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Abstract

A system is considered, which is subject to external and possibly fatal

shocks, with dependence between the fatality of a shock and the system

age. Apart from these shocks, the system suffers from competing soft and

sudden failures, where soft failures refer to the reaching of a given thresh-

old for the degradation level, and sudden failures to accidental failures,

characterized by a failure rate. A non-fatal shock increases both degrada-

tion level and failure rate of a random amount, with possible dependence

between the two increments. The system reliability is calculated by four

different methods. Conditions under which the system lifetime is New

Better than Used are proposed. The influence of various parameters of

the shocks environment on the system lifetime is studied.
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1 Introduction

This paper is devoted to the survival analysis of a system subject to competing
failure modes within an external stressing environment. The external environ-
ment is assumed to stress the system at random and isolated times according
to a random shock model. Such a model can represent external demands e.g.,
which put some stress on the system at their arrivals. Shock models have been
the subject of an extensive literature. Following Mallor and Santos (2003a),
shock models may be classified into different categories, according to whether
arrival times and shock magnitudes are correlated (Mallor and Omey, 2001;
Mallor and Santos, 2003b), or independent (Cha and Finkelstein, 2009), and
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according to the assumption put on the shocks arrival process: homogeneous or
non-homogeneous Poisson process (A-Hameed and Proschan, 1973; Cha and
Finkelstein, 2009; Cha and Mi, 2007, 2011; Esary et al., 1973; Qian et al.,
1999), renewal process (Skoulakis, 2000) or non-stationary pure birth process
(A-Hameed and Proschan, 1975). According to the influence of shocks on the
system, shock models may be further classified into three types: extreme shock
models (a shock can cause the system immediate failure, see Gut and Hüsler
1999), cumulative shock models (a shock increases some intrinsic characteris-
tic of the system such as its deterioration, failure rate, age, number of already
endured shocks, ..., see Cha and Mi 2007; Qian et al. 1999) and mixed shock
models (a shock can either cause the system immediate failure or increase some
intrinsic characteristic, see Cha and Mi 2011; Gut 2001). More references can
be found in Finkelstein and Cha (2013); Mallor and Santos (2003a); Nakagawa
(2007); Singpurwalla (1995).

In this paper, a shock model with mixed effects is considered, where the
occurrence of shocks is classically modelled through a non-homogeneous Pois-
son process and where each shock may result in the system immediate failure
through a Bernoulli trial, independent of the system intrinsic behaviour. Apart
from shocks, the system suffers from competing soft and sudden failures, where
soft failures refer to the reaching of some given threshold for the degradation
level, and sudden failures to accidental failures, characterized by a failure rate.
A possible representation corresponds to a two-component series system, where
the first component is subject to soft failures and the second one to sudden
failure. The system may hence fail through three different competing modes:
traumatic failure due to a fatal shock; soft failure; sudden failure. Each non
fatal shock induces some increase of both deterioration level and failure, with
possible dependence in-between.

In the oldest literature, most models considered one single possible type of
failures for the system: e.g. soft failures in Marshall and Shaked (1979) or
traumatic failures due to shocks in Savits (1988), both in the multivariate set-
ting. More recently, different models have been developed, which consider two
different types of failures. For instance, competition between soft and sudden
failures is studied in Zhu et al. (2010). Several application cases are proposed in
the paper (see also references therein). An industrial example is also provided
in Wang and Gao (2014), which studies the reliability of an aircraft engine.
Note that Zhu et al. (2010) assumes soft and sudden failures to be independent
whereas the stressing environment of the present paper makes them dependent.
Competition between soft failures and occurrence of a traumatic event are con-
sidered in Degradation-Threshold-Shock models (DTS-models, denomination of
Lehmann 2006) which have been proposed by Lemoine and Wenocur (1985) and
further studied by Lehmann (2006, 2009). A case study is provided in Hao et al.
(2013) for the analysis of fatigue crack growth, where the effects of shocks on
the degradation are put into evidence. Note that, contrary to the present paper,
DTS-models consider some possible influence of the deterioration level of the
system on the shocks arrival rate. However, the first shock of a DTS-model is
always fatal to the system (leading to a single shock possibly endured by the
system), whereas successive non fatal shocks are here envisioned. We could not
find any paper which takes into account three competing failure modes, as in the
present paper. However, based on the case studies from the previous literature,
one can think that our model can reflect lots of systems subject to competing

2



soft and hard failures, within a stressing environment. For instance, one can
think of an aerial cabin hooked to a cable: the supporting cable is deteriorating
due to corrosion and fatigue; the linking pulley is subject to sudden failures (and
maybe also to deterioration); both cable and pulley endure shocks at each cabin
travel, which increase jointly their respective deterioration level and failure rate.

The present paper consider several kinds of dependence between the three
competing failure modes: at each non fatal shock, the increase of deterioration
and failure rate is simultaneous. This induces a first type of dependence between
soft and sudden failures. Each shock may induce a failure, either because the
shock is fatal, or because the deterioration is suddenly increased beyond the
threshold level. This induces a second type of dependence between soft and
traumatic failures, which may be simultaneous. Also, some possible dependence
is envisioned between the increments of failure rate and of deterioration at each
non fatal shock. This induces a third type of dependence between soft and
sudden failures. Finally, following Cha and Finkelstein (2009); Cha and Mi
(2011), the probability for a shock to be fatal depends on the shock arrival
time, which induces a last type of dependence. Up to our knowledge, all these
kinds of dependence have not been yet considered altogether and, as will be seen
all along the text, this model enlarges several ones from the previous literature.

The paper is organized as follows: the model is specified in Section 2. The
system reliability is computed through different methods in Section 3. Sufficient
conditions are provided in Section 4 for the system lifetime to be New Better
than Used. The influence of various parameters of the shock environment on the
lifetime is studied in Section 5. Numerical experiments are proposed in Section
6 and concluding remarks end the paper in Section 7.

2 The model

To make the model clear, a two-component series system is considered, where
the first component is subject to sudden failure and the second one to soft
failure. This two-unit system is just a representation for the competing soft and
sudden failure modes, with no restriction. In the ideal condition (for example in
a laboratory environment), the lifetime of the first component is characterized
by its intrinsic hazard rate h(t), t ≥ 0 while the second one is subject to some
accumulative deterioration modeled by an increasing stochastic process (Gt)t≥0

(e.g. a gamma process). The second component fails once its deterioration
level exceeds a failure threshold L. The lifetimes of the two components are
made dependent by their common stressing environment. This environment
is modelled by a random shock process, where the shocks arrive according to
a non-homogeneous Poisson process (Nt)t≥0 with intensity dΛ(t) = λ(t)dt (or
cumulated intensity Λ(t)). To avoid useless technical details, we assume that
Λ (t) > 0 for all t > 0. More generally, one might consider that Λ (t) > 0 only
for t greater than some t0 > 0, which would mean that the shocks would arrive
only after time t0. The points of the Poisson process are denoted by T1, ..., Tn,
... with T0 = 0 < T1 < . . . < Tn < . . . almost surely. A shock at time t may
cause the system immediate failure (fatal shock) with probability p(t) ∈ [0, 1],
which depends on the age t of the system at the shock arrival. A shock at time
t is non fatal with probability q (t) = 1 − p (t). A non fatal shock at time Ti
increases the deterioration of both components in a different way:
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• for the first component, its hazard rate is increased of a non negative

random amount V
(1)
i ,

• for the second one, its accumulated deterioration is increased of a non

negative random amount V
(2)
i .

The random vectors Vi =
(

V
(1)
i , V

(2)
i

)

, i = 1, 2, ... are assumed to

be independent and identically distributed (i.i.d.) with common distribution
µ(dv1, dv2), and independent of the shocks arrival times (Tn)n≥1 (and hence in-

dependent of the Poisson process (Nt)t≥0). At each shock, the increments V
(1)
i

and V
(2)
i are possibly dependent. When subscript i is unnecessary, we drop it

and set V =
(

V (1), V (2)
)

to be a generic copy of Vi =
(

V
(1)
i , V

(2)
i

)

. For j = 1, 2,

the distribution of V (j) is denoted by µj(dvj).
We set (At)t≥0 to be the bivariate compound Poisson process defined by

At =

(

Nt
∑

k=1

V
(1)
k ,

Nt
∑

k=1

V
(2)
k

)

=
(

A
(1)
t , A

(2)
t

)

(1)

with

A
(1)
t =

Nt
∑

k=1

V
(1)
k ,

A
(2)
t =

Nt
∑

k=1

V
(2)
k ,

where
∑0
k=1 · · · = 0.

The processes (At)t≥0 and (Gt)t≥0 are assumed to be independent.
Provided that the system is functioning up to time t, the random variables

A
(1)
t and A

(2)
t stand for the cumulated increments on [0, t] of the failure rate

of the first component and of the deterioration of the second component due
to the external environment, respectively. Setting Ft = σ (As, s ≤ t) to be the
σ−field generated by (As)s≤t and provided that the system is still up at time
t, the conditional hazard rate of the first component given Ft is

X
(1)
t = h(t) +A

(1)
t

and the conditional deterioration of the second component given Ft is

X
(2)
t = Gt +A

(2)
t .

To make it clearer, we introduce τi, i = 1, 2 to be the lifetime of the ith

component under the external environment, without taking into account the
possibility of fatal shocks for the system. To simplify the writing, we denote by
P (B|Ft) the conditional expectation E (1B |Ft) for any measurable set B, where
1B stands for the indicator function (1B (ω) = 1 if ω ∈ B, 0 elsewhere). We
then have:

P (τ1 > t|Ft) = e−
∫

t

0
X(1)

s ds = e−H(t)e−
∫

t

0
A(1)

s ds, (2)

P (τ2 > t|Ft) = P

(

X
(2)
t ≤ L|Ft

)

= P

(

Gt ≤ L−A
(2)
t |Ft

)

= FGt

(

L−A
(2)
t

)

(3)
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where

H (t) =

∫ t

0

h(s) ds (4)

is the cumulated intrinsic failure rate of the first component and where FGt

stands for the cumulative distribution function (c.d.f.) of Gt. (Recall that Gt
is independent of Ft).

We now let τ3 to be the time to the first fatal shock for the system with

τ3 = inf (n ≥ 1 : the shock at time Tn is fatal)

and we assume that the Bernoulli trials (fatal shocks or not) which happen at
each shock arrival are independent one with each other, and that they depend
on Ft only through the q (Tn)’s, that is:

P (τ3 > t|Ft) =

∞
∏

i=1

q (Ti)1[0,t] (Ti) =

Nt
∏

i=1

q (Ti) (5)

where
∏0
i=1 · · · = 1.

The system failure is induced either by a fatal shock or by a component
failure (soft or sudden failure), whatever arrives first. The lifetime of the system
hence is

τ = min (τ1, τ2, τ3) . (6)

We finally make the additional assumption that τ1, τ2 and τ3 are condition-
ally independent given Ft :

P (τ1 > t, τ2 > t, τ3 > t|Ft)

= P (τ1 > t|Ft)P (τ2 > t|Ft)P (τ3 > t|Ft) .

To sum up, the whole model is specified by:

•
(

V (1), V (2)
)

: the (generic) random increments in failure rate (first com-

ponent, V (1)) and deterioration (second component, V (2)),

• λ (x) dx : the intensity of the non-homogeneous Poisson process,

• h (x) : the intrinsic failure rate of the first component (sudden failure),

• (Gt)t≥0 : the intrinsic deterioration of the second component (soft failure),

• p (t) : the probability for a shock at time t to be fatal at the system level,

(plus some independence assumptions).

By taking special cases for these five ingredients, we can see that our model
extents some well-known models from the literature.

For instance, taking p (t) = 0 (no fatal shocks), V (1) = constant, V (2) = 0
and Gt = 0 all t ≥ 0 (no second component), one gets the ”stochastic failure
model in random environment” from Cha and Mi (2007).

Taking V (2) = 0 and Gt = 0 all t ≥ 0 (one single component), one gets the
”stochastic survival model for a system under randomly variable environment”
from Cha and Mi (2011).
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Table 1: A few particular models from the literature

Brown-Proschan model from (Brown and Proschan, 1983) h = V (1) = V (2) = 0,
Gt = 0, ∀t ≥ 0

Deterministic boundary in (Cha and Finkelstein, 2009) V (1) = h = 0, Gt = t
V (2) exponentially distributed

Cha and Mi (2007) q = 1, V (1) is a constant,
V (2) = 0, Gt = 0, ∀t ≥ 0

Cha and Mi (2011) V (2) = 0, Gt = 0, ∀t ≥ 0

Cumulative damage threshold models q = 1, V (2) = 0, λ is a constant
in Section 4 of (Esary et al., 1973) h = 0, Gt = 0, ∀t ≥ 0

Qian et al. (1999) q is a constant, h = V (1) = 0,
Gt = 0, ∀t ≥ 0

Taking Gt = 0 all t ≥ 0, V (1) = V (2) = 0, the model resumes to a classical
extreme shock model (one single component), where system failures are only
due to shocks arriving according to a non-homogeneous Poisson process, with
probability p (t) for a shock to be fatal (and q (t) to be harmless). This model
is interpreted as the Brown-Proschan model by Cha and Finkelstein (2009);
see also Brown and Proschan (1983) where various properties of the model are
explored.

Taking p (t) = 0 (no fatal shocks), V (1) = h (t) = 0 (one single compo-
nent), λ (x) = λ (homogeneous Poisson process), Gt = 0 all t ≥ 0 (no intrinsic
deterioration for the second - and single - component), one gets the ”cumula-
tive damage threshold model” from (Esary et al., 1973, Section 4, case of i.i.d.
damage increments).

Taking p (t) = p (constant), V (1) = h (t) = 0 (one single component), Gt = 0
all t ≥ 0, one gets the ”cumulative damage model with two kinds of shocks”
from (Qian et al., 1999, case of i.i.d. damage increments).

Taking V (1) = h = 0, V (2) exponentially distributed, Gt = t, all t ≥ 0, one
gets the model from Subsection 3.b in Cha and Finkelstein (2009).

All these models are summed up in Table 1. Note that we do not pretend
at any exhaustibility and our model will include lots of other previous models
which are not provided here.

3 Calculation of the system reliability

The objective of this section is to calculate the reliability RL(t) of the system
at time t, with

RL(t) = P(τ > t), all t ≥ 0,

where we recall that the system lifetime τ is defined by (6).
A first way to compute RL(t) is to use classical Monte-Carlo simulations and

to simulate a large number of independent histories for the system up to time
t (Method 1). This method will serve as a comparison tool in the numerical
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experimentations in Section 6. This method requires the simulation of a random

variable with conditional hazard rate h(t) +
∑Nt

k=1 V
(1)
k (see Algorithm 12 in

Section 6 for details) and may imply long computational times for the system
reliability. We provide below a few alternate methods which may be quicker
and also easier to implement.

Proposition 1 (Method 2) The reliability is given by

RL(t) = P(τ > t) = e−H(t)φt(L), (7)

where H (t) is provided by (4) and where

φt(L) = E

(

FGt

(

L−A
(2)
t

)

e−
∫

t

0
A(1)

s ds

Nt
∏

i=1

q (Ti)

)

(8)

= E

(

FGt

(

L−

Nt
∑

i=1

V
(2)
i

)

e−
∑Nt

i=1 V
(1)
i

(t−Ti)
Nt
∏

i=1

q(Ti)

)

(9)

Proof. Due to the conditional independence of τ1, τ2 and τ3 given Ft, we have:

RL(t) = P(τ1 > t, τ2 > t, τ3 > t)

= E (P (τ1 > t, τ2 > t, τ3 > t|Ft))

= E (P (τ1 > t|Ft)P (τ2 > t|Ft)P (τ3 > t|Ft)) .

Using (2, 3, 5), we get:

RL(t) = E

(

e−H(t)e−
∫

t

0
A(1)

s ds FGt

(

L−A
(2)
t

)

Nt
∏

i=1

q (Ti)

)

,

which provides (8) and next (9), due to (1) and

∫ t

0

A(1)
s ds =

∫ t

0

+∞
∑

i=1

V
(1)
i 1{Ti≤s} ds =

+∞
∑

i=1

V
(1)
i

∫ t

0

1{Ti≤s} ds

=

+∞
∑

i=1

V
(1)
i (t− Ti)1{Ti≤t} =

Nt
∑

i=1

V
(1)
i (t− Ti). (10)

Based on the previous result, the only point to get the reliability RL(t)
is to compute φt(L). The remaining of the section is hence devoted to the
computation of φt(L). Starting from (8) (or (9)), a possibility is to compute
φt(L) through Monte-Carlo simulations of (Nt)t≥0 and (At)t≥0, which is simpler
and quicker than simulating trajectories of the system according to the initial
model. This method is called Method 2 in Section 6.

Following A-Hameed and Proschan (1973) and Esary et al. (1973), one may
also use a series expansion of φt(L), as provided by the following proposition.

Proposition 2 (Method 3, general case)

φt(L) = e−Λ(t)
∞
∑

n=0

Pn (t, L)
(Λ(t))n

n!
(11)
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where

Pn (t, L) = E

(

FGt

(

L−

n
∑

i=1

V
(2)
i

)

n
∏

i=1

(

q(Zi)e
−(t−Zi)V

(1)
i

)

)

(12)

and (Zi)i≥1 are i.i.d. random variables with probability density function (p.d.f.)
λ(x)
Λ(t) 1[0,t](x) and independent of (Vi)i≥1.

Proof. Conditioning on the Poisson process (Nt)t≥0, we have:

φt(L) = E (f (Nt)) =

+∞
∑

n=0

f (n)
(Λ(t))n

n!
e−Λ(t)

with

f (n) = E

(

FGt

(

L−

Nt
∑

i=1

V
(2)
i

)

Nt
∏

i=1

q(Ti)e
−

∑Nt
i=1(t−Ti)V

(1)
i |Nt = n

)

.

Now, given that Nt = n, the conditional joint distribution of (T1, . . . Tn) is the
same as the joint distribution of the order statistics (Z(1), . . . , Z(n)) of n i.i.d.

random variables Z1, . . . , Zn with p.d.f. λ(x)
Λ(t) 1[0,t](x) (see Cocozza-Thivent 1998

e.g.). Using the fact that Vi =
(

V
(1)
i , V

(2)
i

)

is independent of (Nt)t≥0, we get:

f (n) = E

(

FGt

(

L−

n
∑

i=1

V
(2)
i

)

n
∏

i=1

q(Z(i))e
−

∑

n
i=1(t−Z(i))V

(1)
i

)

.

Noting that the expression within the expectation is invariant through permu-
tation of the Zi’s, we derive that:

f (n) = E

(

FGt

(

L−

n
∑

i=1

V
(2)
i

)

n
∏

i=1

q(Zi)e
−

∑

n
i=1(t−Zi)V

(1)
i

)

,

which provides the result.

Remark 3 Based on the previous result, one can see that our model is equiv-
alent to a classical shock model, where the shocks arrive according to a non-
homogeneous Poisson process with intensity dΛ(x) and with conditional proba-
bility of survival at time t equal to Pn (t, L), given that there has been n shocks
up to time t.

Corollary 4 (Method 3, independent case) In the special case where V (1)

and V (2) are independent, we get:

φt(L) = e−Λ(t)
∞
∑

n=0

Qn (t, L)
(a(t))n

n!
(13)

with

Qn (t, L) = E

(

FGt

(

L−

n
∑

i=1

V
(2)
i

))

(14)
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and

a(t) = (µ̃1 ∗ (qλ)) (t) =

∫ t

0

µ̃1(z)(qλ)(t− z) dz, (15)

where ∗ stands for the convolution operator, (qλ)(x) = q(x)λ(x), all x ≥ 0, and
µ̃1 stands for the Laplace transform of the distribution µ1 of V (1), with

µ̃1 (s) =

∫ +∞

0

e−xsµ1 (dx) , all s ≥ 0.

Proof. Starting from (12) and using the independence of all V
(1)
i ’s, V

(2)
i ’s and

Zi’s, and the identical distributions of all V
(1)
i ’s and of all Zi’s, we get:

Pn (t, L) = E

(

FGt

(

L−

n
∑

i=1

V
(2)
i

))

(

E

(

q(Z1)e
−(t−Z1)V

(1)
))n

(16)

with

E

(

q(Z1)e
−(t−Z1)V

(1)
)

=
1

Λ(t)

∫ t

0

λ(z)q (z)E
(

e−(t−z)V (1)
)

dz

=
1

Λ(t)

∫ t

0

(λq) (z)µ̃1 (t− z) dz =
a (t)

Λ (t)
.

Substituting this expression into Eq. (16) and next into Eq. (12) provides the
result.

Example 5 Let V (2) be an exponentially distributed with mean 1/θ and V (1)

an independent random variable. In that case,
∑n
i=1 V

(2)
i is Gamma distributed

with parameter (n, θ). This provides

Qn (t, L) =

∫ L

0

FGt
(L− x)

θnxn−1

(n− 1)!
e−θx dx, all n ≥ 1.

Using Q0 (t, L) = FGt
(L) and Eq. (13), we get:

RL(t) = e−H(t)−Λ(t)

(

FGt
(L) +

∞
∑

n=1

(a(t))n

n!

∫ L

0

FGt
(L− x)

θnxn−1

(n− 1)!
e−θx dx

)

.

Taking Gt = t for all t ≥ 0, V (1) = 0 and h (t) = 0 as a special case, we get

FGt
(L) = 1{t≤L},

a(t) =

∫ t

0

(qλ) (s) ds

and, for t ≤ L :

RL(t) = e−Λ(t)

(

1 +
∞
∑

n=1

(
∫ t

0
(qλ) (s) ds)n

n!

∫ L−t

0

θnxn−1

(n− 1)!
e−θx dx

)

= e−Λ(t)

(

1 +
∞
∑

n=1

(
∫ t

0
(qλ) (s) ds)n

n!

+∞
∑

k=n

(θ (L− t))
k

k!
e−θ(L−t)

)

using successive integrations by parts for the last integral. This last expression
is the result of Theorem 2 in Cha and Finkelstein (2009), which hence appears
as a special case of the previous results.
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From Proposition 2 and Corollary 4, one may derive the following approxi-
mation for φt (L).

Corollary 6 (Method 3, approximation) For N ≥ 0, let φNt (L) be defined
by

φNt (L) = e−Λ(t)
N
∑

n=0

Pn (t, L)
(Λ(t))n

n!

in the general case, and by

φNt (L) = e−Λ(t)
N
∑

n=0

Qn (t, L)
(a(t))n

n!

in case V (1) and V (2) are independent, where Pn (t, L) and Qn (t, L) are provided
by (12) and (14), respectively. Then, for all t ≥ 0, the sequence

(

φNt (L)
)

N≥1

increases to the limit φt(L) when N → ∞ and for all N ≥ 0, we have

φNt (L) ≤ φt(L) ≤ φNt (L) + ǫN (t)

where

ǫN (t) = e−Λ(t)
∞
∑

n=N+1

(a (t))n

n!
= e−(Λ(t)−a(t))

P(Yt > N),

a (t) is defined by (15) and Yt is Poisson distributed with mean a (t).

Proof. We just look at the general case. From Proposition 2, we have

φt(L)− φNt (L) = e−Λ(t)
∞
∑

n=N+1

Pn (t, L)
(Λ(t))n

n!
.

Due to FGt

(

L−
∑n
i=1 V

(2)
i

)

≤ 1, we get:

Pn (t, L) ≤ E

(

n
∏

i=1

(

q(Zi)e
−(t−Zi)V

(1)
i

)

)

=

(

a (t)

Λ (t)

)n

based on the proof of Corollary 4. This provides:

0 ≤ φt(L)− φNt (L) ≤ e−Λ(t)
∞
∑

n=N+1

(a (t))n

n!
= e−(Λ(t)−a(t))

∞
∑

n=N+1

e−a(t)
(a (t))n

n!

and the result.
The previous proposition provides numerical bounds for φt(L), which may

be adjusted as tight as necessary, taking N large enough. Also, the required
number of terms in the truncated series is given, to get a specified precision.
This method is quite adapted as soon as it is possible to compute the Pn (t, L)’s

(or the Qn (t, L)’s). This mostly requires the distribution of
∑n
i=1 V

(2)
i to be

known in full form, which is the case e.g. when the V
(2)
i ’s are constant or

Gamma distributed. An example is provided in Example 5, in the special case
of an exponential distribution. In the most general case, the computation of
the Pn (t, L)’s (or of the Qn (t, L)’s) may be as difficult as the initial problem of
computing φt (L), so that the previous method is not always adapted.

We finally present another method based on Laplace transform, which does
not suffer from the same restriction.

10



Theorem 7 (Method 4) We have:

φ̃t(s) = F̃Gt
(s)ν̃t(s), all s ≥ 0 (17)

or equivalently
φt(L) = (FGt

∗ νt) (L), all L ≥ 0, (18)

where νt is provided by its Laplace transform

ν̃t(s) = e−Λ(t)+((qλ)∗µ̃(·,s))(t), (19)

with µ̃ the bivariate Laplace transform of the distribution µ of
(

V (1), V (2)
)

:

µ̃(u, s) =

∫∫

R
2
+

e−uv1−sv2µ(dv1, dv2), all u, s ≥ 0,

and µ̃(·, s) : u→ µ̃(u, s), all s ≥ 0.
In the special case where V (1) and V (2) are independent, ν̃t(s) may be simplified
into:

ν̃t(s) = e−Λ(t)+a(t)µ̃2(s)

where a (t) is provided by (15) and where µ̃2(s) is the univariate Laplace trans-
form of µ2.

Proof. Remembering that A
(2)
t =

∑Nt

i=1 V
(2)
i , we get from (9) that:

φ̃t(s) =

∫ ∞

0

e−sL E

[

FGt

(

L−A
(2)
t

)

e−
∑Nt

i=1 V
(1)
i

(t−Ti)
Nt
∏

i=1

q(Ti)

]

dL

= E

[

(∫ ∞

0

e−sLFGt

(

L−A
(2)
t

)

dL

)

e−
∑Nt

i=1 V
(1)
i

(t−Ti)
Nt
∏

i=1

q(Ti)

]

(20)

with
∫ ∞

0

e−sLFGt

(

L−A
(2)
t

)

dL =

∫ ∞

A
(2)
t

e−sLFGt

(

L−A
(2)
t

)

dL

because Gt is non negative. Setting w = L−A
(2)
t , we obtain

∫ ∞

A
(2)
t

e−sLFGt

(

L−A
(2)
t

)

dL = e−sA
(2)
t

∫ ∞

0

e−swFGt
(w) dw = e−sA

(2)
t F̃Gt

(s).

Substituting this expression into (20) provides:

φ̃t(s) = F̃Gt
(s) θ (s) (21)

with

θ (s) = E

[

e−s
∑Nt

i=1 V
(2)
i e−

∑Nt
i=1 V

(1)
i

(t−Ti)
Nt
∏

i=1

q(Ti)

]

= E

[

e
−

∑Nt
i=1

(

V
(1)
i

(t−Ti)+sV
(2)
i

−ln q(Ti)
)
]

.

11



Because i ≤ Nt is equivalent to Ti ≤ t, we get:

θ (s) = E

(

e−
∑∞

i=1 ψs,t(V
(1)
i

,V
(2)
i

,Ti)
)

with
ψs,t(v1, v2, w) = ((t− w)v1 + sv2 − ln q(w))1{w≤t}. (22)

Noting that the sequence
(

V
(1)
n , V

(2)
n , Tn

)

n≥0
are the points of a Poisson random

measure M with intensity ν (dv1, dv2, dw) = µ(dv1, dv2)λ(w)dw, the function
θ (s) may be interpreted as a Laplace functional with respect of M :

θ (s) = E
(

e−Mψs,t
)

.

The formula for Laplace functionals of Poisson random measures (Çinlar,
2011, Theorem 2.9) next provides:

θ (s) = exp

(

−

∫∫∫

R
3
+

(

1− e−ψs,t
)

dν

)

(23)

with
∫∫∫

R
3
+

(

1− e−ψs,t
)

dν =

∫∫∫

R
3
+

(

1− e−ψs,t(v1,v2,w)
)

µ(dv1, dv2)λ(w)dw.

Substituting ψs,t by its expression (22), we get:
∫∫∫

R
3
+

(

1− e−ψs,t
)

dν

=

∫ t

0

(

∫∫

R
2
+

(

1− e−((t−w)v1+sv2−ln q(w)))
)

µ(dv1, dv2)

)

λ(w) dw

=

∫ t

0

(

1− q (w)

∫∫

R
2
+

e−((t−w)v1+sv2))µ(dv1, dv2)

)

λ(w) dw

= Λ(t)−

∫ t

0

(qλ) (w) µ̃(t− w, s) dw

= Λ(t)− [(qλ) ∗ (µ̃(·, s))] (t).

Substituting this expression into (23) and next into (21) provides

φ̃t(s) = F̃Gt
(s)ν̃t(s),

with ν̃t(s) given by (19). Equation (18) is a direct consequence.

Finally, in case V (1) and V
(2)
1 are independent, we have:

µ̃(w, s) = µ̃1(w)µ̃2(s)

and
ν̃t(s) = e−Λ(t)+((qλ)∗µ̃1)(t) µ̃2(s) = e−Λ(t)+a(t)µ̃2(s), (24)

which ends this proof.
Based on the previous result, one can compute φt(L) by inverting its Laplace

transform with respect of L. Looking at Equation (18), the key point is the
inversion of the Laplace transform ν̃t(s). We next provide an example where
the inversion is possible in full form. In the most general case, this can be done
numerically using some Laplace inversion software.

12



Example 8 Let h = 0, Gt = 0 (all t ≥ 0), λ and q constant, V (1) = V (2)

identically exponentially distributed with mean 1/θ (so that V (1) and V (2) are
completely dependent). Then:

µ̃(u, s) =

∫∫

R
2
+

e−uv1−sv2θe−θv1 dv1 δv1 (dv2) =
θ

u+ s+ θ
,

where δv1 stands for the Dirac mass at v1. We easily get:

((qλ) ∗ µ̃(·, s)) (t) = qλ

∫ t

0

θ

u+ s+ θ
du = qλθ ln

(

t+ s+ θ

s+ θ

)

and

ν̃t(s) = e−λt
(

1 +
t

s+ θ

)qλθ

.

For t < θ, we have

ν̃t(s) = e−λt

(

1 +

∞
∑

n=0

(

qλθ

n+ 1

)(

t

s+ θ

)n+1
)

where
(

qλθ

n

)

=
qλθ(qλθ − 1) . . . (qλθ − n+ 1)

n!
.

Inverting the Laplace transform ν̃t(s), we obtain:

νt(dx) = e−λt

(

δ0(dx) +

∞
∑

n=0

(

qλθ

n+ 1

)

tn+1

n!
e−θxxn dx

)

.

As FGt
= 1, we get the following full form for the reliability:

RL(t) = (1 ∗ νt)(L)

= e−λt

(

1 +
∞
∑

n=0

(

qλθ

n+ 1

)(

t

θ

)n+1

Fn+1,θ(L)

)

,

where Fn+1,θ is the cumulative distribution function of a gamma distributed
random variable with parameter (n+ 1, θ).

In the special case where V (1) and V (2) are independent, the Laplace in-
version of ν̃t(s) is reduced to inverting ea(t)µ̃2(s), or equivalently to inverting
eC µ̃2(s), where C is a constant. This is hence easier than in the most general
case of correlated V (1) and V (2).

To sum up the section, we have at our disposal four different methods for
computing the reliability:

Method 1 (Direct MC simulations) The main drawbacks of this method
are that it suffers from long computation times and that its implementa-
tion is less direct than for the other methods.

Method 2 (Computing φt (L) through formula (9) and MC simulations)
This method is much quicker and much easier to implement than Method
1. Besides, it is always possible to use it. However, Method 3 (when
possible) and Method 4 are quicker.
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Method 3 (Truncated series expansion + control of the truncation error through Corollary 6)
This method provides very good results as soon as the Pn (t, L)’s (or the
Qn (t, L)’s) are available in full form.

Method 4 (Laplace transform inversion) This method is the best when it
is possible to inverse the Laplace transform ν̃t(s) in full form. Numerical
Laplace inversion also provides quite good results.

4 An ageing property for the system lifetime

Let us recall that a random variable Z (or F̄Z) is New Better than Used (NBU)
if

P(Z > s+ t) ≤ P(Z > s)P(Z > t), (25)

all s, t ≥ 0. We here provide sufficient conditions under which τ is NBU.

Theorem 9 Assume that the intrinsic lifetimes of both components are NBU,
which means that:

e−H(s+t) ≤ e−H(s)e−H(t), all s, t ≥ 0, (26)

FGt+s
(l) ≤ FGt

(l)FGs
(l) , all l, s, t ≥ 0, (27)

where the second condition is true as soon as (Gt)t≥0 is a univariate non negative
Lévy process.
Then, τ is NBU if one among the two following conditions is satisfied:

1. q is non increasing and λ is constant,

2. q is constant and Λ is super-additive (Λ(x+y) ≥ Λ(x)+Λ(y), all x, y ≥ 0).

Proof. Let us first note that, in case (Gt)t≥0 is a univariate non negative Lévy
process, we have:

FGt+s
(u) = P (Gt + (Gt+s −Gt) ≤ u)

≤ P (Gt ≤ u,Gt+s −Gt ≤ u)

= P (Gt ≤ u)P (Gt+s −Gt ≤ u)

= FGt
(u)FGs

(u)

due to the independent and homogenous increments of (Gt)t≥0 for the third
line. Assumption (27) is hence true.

Starting again from

P(τ > t) = e−H(t)φt(L),

and based on the NBU assumption (26), it is sufficient to show that φt(L) is
NBU. Now:

φs+t(L)

= E



FGt+s



L−

Nt+s
∑

i=1

V
(2)
i



 e−
∑Nt+s

i=1 V
(1)
i

(t+s−Ti)

Nt+s
∏

i=1

q(Ti)





≤ E



FGt



L−

Nt+s
∑

i=1

V
(2)
i



× FGs



L−

Nt+s
∑

i=1

V
(2)
i



 e−
∑Nt+s

i=1 V
(1)
i

(t+s−Ti)

Nt+s
∏

i=1

q(Ti)
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due to the second NBU assumption (27).
Under each of the two provided conditions, q is non increasing so that q(Ti) ≤

q(Ti − t), all i ≥ Nt + 1. Using

−

Nt
∑

i=1

V
(1)
i (t+ s− Ti) ≤ −

Nt
∑

i=1

V
(1)
i (t− Ti),

L−

Nt+s
∑

i=1

V
(2)
i ≤ L−

Nt
∑

i=1

V
(2)
i ,

L−

Nt+s
∑

i=1

V
(2)
i ≤ L−

Nt+s
∑

i=Nt+1

V
(2)
i ,

and splitting the exponential and the product into two parts, one gets:

φs+t(L) ≤ E

[

FGt

(

L−

Nt
∑

i=1

V
(2)
i

)

e−
∑Nt

i=1 V
(1)
i

(t−Ti)
Nt
∏

i=1

q(Ti)

× FGs



L−

Nt+s
∑

i=Nt+1

V
(2)
i



 e−
∑Nt+s

i=Nt+1 V
(1)
i

(t+s−Ti)
Nt+s
∏

i=Nt+1

q(Ti − t)



 .

(28)

Setting

T
(t)
i = TNt+i − t , all i ≥ 1,

then
(

T
(t)
n

)

n≥1
are points of the Poisson process

(

N
(t)
s = Nt+s −Nt

)

s≥0
with

admits λ(t+ x) dx for intensity. Equation (28) now writes:

φs+t(L) ≤ E

[

FGt

(

L−

Nt
∑

i=1

V
(2)
i

)

e−
∑Nt

i=1 V
(1)
i

(t−Ti)
Nt
∏

i=1

q(Ti)

× FGs



L−

N(t)
s
∑

j=1

V
(2)
j+Nt



 e−
∑N

(t)
s

j=1 V
(1)
j+Nt

(s−T
(t)
j

)

N(t)
s
∏

j=1

q(T
(t)
j )



 ,

or equivalently:

φs+t(L) ≤

+∞
∑

n=0

E

[

1{Nt=n}FGt

(

L−

Nt
∑

i=1

V
(2)
i

)

e−
∑Nt

i=1 V
(1)
i

(t−Ti)
Nt
∏

i=1

q(Ti)

× FGs



L−

N(t)
s
∑

j=1

V
(2)
j+n



 e−
∑N

(t)
s

j=1 V
(1)
j+n

(s−T
(t)
j

)

N(t)
s
∏

j=1

q(T
(t)
j )



 .

As
(

N
(t)
s

)

s≥0
is independent on (Nu)u≤t and as the Vi’s are i.i.d. and indepen-

dent on (Nu)u≤t, one gets:

φs+t(L) ≤

+∞
∑

n=1

anbn
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with

an = E

[

1{Nt=n}FGt

(

L−

Nt
∑

i=1

V
(2)
i

)

e−
∑Nt

i=1 V
(1)
i

(t−Ti)
Nt
∏

i=1

q(Ti)

]

bn = E



FGs



L−

N(t)
s
∑

j=1

V
(2)
j+n



 e−
∑N

(t)
s

j=1 V
(1)
j+n

(s−T
(t)
j

)

N(t)
s
∏

j=1

q(T
(t)
j )



 .

Noting that bn is independent on n (bn = b0, all n ≥ 0) and that
∑+∞
n=1 an =

φt(L), we finally have

φs+t(L) ≤ φt(L)× φ(t)s (L)

where

φ(t)s (L) = b0 = E



FGs



L−

N(t)
s
∑

j=1

V
(2)
j



 e−
∑N

(t)
s

j=1 V
(1)
j

(s−T
(t)
j

)

N(t)
s
∏

j=1

q(T
(t)
j )



 .

The point now is to prove that φ
(t)
s (L) ≤ φs (L) under the two different as-

sumptions.

1. If λ is a constant, then
(

N
(t)
s

)

s≥0
is identically distributed as (Nu)u≥0.

We hence have
φ(t)s (L) = φs (L)

and the result is clear.

2. If q is constant, then:

φ(t)s (L) = E

[

f∞

((

T
(t)
i

)∞

i=1

)]

,

where

fn ((ti)
n
i=1) = E



FGs



L−

n
∑

j=1

V
(2)
j 1{tj≤s}



 e−
∑

n
j=1 V

(1)
j

(s−tj)1{tj≤s}q
∑

n
j=1 1{tj≤s}





for n ∈ N
∗∪{∞}. Moreover, the respective cumulated intensities of

(Nu)u≥0 and
(

N
(t)
u

)

u≥0
are Λ(x) and Λ(x+ t)− Λ(t), with

Λ(x+ t)− Λ(t) ≥ Λ(x), all t, x ≥ 0

due to the super-additivity of Λ(x). We derive from (Shaked and Shan-
thikumar, 2006, Theorem 6.B.40, Example 6.B.41) that

(Ti)
n
i=1 ≥sto

(

T
(t)
i

)n

i=1

for all n ≥ 1, where ≥sto stand for the standard stochastic order. As fn
is non decreasing with respect to each ti, we get that:

E [fn ((Ti)
n
i=1)] ≥ E

[

fn

((

T
(t)
i

)n

i=1

)]
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for each n ∈ N
∗. Setting n → +∞, we derive by Lebesgue’s dominated

convergence theorem that

lim
n→+∞

E [fn ((Ti)
n
i=1)] = φs (L) ≥ lim

n→+∞
E

[

fn

((

T
(t)
i

)n

i=1

)]

= φ(t)s (L) ,

which achieves the proof.

The conditions of the previous theorem means that

1. the probability for a shock to be non fatal decreases with time (and λ is
constant),

2. the cumulated rate of shocks arrivals is larger at time t than at time t = 0
(and q is constant).

Such conditions hence mean that the environment is more and more stress-
ing, or that it is more stressing after a while than at the beginning. Such
conditions are quite natural.

5 Influence of the dependence induced by the

stressing environment on the system lifetime

We here study the influence on the lifetime τ of different parameters of the
stressing environment: we study the influence of probability q (·), of the depen-
dence between V (1) and V (2) and of the cumulated intensity function Λ. We
hence look at the influence on the lifetime τ of all characteristics of the stressing
environment which make the components dependent. The influence of q (·) is
straightforward. We mention it for sake of completeness.

5.1 Influence of q (·) on the lifetime τ

Let us consider two different systems with identical parameters except from
q (·) (first system) and q̃ (·) (second system) and such that q(w) ≤ q̃(w) for all
w ≥ 0. Then, adding a tilde (∼) to any quantity referring to the second system,
we directly get from (8) that

RL(t) ≤ R̃L(t), all t ≥ 0,

or equivalently that τ is smaller than τ̃ in the sense of the standard stochastic
order (τ ≤st τ̃) :

P (τ > t) ≤ P (τ̃ > t) , all t ≥ 0. (29)

As expected, the lifetime τ is hence increasing with the probability q (·) for a
shock to be non fatal.

5.2 Influence of the dependence between V (1) and V (2) on

the lifetime τ

We here study the influence of the dependence between the two marginal in-
crements V (1) and V (2) on the lifetime τ . To measure the dependence level
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between V (1) and V (2), we use the lower (or upper) orthant order, where we

recall that V =
(

V (1), V (2)
)

is said to be smaller than Ṽ =
(

Ṽ (1), Ṽ (2)
)

in the

lower orthant order (V ≤lo Ṽ ) if

P

(

V (1) ≤ x1, V
(2) ≤ x2

)

≤ P

(

Ṽ (1) ≤ x1, Ṽ
(2) ≤ x2

)

, all x1, x2 ∈ R, (30)

or equivalently if

P

(

V (1) > x1, V
(2) > x2

)

≤ P

(

Ṽ (1) > x1, Ṽ
(2) > x2

)

, all x1, x2 ∈ R. (31)

Proposition 10 Let us consider two different systems, with identical parame-

ters except from
(

V (1), V (2)
)

(first system) and
(

Ṽ (1), Ṽ (2)
)

(second system).

As previously, a tilde (∼) is added to any quantity referring to the second sys-

tem. Assume that
(

V (1), V (2)
)

≤lo

(

Ṽ (1), Ṽ (2)
)

. Then τ is smaller than τ̃ in

the sense of the standard stochastic order (τ ≤st τ̃).

Proof. The point is to show that φt(L) ≤ φ̃t(L). Starting from (9) and

conditioning on σ
(

(Nt)t≥0

)

, we have

φt(L) = E (Θ(Nt, T1, . . . , TNt
))

where

Θ(n, t1, . . . , tn)

= E

(

FGt

(

L−

Nt
∑

i=1

V
(2)
i

)

Nt
∏

i=1

q(Ti)e
−

∑Nt
i=1 V

(1)
i

(t−Ti) |Nt = n, T1 = t1, . . . , Tn = tn

)

= E

(

FGt

(

L−

n
∑

i=1

V
(2)
i

)

n
∏

i=1

q(ti)e
−

∑

n
i=1 V

(1)
i

(t−ti)

)

= E

(

k1

(

n
∑

i=1

V
(2)
i

)

k2

(

n
∑

i=1

V
(1)
i (t− ti)

))

for all n ∈ N, all 0 ≤ t1 ≤ . . . ≤ tn ≤ t, with

k1 (v1) = FGt
(L− v1) ,

k2 (v2) =

n
∏

i=1

q(ti)e
−v2 .

Based on the independence between
(

V (1), V (2)
)

and (Nt)t≥0, it is sufficient to
show that

Θ(n, t1, . . . , tn) ≤ Θ̃(n, t1, . . . , tn),

all n ∈ N, all 0 ≤ t1 ≤ . . . ≤ tn ≤ t to get φt(L) ≤ φ̃t(L). As ((t − ti)x1, x2)
is non decreasing in x1 and x2, we first know from (Shaked and Shanthikumar,
2006, Theorem 6.G.3.) that

(

(t− ti)V
(1)
i , V

(2)
i

)

≤lo

(

(t− ti)Ṽ
(1)
i , Ṽ

(2)
i

)

,
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all 1 ≤ i ≤ n. As
(

(t− ti)V
(1)
i , V

(2)
i

)

i=1,n
and

(

(t− ti)Ṽ
(1)
i , Ṽ

(2)
i

)

i=1,n
are two

sequences of independent random vectors, we derive from the same theorem
that

(

n
∑

i=1

V
(1)
i (t− Ti),

n
∑

i=1

V
(2)
i

)

≤lo

(

n
∑

i=1

Ṽ
(1)
i (t− Ti),

n
∑

i=1

Ṽ
(2)
i

)

.

As both functions k1 and k2 are non decreasing, we derive (same theorem) that

Θ(n, t1, . . . , tn) ≤ Θ̃(n, t1, . . . , tn),

which achieves this proof.
The previous result shows that the more dependent V (1) and V (2) are, the

larger the system lifetime is.

5.3 Influence of the cumulated intensity function Λ on the

lifetime τ

We finally study how the lifetime of the system depends on the frequency of
shocks.

Proposition 11 Let us consider two different systems, with identical param-
eters except from Λ (first system) and Λ̃ (second system). As previously, a
tilde (∼) is added to any quantity referring to the second system. Assume that
Λ ≥ Λ̃, and that q is non decreasing. Then τ is smaller than τ̃ in the sense of
the standard stochastic order (τ ≤st τ̃).

Proof. Using a similar method as for the proof of Theorem 9, we can write
φt(L) as

φt(L) = E (g∞ (Ti)
∞
i=1)

where

gn ((ti)
n
i=1) = E

(

FGt

(

L−

n
∑

i=1

V
(2)
i 1{ti≤t}

)

e
∑

n
i=1

(

ln(q(ti))−V
(1)
i

(t−ti)
)

1{ti≤t}

)

is non decreasing with respect to each ti, all 1 ≤ i ≤ n. As Λ ≥ Λ̃, we derive in
the same way that

(Ti)
n
i=1 ≤sto

(

T̃i

)n

i=1

for all n ≥ 1, which allows to conclude.
This result is very natural. The more frequent the shocks occur, the shorter

the lifetime is.

6 Numerical experiments

6.1 Validation of the results

As already mentioned in Subsection 3, a first possibility for computing the sys-
tem reliability RL(t) is to use classical Monte-Carlo (MC) simulations (Method
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1) and simulate a large number of independent histories for the system up to time
t. We here provide the algorithm that we have used, considering the case where
h (t) = 0, all t ≥ 0 and where V (1) is almost surely positive (P

(

V (1) > 0
)

= 1)
(not essential assumptions).

Algorithm 12 Repeat M times with M large enough:

1. Simulate Gt with given distribution.

2. Simulate Nt according to the Poisson distribution with parameter Λ(t).

3. Simulate Nt i.i.d. random variables W1, . . . ,Wn with p.d.f. λ(x)
Λ(t) 1[0,t](x).

The shock arrival times are given by

(T1, . . . , TNt
) = (W(1), . . . ,W(Nt)),

where (W(1), . . . ,W(Nt)) is the order statistics of (W1, . . . ,WNt
).

4. Simulate Zi as the result of a Bernoulli trial between a fatal (0) and a
non fatal shock (1) at time Ti, with probability q(Ti) for a shock to be non
fatal, all i = 1, . . . , Nt.

5. Simulate Nt i.i.d. random vectors
(

V
(1)
i , V

(2)
i

)

, i = 1, . . . , Nt according

to distribution µ.

6. Simulate the lifetime Y of the first component with conditional hazard rate

A
(1)
t given Ft = σ (As, s ≤ t). With that aim, setting

κ (t) =

∫ t

0

A(1)
s ds =

Nt
∑

i=1

(t− Ti)V
(1)
i

(see (10)), κ (t) is a one-to-one increasing function from [T1,+∞) into
[0,+∞) and, for κ (Tj) ≤ u < κ (Tj+1) with j ≥ 1, we have:

κ−1 (u) =
u+

∑j
i=1 TiV

(1)
i

∑j
i=1 V

(1)
i

.

It is then known that, if U is uniformly distributed on [0, 1], then κ−1 (− ln (U))
is identically distributed as Y , see (Cocozza-Thivent, 1998, Proposition
1.20).

7. Compute

w(j) = 1{Y >t}1{Gt+
∑Nt

i=1 V
(2)
i

≤L}

Nt
∏

i=1

Zi

where j refers to the j−th MC history, with 1 ≤ j ≤M .

At the end of the algorithm, symbol w(j) stands for the realization of a
Bernoulli trial W between an up (1) or down (0) system at time t, with prob-
ability RL (t) for the system to be up. The reliability RL (t) is then classically
approximated by the empirical mean mW of the w(j)’s and a 95% asymptotic
confidence interval is computed.
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Table 2: Validation of the results

Input
(

V (1), V (2)
)

Method R(1) 95 % CI
q(x) = e−x 1 0.5196 [0.5181 0.5212]

V (1) →֒ E(1), V (2) →֒ E(1) Independence 2 0.5195 [0.5184 0.5205]
3, 4 0.5198

q(x) = 0.5 1 0.5049 [0.5033 0.5064]
V (1) = V (2) →֒ E(1) Complete dependence 2 0.5049 [0.5039 0.5059]

4 0.5054

q(x) = e−x,V (2) = V (1) +W (2) 1 0.4809 [ 0.4793 0.4824]
V (1), W (2) independent Dependence 2 0.4813 [ 0.4801 0.4825]

V (1) →֒ E(1), W (2) →֒ E(1)

Table 3: Parameters for the examples

L h Gt q(t) λ V (1) V (2)
(

V (1), V (2)
)

Ex.13 - 0 0 - 1 E(1) E(1) Independent
Ex.14 2 0 0 1 1 E(1) E(1) -
Ex.15 2 0 0 1− e−x - 1 E(1) Independent

Method 2 is based on MC simulations of trajectories of (At)t≥0 and of
(Nt)t≥0 (see Section 3). For both methods 1 & 2, MC simulations are based on

N = 105 histories. Methods 3 & 4 are described in Section 3. The four methods
are compared on a few specific examples. In all these examples, we compare
the reliability at time t = 1 (R(1)) and we suppose that the shock are due to a
homogeneous Poisson process with parameter λ = 1 , L = 2, h = 0 and (Gt)t≥0

is a null process. All other parameters are provided in Table 2, where T →֒ E(1)
means that the random variable T is exponentially distributed with mean 1.

Methods 1 and 2 may be used in any case. Method 2 is more effective
than Method 1 (shorter c.p.u. time and tighter 95% confidence interval - IC
-). Method 3 is more practical when V (1) and V (2) are independent with some
specific distribution. Method 4 is adapted to the case where V (1) and V (2) are
dependent.

6.2 Examples

We here illustrate several properties from a numerical point of view on a few
examples. Examples parameters are provided in Table 3.

Example 13 This example illustrates the NBU property of the lifetime when λ
is constant and q(x) = e−x is non increasing, see Theorem 9. Taking L = 2,
Fig. 1 indeed shows that the remaining lifetime of a system with age t0 = 1 is
stochastically smaller than the lifetime of a new system. On the contrary, when
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Figure 1: Example 13, NBU case

λ is still constant but q(x) = 1− e−3x is non decreasing, the remaining lifetime
of a system with age t0 = 1 is not comparable with that of a new system, see
Fig. 2 with L = 4. So the NBU property does not hold anymore in that case.

Example 14 We here consider two extreme cases for the dependency between
V (1) and V (2): independent or completely dependent (here V (1) = V (2)). The
reliability in the completely dependent case is always greater than in the inde-
pendent case (Fig. 3). This result is coherent with Proposition 10.

Example 15 This example shows the monotony of the reliability with respect to
the intensity of the Poisson process λ (x) when q is increasing, see Proposition
11. The more frequently the shocks occur, the lower the reliability is (Fig. 4).

7 Concluding remarks

We here proposed a random shock model with competing failure modes, which
enlarges several models from the previous literature. The model takes into
account different types of dependence between competing failures modes, where
the dependence is induced by a common external shock environment. The
reliability has been calculated by several different methods and conditions have
been provided under which the system lifetime is New Better than Used. Due
to this ageing property, it might be of interest to propose and study some
maintenance policy to enlarge the system lifetime. Several versions might be
proposed, according to the available information.

Also, the influence of the characteristics of the stressing environment on
the lifetime τ has been studied. As expected, we saw that the lifetime was
stochastically increasing with the probability q (·) for a shock to be non fatal.
Besides, and that result was not necessarily so clear at first sight, we saw that
the lifetime was also stochastically increasing with the dependence between the
two marginal shock sizes. Finally, in case of a non decreasing function q (·), we
saw that the lifetime was stochastically decreasing with the cumulated frequency
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Figure 2: Example 13, not NBU case
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Figure 3: Comparison of reliability for two different types of dependence between
V (1) and V (2), Example 14
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of shocks. This means that the more frequent the shocks occur, the shorter the
lifetime is. This result is natural but our proof is limited to the case of a non
decreasing function q (·). In the special case of Cha and Mi (2011), the survival
function of τ is however given by

P(τ > t) = e−H(t)−
∫

t

0
(1−µ̃1(t−w)q(w))λ(w) dw

and it is easy to check that if λ ≥ λ̃ (stronger assumption than Λ ≥ Λ̃) then
τ ≤st τ̃ , without any special condition on q (·). So, the stochastic monotonicity
of the lifetime with respect of the (cumulated ?) frequency of shocks might be
true under a more general setting than in the present paper, without assuming
any monotonicity condition on q (·). We however have not been able to conclude
on this point, and whether it is true or not remains an open question.
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Monograf́ıas del Semin. Matem. Garćıa de Galdeano, 27:405–412, 2003a.

F. Mallor and J. Santos. Reliability of systems subject to shocks with a stochas-
tic dependence for the damages. Test, 12(2):427–444, 2003b.

A.W. Marshall and M. Shaked. Multivariate shock models for distributions
with increasing hazard rate average. The Annals of Probability, 7(2):343–358,
1979.

25



T. Nakagawa. Shock and damage models in reliability theory. Springer Series in
Reliability Engineering. Springer, London, 2007.

C. Qian, S. Nakamura, and T. Nakagawa. Cumulative damage model with
two kinds of shocks and its application to the backup policy. Journal of the
Operations Research Society of Japan-Keiei Kagaku, 42(4):501–511, 1999.

T. H. Savits. Some multivariate distributions derived from a non-fatal shock
model. Journal of Applied Probability, 25(2):383–390, 1988.

M. Shaked and J. G. Shanthikumar. Stochastic orders. Springer Series in Statis-
tics. Springer, 2006.

N. D. Singpurwalla. Survival in dynamic environments. Statistical Science, 10
(1):86–103, 1995.

G. Skoulakis. A general shock model for a reliability system. Journal of Applied
Probability, 37(4):925–935, 2000.

H.W. Wang and J. Gao. A reliability evaluation study based on competing
failures for aircraft engines. Eksploatacja i Niezawodnosc: Maintenance and
Reliability, 16(2):171–178, 2014.

Y. Zhu, E.A. Elsayed, H. Liao, and L.Y. Chan. Availability optimization of
systems subject to competing risk. European Journal of Operational Research,
202(3):781 – 788, 2010.

26


	Introduction
	The model
	blackCalculation of the system reliability
	blackAn ageing property for the system lifetime
	blackInfluence of the dependence induced by the stressing environment on the system lifetime
	Influence of q( )  on the lifetime 
	Influence of the dependence between V( 1)  and V(2) on the lifetime 
	Influence of the cumulated intensity function  on the lifetime 

	Numerical experiments
	Validation of the results
	Examples

	Concluding remarks

