. A more stable

numerical solution algorithm is presented herein and shown to be both accurate and robust.
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1. Introduction

The use of Daubechies wavelet families as Galerkin basis functions for solving differential equations

is of growing interest [1, 2]. These oscillatory functions have compact support which allow sparse

representation of complex responses on unbounded, bounded or periodic domains [3, 4, 5, 6, 7, 8,

9, 10, 11]. For the discrete orthogonal wavelet-Galerkin method, Daubechies scaling functions are

commonly used as the functional basis [5, 6, 11]. The Galerkin formulation for equations containing

nonlinearities requiring the product of the field variable with itself or its derivative require the

integration of a scaling function triple product. The Daubechies scaling functions cannot be defined

explicitly making analytic integration intractable, and their fractal nature (i.e. discontinuities which

are independent of scale) make numerical integration error prone [12].

Innovative work by Chen et al. [6, 13], Latto et al. [8], and Romine et al. [11] provide algorithms

to compute the exact solution to the three-term connection coefficients on a bounded domain. In

each of these references the authors solve for the connection coefficients using a set of rank deficient

scaling equations defined recursively using the two-scale definition of the scaling functions. The rank

deficiency is filled by replacing a corresponding number of equations with theoretically independent

moment equations, allowing determination of a unique set of connection coefficients. Due to

the numerical error introduced during implementation of these algorithm, the scaling equations

and moment equations are generally no longer independent. This has been found to lead to ill-

conditioning of the system and calculation of erroneous connection coefficients. A novel algorithm

is presented herein which can account for this numerical error by solving for a set of connection

coefficients which satisfy all the constraining equations in a least-squares sense.

In Section 2 a brief review of Daubechies wavelet notation is included and key references which

contain derivations of some necessary parameters are cited. Section 3 details the proposed method

of computing the three-term connection coefficients, included an example calculation. The results

are compared with existing coefficients found in the literature to validate the method. Conclusions

are presented in Section 4.
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2. Daubechies Wavelet Notation

The Daubechies scaling function is defined by a set of L filter coefficients p` W ` 2 Œ0; L � 1�, where

L is an even integer. The fundamental two-scale equation is defined as

�.x/ D

L�1
X

`D0

p`�.2x � `/ (1)

where �.x/ is the scaling function with fundamental support over the finite intervals Œ0; L � 1�. The

filter coefficients p` are derived by imposing a number of constraints given by Daubechies [7].

It is useful to define the nth derivative of the scaling function as �.n/.x/, where

�.n/.x/ D
dn�

dxn
.x/ D

d

dx
�.n�1/.x/; �.0/.x/ D �.x/: (2)

By amalgamating Eqs. (1) and (2) and accounting for the conditions in Ref [7], it is possible to

write [6]

�.n/.x/ D 2n
L�1
X

`D0

p`�.n/.2x � `/; n D 0; 1; : : : ; L=2 � 1: (3)

It is also useful to define the inner product of the scaling function and its derivative over a bounded

interval

�n
k .x/ D

Z x

0

�.y/�.n/.y � k/dy: (4)

The solutions �n
k

.x/ are known as the two-term connection coefficients [6]; these coefficients are

required in the next section when determining three-term connection coefficients. One algorithm for

computing these two-term connection coefficients was derived by Chen et al. [6], with corrections

presented by Zhang et al. [13].

3. Evaluation of the three-term connection coefficients

The three-term connection coefficients over a bounded domain are defined as follows [6]

�
m;n
j;k

.x/ D

Z x

0

�.y/�.m/.y � j /�.n/.y � k/dy (5)

for 0 � m; n � .L=2 � 1/ and j; k; m; n; x 2 Z, with the following properties

�
m;n
j;k

.x/ D 0 for jj j; jkj; or jj � kj � L � 1 (6)

�
m;n
j;k

.x/ D 0 for x � j; x � k; or x � 0 (7)

�
m;n
j;k

.x/ D �
m;n
j;k

.L � 1/ for x � j; x � k; or x � L � 1: (8)

Substituting the two-scale relations (1) and (3) into Eq. (5) and performing a change of variable

gives

�
m;n
j;k

.x/ D 2mCn�1
L�1
X

iaD0

L�1
X

ibD0

L�1
X

icD0

pia
pib

pic
�

m;n
2j Cib�ia;2kCic�ia

.2x � ia/: (9)

Accounting for the constraints provided by Eqs. (6) to (8), the scaling equations (9) can be written

in matrix form as

2.1�m�n/ Q�
m;n

.x/ D S Q�
m;n

.x/ (10)

for x D 1; 2; : : : ; L � 1, where S has entries compiled from summing the relevant triple products
pia

pib
pic

as defined in Eq. (9). This implies the connection coefficient vector Q�
m;n

.x/ belongs to
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the eigenspace corresponding to the eigenvalue 2.1�m�n/ from Eq. (10). The connection coefficient
vector is of the form [6, 13]

Q�
m;n

.x/ D
h

�
m;n.1/; �

m;n.2/; � � � ; �
m;n.L � 1/

iT

(11)

�
m;n.x/ D

8

ˆ

<

ˆ

:

h

�
m;n
x�LC2.x/; �

m;n
x�LC3.x/; : : : ; �

m;n
x�1.x/

iT

for x D 1; 2; � � � ; L � 2
h

�
m;n
2�L.x/; �

m;n
3�L.x/; : : : ; �

m;n
L�2.x/

iT

for x D L � 1
(12)

�
m;n
j .x/ D

8

ˆ

<

ˆ

:

h

�
m;n
j;x�LC2.x/; �

m;n
j;x�LC3.x/; � � � ; �

m;n
j;x�1.x/

iT

for x D 1; 2; : : : ; L � 2
h

�
m;n
j;� .x/; �

m;n
j;�C1.x/; � � � ; �

m;n
j;� .x/

iT

for x D L � 1
(13)

where � D max.j C 2 � L; 2 � L/, � D min.j C L � 2; L � 2/. The vector Q�
m;n

.x/ contains

.L � 2/3 unknowns for x 2 Œ1; L � 2� and 3L2 � 9L C 7 unknowns for x D L � 1. It can be shown

the matrix S has q eigenvalues equal to 2.1�m�n/, where [6]

q D .m C n C 1/ C

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

mCn
X

iD1

i if m C n � L=2

mCn
X

iDL=2C1

�

3L

2
� 2i

�

C
.L C 2/L

8
if L=2 < m C n � L � 2:

(14)

The eigenvectors corresponding to these q eigenvalues describe the solution space of the scaling

equations (10) for a given m and n. In fact, since the scaling equations depend only on the summation

.m C n/ and not the specific derivatives, this set of eigenvectors gives the scaling equation solution

space for all three-term connection coefficients whose derivatives sum to .m C n/ [8].

The unique solution for derivatives m and n is found by considering the set of moment equations

which are derived in Ref [7]; the derivation can be found in Refs. [6, 13]:
X

k

kn�
m;n
j;k

.x/ D nŠ �m
j .x/ (15)

X

j

j m�
m;n
j;k

.x/ D mŠ �n
k .x/: (16)

Thus Q�
m;n

.x/ is uniquely described by the intersection of the scaling equation solution space with

that of the moment equations. This implies the solution must be a linear combination of the q

eigenvectors; the participation factors can be computed from the moment equations as detailed

below.

3.1 Example calculation

Consider the specific case of m D 0; n D 1. Eq. (14) states q D 3 eigenvectors describe the solution

space to the scaling equations, thus

Q�
m;n

.x/ D c1u C c2v C c3w (17)

where u, v and w are the eigenvectors corresponding to the eigenvalue 2.1�m�n/ D 1 from Eq. (10);

the constants c1, c2 and c3 are the respective participation factors to be determined. Substituting

Eq. (17) into the moment equations results in

c1

X

k

kn
u C c2

X

k

kn
v C c3

X

k

kn
w D nŠ �m

j .x/ 8j 2 Œ2 � L; L � 2� (18)

c1

X

j

j m
u C c2

X

j

j m
v C c3

X

j

j m
w D mŠ �n

k .x/ 8k 2 Œ2 � L; L � 2� (19)
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Figure 1. RMS of the residual error from all moment equations

for x D 1; 2; : : : ; L�1. Note there are only g D 3=2L2 �7=2LC2 non-trivial equations described

by each (18) and (19) due to the constraints of Eqs. (6) to (8).

These moment equations can be written in matrix form as

M

8

<

:

c1

c2

c3

9

=

;

D b (20)

where M is a rectangular matrix of size 2g � 3, comprised of the summation terms on the lefthand

side of Eqs. (18) and (19), and b is a vector of length 2g composed of the respective righthand side

terms. The participation factors are determined using a pseudoinverse

c D .MT
M/�1

M
T

b: (21)

This gives a robust “best fit” in a least-squares sense, which allows for any dependencies between

the scaling and moment equations resulting from accumulated numerical error. The unique solution

of the three-term connection coefficients can thus be found by substituting the participation factors

found in Eq. (21) into Eq. (17). The algorithm is analogous for different values of m and n.

The accuracy of the computed Q�
m;n

.x/ vector is quantified by first calculating the residual

of each moment equation given in Eqs. (15) and (16); as Q�
m;n

.x/ is a linear combination of the

eigenvectors from Eq. (10), the scaling equations are automatically satisfied. To allow meaningful

comparison of different derivative combinations, the residuals are normalized by the L2-norm of

the righthand-side of the moment equation. The RMS value of this normalized residual vector is

then calculated to give a scalar measure of the absolute error for a given n and m combination. This

error measure for Daubechies scaling functions (L D 8) at all allowable derivative combinations

is provided in Fig. 1. As shown, the error in Q�
m;n

.x/ grows with higher derivatives, but even

at n; m D 3 the error norm remains relatively low. As a comparison, the three-term connection

coefficients for L D 6; m D 0; n D 1 published in Chen et al. [6] result in an RMS error norm of

1.55e-10, whereas for the current algorithm it is 1.82e-16. The three-term connection coefficients

are tabulated in the Appendix for comparison.
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4. Conclusions

Computation of the three-term connection coefficients is necessary when using the wavelet-Galerkin

method to solve differential equations involving nonlinearities or parameters with variable depen-

dence. Algorithms currently exist to solve for these coefficients but they have been found to suffer

from ill-conditioning which can result in erroneous results. The current investigation introduces

a novel solution algorithm which appears to be more numerically robust and comparatively more

accurate than previously published algorithms.

A. Appendix

Table 1 lists the 125 three-term connection coefficients for L D 6, m D 0, n D 1, Q�
0;1

.x/,

computed using the algorithm described above.

Table 1. Three-term connection coefficients for L D 6, m D 0, n D 1

x j k �
0;1
j;k

.x/ x j k �
0;1
j;k

.x/ x j k �
0;1
j;k

.x/

1 -3 -3 -7.15591411E-04 3 1 1 3.17107026E-01 5 -1 -2 8.74622766E-02

1 -3 -2 1.35502680E-03 3 1 2 -1.33459578E-01 5 -1 -1 -2.48445901E-01

1 -3 -1 7.87118799E-06 3 2 -1 5.29897817E-03 5 -1 0 3.13587753E-01

1 -3 0 -6.14851011E-04 3 2 0 -1.15661098E-02 5 -1 1 -1.25272546E-01

1 -2 -3 5.29897817E-03 3 2 1 2.54926579E-02 5 -1 2 -6.17732216E-03

1 -2 -2 -1.15661098E-02 3 2 2 -1.93594670E-02 5 -1 3 3.29019694E-05

1 -2 -1 2.54926579E-02 4 0 0 2.53068293E-08 5 0 -4 2.45926496E-06

1 -2 0 -1.93594670E-02 4 0 1 4.96892129E-01 5 0 -3 2.37636417E-03

1 -1 -3 -2.24262187E-02 4 0 2 3.29019100E-02 5 0 -2 9.35483714E-02

1 -1 -2 6.06841495E-02 4 0 3 1.45424640E-03 5 0 -1 -6.27175506E-01

1 -1 -1 -1.75635286E-01 4 1 0 -2.48445211E-01 5 0 0 3.61020792E-15

1 -1 0 1.37823004E-01 4 1 1 3.13595282E-01 5 0 1 4.96891801E-01

1 0 -3 8.23609549E-03 4 1 2 -1.25290082E-01 5 0 2 3.29026887E-02

1 0 -2 1.96354133E-01 4 1 3 -6.13510292E-03 5 0 3 1.45229718E-03

1 0 -1 -9.14074187E-01 4 2 0 -1.64544140E-02 5 0 4 1.52412730E-06

1 0 0 7.09481500E-01 4 2 1 3.77788872E-02 5 1 -3 -4.45648096E-04

2 -2 -2 -1.64544140E-02 4 2 2 -4.67007112E-02 5 1 -2 -2.07415149E-02

2 -2 -1 3.77788872E-02 4 2 3 2.03167757E-02 5 1 -1 8.74622766E-02

2 -2 0 -4.67007112E-02 4 3 0 -7.15591411E-04 5 1 0 -2.48445901E-01

2 -2 1 2.03167757E-02 4 3 1 1.35502680E-03 5 1 1 3.13587753E-01

2 -1 -2 8.73555499E-02 4 3 2 7.87118799E-06 5 1 2 -1.25272546E-01

2 -1 -1 -2.49815835E-01 4 3 3 -6.14851011E-04 5 1 3 -6.17732216E-03

2 -1 0 3.17107026E-01 5 -4 -4 -7.62063649E-07 5 1 4 3.29019694E-05

2 -1 1 -1.33459578E-01 5 -4 -3 -4.46399112E-07 5 2 -2 1.33940712E-04

2 0 -2 9.40317902E-02 5 -4 -2 1.94935669E-06 5 2 -1 4.92552163E-03

2 0 -1 -6.20031558E-01 5 -4 -1 4.88738554E-07 5 2 0 -1.64513443E-02

2 0 0 -1.91465368E-02 5 -4 0 -1.22963248E-06 5 2 1 3.78102693E-02

2 0 1 5.42767481E-01 5 -3 -4 -3.24555703E-05 5 2 2 -4.67741857E-02

2 1 -2 -2.24262187E-02 5 -3 -3 -7.26148591E-04 5 2 3 2.04916885E-02

2 1 -1 6.06841495E-02 5 -3 -2 1.25180052E-03 5 2 4 -1.35890068E-04

2 1 0 -1.75635286E-01 5 -3 -1 2.49826364E-04 5 3 -1 -3.24555703E-05

2 1 1 1.37823004E-01 5 -3 0 -1.18818208E-03 5 3 0 -7.26148591E-04

3 -1 -1 -2.48445211E-01 5 -3 1 4.45159357E-04 5 3 1 1.25180052E-03

3 -1 0 3.13595282E-01 5 -2 -4 1.33940712E-04 5 3 2 2.49826364E-04

3 -1 1 -1.25290082E-01 5 -2 -3 4.92552163E-03 5 3 3 -1.18818208E-03

3 -1 2 -6.13510292E-03 5 -2 -2 -1.64513443E-02 5 3 4 4.45159357E-04

3 0 -1 -6.27152133E-01 5 -2 -1 3.78102693E-02 5 4 0 -7.62063649E-07

3 0 0 2.88213076E-04 5 -2 0 -4.67741857E-02 5 4 1 -4.46399112E-07

3 0 1 4.96129851E-01 5 -2 1 2.04916885E-02 5 4 2 1.94935669E-06

3 0 2 3.48068749E-02 5 -2 2 -1.35890068E-04 5 4 3 4.88738554E-07

3 1 -1 8.73555499E-02 5 -1 -4 -4.45648096E-04 5 4 4 -1.22963248E-06

3 1 0 -2.49815835E-01 5 -1 -3 -2.07415149E-02
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