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a b s t r a c t

AZ31 hot rolled magnesium alloy presents a strong basal texture. Using laser beam welding (LBW) as a
joining process induces high temperature gradients leading to major texture changes.

Electron back scattered diffraction (EBSD) was used to study the texture evolution, and tensile tests
coupled with speckle interferometry were performed to understand its influence on mechanical prop-
erties. The random texture obtained in the LBW fusion zone is mainly responsible for the yield strength
reduction.

1. Introduction

Magnesium alloys are raising more and more interest in struc-
tural applications due to their high specific properties. Joining is one
of the manufacturing routes that can be used to optimise product
design and minimise production costs, but its use still faces many
challenges. Traditional welding techniques are difficult to perform
and the manufacturing process that is most commonly used is gas
tungsten arc welding (GTAW).

However, as this process results in a high level of porosity and
weld deformation, other welding techniques have to be considered
[1].

Laser beam welding (LBW) seems to be a suitable technique to
be used for joining magnesium alloys as it presents a low and pre-
cise heat input, high welding speed and a small heat affected zone
(HAZ) [1]. LBW induces metal fusion and high temperature gradi-
ents which may cause changes in microstructure and crystalline
orientations and lead to residual stress generation. The study of
the microstructure and texture evolution is therefore required to
understand the evolution of mechanical properties.

The magnesium alloy studied here is AZ31 in hot-rolled condi-
tion.

∗ Corresponding author. Fax: +33 4 42 254 990.
E-mail address: lorelei.commin@cea.fr (L. Commin).

Recent studies have been conducted on AZ31 CO2 laser welds
[2–4] using conventional tensile tests. They reported the global
influence of microstructural changes occurring in the fusion zone
(FZ).

In this study, a local analysis was performed. Full field mea-
surement techniques allow the investigation of the contribution of
each microstructural area in the mechanical behaviour of the weld.
The local texture evolution in hot rolled AZ31 caused by Nd:YAG
LBW was analysed using electron backscattered diffraction (EBSD).
Its influence on the weld mechanical behaviour was compared to
the influence of the other microstructural features such as grain
morphology, precipitation state and the influence of residual stress
variations.

2. Experimental procedures

2.1. Material and processing

The base material used is 2 mm thick hot rolled sheets of AZ31–O
magnesium alloy supplied by Salzgitter Magnesium Technologies
(Table 1). Nd:YAG butt welding of AZ31 was carried out using
2.4 kW power and 7 m min−1 welding speed. Argon gas shielding
was used at 30 l min−1. The welding direction was parallel to the
rolling direction.

As-welded samples were studied. The effect of 1 h at 300 ◦C post-
weld heat treatment was also investigated. This heat treatment was
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Table 1
Chemical composition of AZ31 alloy (Salzgitter Magnesium Technologies data).

Element Al Zn Mn Si Cu Ni Fe Ca Other Mg

wt.% 2.5–3.5 0.6–1.4 0.2–0.6 <0.05 <0.008 <0.002 <0.005 <0.02 <0.3 Balance

chosen following [5] which reported that the mechanical properties
would not be further improved by increasing either the annealing
temperature or time.

2.2. Microscopy observations

Optical microscopy, scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) were used to characterise
the precipitation state at different scales. Electron back scattered
diffraction (EBSD) was used to determine the grain size (with a 3◦

misorientation angle threshold) and texture evolutions.
For optical and SEM observations, polished samples were etched

with an acetopicral solution (0.4 g picric acid, 13 ml ethanol, 3 ml
glacier acetic acid and 3 ml boiled water). They were observed using
a Leitz Aristomet optical microscope and a JEOL JMS 6400 Scanning
Electron Microscope (SEM).

For EBSD analysis, SEM was coupled with an HKL EBSD Camera.
The samples were mechanically polished using SiC paper from 400
to 2500 grit and final polishing was performed using a 0.05 �m
alumina suspension. The etchant solution used for EBSD was 10 ml
nitric acid, 30 ml acetic acid, 40 ml boiled water, 120 ml ethanol
for 10 s [6]. A 20 kV electron beam, 10 nA probe current and a 40 ms
integration time were used. TEM was performed using a FEI TECNAI
G2 coupled with energy dispersive spectroscopy (EDS) for chemical
analysis. TEM samples were prepared using a Struers Tenupol-3 jet
polisher with a 14 V polishing voltage. The polishing solution was
10% HCl, 90% butoxy-2-ethanol by volume.

2.3. X-ray diffraction

X-ray diffraction (XRD) was performed using a SEIFERT MZ6TS
diffractometer with Cr K� radiation (�= 0.228975 nm) and a
position sensitive detector (PSD). Residual stress profiles were
investigated. The {2 0 2} diffracting plane and sin2 analysis
method were used [7]. Previous studies on 2 mm thick plates
showed that in-depth residual stresses obtained in the fusion zone

were similar to the ones obtained on the surface [2]. Therefore, XRD
analysis was limited to the sample surface (i.e. no in-depth analysis
using material removal was performed).

2.4. Mechanical characterisation

Microhardness tests were performed using a Leica VMHT cou-
pled with a Sony IRIS CCD.

The sample preparation method was the same as that used for
optical micrographs.

A 0.98 N load was applied during 15 s for each indentation. Three
measurements were taken to determine the error bars.

To capture the heterogeneity of deformation of the materials,
tensile tests were coupled with the speckle interferometry full-field
technique. Speckle interferometry is a technique which allows the
in-plane and out-of-plane deformation measurement of an object
surface. When a rough surface is illuminated by a beam of coher-
ent light (in practice, a laser beam), this surface reflects the light
in all directions according to the principle of Huygens–Fresnel.
Speckle patterns are then obtained due to the interference of the
back-scattered light.

A Q300 Dantec Ettemeyer speckle interferometry system was
used (1380 × 1040 pixels CCD sensor, 2 × 70 mW/785 nm wave
length laser diodes, 100 nm in-plane sensitivity, 30 nm out-of-
plane sensitivity). A layer of diffusive paint was applied to the
sample surface to increase diffusive reflection. The test set up con-
sisted of a small in-house developed tensile stage.

The measurement of the phase variation between two speckle
images (i.e. steps of loading) allows the calculation of out-of-plane
displacement. To measure in-plane displacements, two beams are
used. The phase variation gives a first component of in-plane
displacement. By using an identical setup rotated by 90◦ one
obtains the other component of in-plane displacement. The dis-
placement resolution is close to 0.1 �m for a spatial resolution of
about 16 �m. Strains were obtained from displacements using a
diffuse approximation filtering (radius = 20 pixels, 248 �m resolu-

Fig. 1. Optical micrographs of (a) the weld section, (b) the fusion zone and (c) the base metal-fusion zone transition. (d) SEM image and corresponding EDS maps of AI8Mn5

precipitates in BM.
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Fig. 2. (a) TEM BF image of AI8Mn5 nanoprecipitation in BM, (b) EDS maps of AI8Mn5 nanoprecipitation in BM, (c) EDS analysis across a precipitate observed within the FZ.
(d) EDS map and TEM BF image of a precipitate observed within the FZ.

tion) that provides excellent reconstruction/filtering compromise
as described in [8,9]. The strain resolution is 2 × 10−5.

Conventional tensile tests were performed at 4 mm min−1 strain
rate using an Instron 1185 machine with mechanical grips. Five
specimens were tested for repeatability.

3. Results

3.1. As-welded samples

3.1.1. Weld microstructure—grain size and precipitation
evolution

The LBW microstructure differs in three different zones: the base
metal (BM), the heat affected zone (HAZ) and the fusion zone (FZ).

The BM consists in 10 �m �-Mg equiaxed grains containing
Al8Mn5 precipitates and without twinning (Fig. 1). In this study,
the HAZ could not be distinguished using microscopy: as can be
seen in Fig. 1(c), the transition BM/FZ is very abrupt; in particular
no liquation at grain boundaries can be observed.

Concerning the FZ, its microstructure presented a dendritic
like morphology consisting of the �-Mg phase, the Al8Mn5 inter-
granular precipitation and an additional phase (Fig. 1(a)). The
dendrites were equiaxed in the central areas which last solidi-
fied, whereas columnar dendrite structure was observed at the BM
boundary where the temperature gradients were higher (Fig. 1(c)).
The additional phase morphology consisted of small dark particle
agglomerates distributed along the �-Mg grain boundaries but also
within the �-Mg phase (Fig. 1(b)). This dendritic-like microstruc-
ture observed in the LBW fusion zone is consistent with previous
studies [3] and is similar to the one observed in rapidly solidified
AZ31 [5].

A TEM study was performed to investigate precipitation at the
sub-micrometer scale. In the BM, only nanosized Al8Mn5 precip-
itation was observed (Fig. 2(a) and (b)). In the FZ, large particles
were observed (Fig. 2(c) and (d)) with a size ranging from 500 to
1500 nm. In most cases, they were containing smaller 50–150 nm

particles. EDS was used to identify the nature of these precipitates
(Fig. 2(c) and (d)). It indicated that there was an increase in Al and
Mn content in the small particles, surrounded by an Al–Mg–Zn rich
area. During LBW, rapid solidification occurred and the maximum
solubility of aluminium decreased quickly, causing the precipita-
tion of the remaining aluminium in Mg17(Al, Zn)12 �-phase. The
50–150 nm particles could be identified as Al8Mn5.

Considering the grain structure, the presence of the �-phase in
the FZ prevented grain observation using conventional microscopy
(Fig. 1(b)). The grain size evolution was then studied using EBSD
(Fig. 3). The grain size in the FZ was similar to that found in the
base metal. Moreover, twinning occurred in the FZ (Fig. 1(b)).

3.1.2. Weld microstructure—texture evolution
EBSD was used to study the local texture evolution across the

LBW. The analysis was performed on the weld cross section. EBSD
results showed that whereas the base material exhibits a strong
texture, the material in the fusion zone is not textured (Fig. 3).
Indeed, the grains in the base metal area exhibit a strong basal
texture. The {0 0 2} basal plane normal was parallel to the sam-
ple normal direction, as the analysis was performed in the sample
section. A random colouring in Fig. 3(c) is obtained in the fusion
zone characterizing a random orientation of the equiaxed grains.

3.1.3. Mechanical properties
The weld quality was assessed using optical micrographs. It

should be noted that very little porosity was observed in the
FZ of the weld, the dark spots being mainly Al8Mn5 precipitates
(Fig. 1(a)). The mechanical properties of the samples are therefore
characteristic of the material.

The results of microhardness measurements are shown in Fig. 4.
A larger scatter of the values is obtained in the fusion zone, due to
the microstructural heterogeneity in this area. Higher microhard-
ness values were measured in the FZ and lower values in the FZ
edges. But these evolutions are within the errors bars. Therefore,
the microhardness is only slightly influenced during welding.



Fig. 3. (a) Sketch of the hep crystal, (b) location of the analysis, (c) EBSD maps of the FZ/MB transition, (d) EBSD maps of the LBW section (IPF colouring), and (e) corresponding
pole figures.

Regarding the thermal history, large variations of internal
stresses can be expected along the weld that may influence the
mechanical properties of the weld piece. Therefore, residual stress
variations along the weld were investigated. Fig. 5 displays the
residual stress tensor determined by sin2 method in the base
metal and the fusion zone. It shows that whereas compressive
stresses dominate in the base metal, tensile stresses developed in
the fusion zone. This was attributed to the shrinkage during rapid
cooling. These results are consistent with the AZ31 CO2 LBW Coelho
et al. study [2] which observed 40 MPa tensile residual stresses in
the fusion zone.

During conventional tensile tests, LBW butt welds showed simi-
lar ultimate tensile strength (UTS) but lower yield strength (YS) and
strain to failure compared to the base metal (Fig. 6). The fracture
occurred each time in the base metal.

Tensile tests were then coupled with the speckle interferometry
technique to investigate the local mechanical behaviour evolution
in each zone (Fig. 7).

Fig. 4. Microhardness evolution across the LBW, the shaded area represents the FZ.

Fig. 5. Residual stress tensor evolution between the BM and the FZ, with 1 the
longitudinal direction, 2 the transverse direction and 3 the normal direction of the
weld.

Strain localisation occurred first in the weld area (Fig. 7(a)) and
then within the base metal in bands perpendicular to the loading
direction (Fig. 7(b)). The formation of this type of pattern after load-
ing in hot-rolled AZ31, constituted by a high amount of twins, was
described by Barnett et al. [10]. The fracture finally occurs in these
areas within the BM.

Fig. 6. (a) Conventional tensile properties of the LBW compared to the BM ones, the
error bars represent ± one standard deviation. (b) Fractured sample.



Fig. 7. ε22 maps from speckle interferometry (a) at F = 3.94 kN, with �22 localisation superimposed, (b) at F = 5.45 kN, with the same axis convention as the residual stress
analysis, (c) experimental set-up, and (d) specimen geometry.

As the mechanical behaviour is different in the FZ and the BM,
the tensile load at which strain localisation occurs is different in
each zone. This can be observed in speckle analysis deformation
maps (Fig. 7), each map corresponding to a specific tensile load
applied. Strain localisation occurs first in the FZ at F = 2.75 kN tensile
load and then at F = 5 kN tensile load in the BM. The tensile stresses
associated to these loads can be calculated (�22 localisation) and are
displayed in Fig. 7(a).

3.2. Post-weld heat treated samples

Post weld heat treatment was carried out to try to recover
mechanical properties of the base metal. After post-weld heat
treatment (300 ◦C, 1 h), optical microstructure and mechanical
properties, using conventional tensile tests, were investigated. It
showed that the mechanical properties of the weld can be improved
after annealing. The fracture still occurred in the BM. The strain to
failure and UTS were restored whereas the yield strength remained
lower than that in the BM (Fig. 8(a)).

After post-weld heat treatment the FZ microstructure has
changed (Fig. 8(b)). The Mg17(Al,Zn)12 phase dissolved in the �-
Mg matrix. The grain size could then be analysed using optical
microscopy and it was observed that it had remained similar. This
was also described by Ju et al. after heat treating of rapidly solidified
AZ31 [5].

4. Discussion

The welds studied here did not suffer large porosity content and
therefore, the mechanical properties obtained describe the material
and are not resulting from weld defect influence. LBW resulted in
lower mechanical properties, which was also reported in previous
studies [1,2,4].

The evolution of mechanical properties can be attributed to
the microstructural modification (�-phase formation, precipitate
evolution, texture evolution) or to the residual stress state mod-
ification. In this section the comparative contribution of these
mechanisms will be investigated.

4.1. Yield strength evolution

The Al8Mn5 precipitation was not modified during LBW. Indeed,
Al8Mn5 nanoprecipitation in the FZ exhibited the same morphol-
ogy as that observed in the BM. Moreover, the Mg17(Al–Zn)12 phase
surrounded it. The AZ31/Mn phase diagram [11] for a Mn con-
tent between 0.2 and 0.6% presents a liquid + Al8Mn5 area in the
610–660 ◦C range. Therefore, during solidification, the nanosized
precipitates initially observed in the AZ31 base metal serve as
nucleation sites for the �-phase. This is consistent with the Tamura
study [12], which found that � precipitates preferentially formed
in the Mn-rich areas. Moreover, during �-phase formation, some Al
atoms can be replaced by Zn atoms, then leading to Mg17(Al–Zn)12
compound [12]; in fact, diffusivity of Zn in Mg is higher than the
diffusivity of Al in Mg.

The grain size was not modified both after LBW and after post-
weld heat treatment.

Then, the Mg17(Al, Zn)12 precipitation and the twinning occur-
ring in the fusion zone may act as hardening mechanisms and might
be responsible for the slight microhardness increase.

The �-phase which had formed during LBW had dissolved after
post-weld heat treatment without modifying the yield strength of
the sample. Therefore, the �-phase evolution cannot be responsible
for the yield strength evolution consecutive to LBW.

The residual stress state influence on the yield stress evolution
can be analysed using �localisation determined by speckle interfer-
ometry (Fig. 7) and the residual stress tensor calculated in each zone
(Fig. 5). Indeed, the local material yield stress can be approximated
by the equivalent stress (Von Mises) resulting from the residual
stress tensor and the tensile localisation stress tensor (�localisation).

The applied tensile stress is considered as uniaxial whereas the
residual stresses are multiaxial. Therefore a tensile stress compo-
nent corresponding to�22 localisation was added to the residual stress
corresponding component:�22 =�22 (residual) +�22 localisation, with
the loading direction being the weld transverse direction, labelled
direction 2.

Then, the resulting equivalent stress (Von Mises) was calculated
and assumed to represent the local material yield stress. When



Fig. 8. (a) True stress/strain curve of post-weld heat treated LBW compared to LBW and BM curves. (b) Optical micrographs of FZ after post-weld beat treatment.

comparing it to the equivalent residual stress obtained by XRD, the
residual stresses represent 35% of the material yield stress in the FZ.

Annealing treatment generally results in residual stress relief
[13], but after PWHT, the yield stress was not improved. It shows
that in this case, the residual stress state had not a major influence
on the material mechanical behaviour.

The {0 0 2} basal texture of the BM that is characteristic of the
hot rolling process [14] was dramatically modified after LBW. The
resolidification process occurring in the FZ during LBW leads to the
nucleation and growth of new grains and therefore, as the tempera-
ture gradient within the weld pool is small, no preferred crystalline
orientation is induced in this area. This is consistent with recent
results published by Yu et al. [4].

Whereas the BM strong basal texture allows very few slip sys-
tems, the random texture in the FZ presents a larger variety of grains
aligned more favourably to the tensile direction. This could lead to
the activation of different deformation mechanisms inducing low
yielding strength [4,15]. During PWHT, the grain orientation cannot
be modified without recrystallisation and, as the grain size is con-
stant, the texture cannot be influenced by the preferential growth
of specific oriented grains. Then, the texture that had developed due
to LBW is still present after this PWHT and can actively influence
the mechanical properties.

The lower yield stress can therefore be attributed to the texture
change during LBW.

These results can be compared to those of Coelho et al. [2]. They
also found, when using standard tensile test samples in the trans-
verse direction, that the LBW presented lower yield stress than the
BM. But, when using micro-flat tensile samples to study the local
properties, they found a higher yield stress in the FZ than in the BM.
This contradiction between the standard tensile test results and
the micro-flat specimen results was not explained in their article
but could be attributed to the residual stress relief occurring when
producing the micro-flat tensile samples. Indeed, the difference in
yield stress between their two types of samples is 46 MPa, which
corresponds to the residual stress calculated in the FZ by both our
studies.

4.2. Tensile strength and strain to failure evolution

Conventional tensile tests showed that the UTS dropped by
about 30 MPa after LBW compared to BM. After annealing post-
weld heat treatment, the UTS reached the BM value. This could
be explained by the residual stress relief that had occurred during
post-weld heat treatment.

After LBW, the fracture occurred each time in the BM during
tensile tests, therefore, the loss in mechanical properties after LBW
cannot be attributed solely to the FZ. This is in contradiction with
previous studies. Yu et al. [4] which focussed on very fine grain
microstructure (1.9 �m BM grain size), observed that the fracture
occurred each time in the FZ. They attributed it to the grain coars-
ening in the FZ, which resulted in a lower hardness and a lower
ability to withstand plastic deformation.

Quan et al. [3] recently attributed the loss in UTS and elongation
after LBW to the microstructural change in the FZ. This explanation
is not confirmed in our study. Indeed, the microstructural change
is occurring in the FZ, whereas the fracture occurs in the BM.

This behaviour could be explained by the band formation and
their ability to undergo deformations. Due to the, occurs under
loading in the BM. In the FZ due to the random texture yielding
occurs earlier but, the ductility is lower in the BM because the
basal texture induces limited deformation mechanism leading to
the band formation [10]. After post-weld heat treatment, the band
removal is occurring due to the disappearance of twins during
annealing [16]. This may have led to the UTS and strain to failure
recovery.

5. Conclusions

The study of the evolution of the microstructure and mechanical
behaviour of AZ31 LBW leads to several conclusions:

1. After LBW, the grain size and the Al8Mn5 precipitation remains
similar and Mg17(Al–Zn)12 formation is observed in the fusion
zone.

2. In the fusion zone, the Al8Mn5 nanoprecipitation acts as nucle-
ation site for Mg17(Al–Zn)12 precipitation.

3. The strong {0 0 2} texture of AZ31 hot rolled base metal was
modified by the welding process. The small temperature gra-
dient in the weld pool produced the nucleation of randomly
oriented grains in the fusion zone.

4. A reduction of the yield stress, the UTS and the elongation is
observed after LBW.

5. Post-weld heat treatments are promising since a recovery of
elongation and UTS can be achieved by a 300 ◦C/1 h heat treat-
ment.

6. Precipitation and residual stresses evolutions had a little influ-
ence on the yield strength whereas the texture change occurring
in the fusion zone is mainly responsible for the yield strength
reduction.
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7. The residual stresses and band feature formation during defor-
mation are responsible of the UTS and ductility loss after LBW.
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