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Introduction

Hard nonlinearities as dead-zones are ubiquitous in various components of control systems including sensors, amplifiers and actuators, especially in valve-controlled pneumatic actuators, in hydraulic components and in electric servo-motors. The dead-zone is a static "memoryless" nonlinearity which describes the components A. Boulkroune Faculty of Engineering Sciences, University of Jijel, BP. 98, Ouled-Aissa, 18000, Jijel, Algeria e-mail: boulkroune2002@yahoo.fr insensitivity to small signals. The presence of this nonlinearity severely limits the system performance. Proportional-derivative controllers have been observed to result in limit cycles if the actuators have dead-zone. The most straightforward way to cope with dead-zone nonlinearities is to cancel them by employing their inverses. However, this can be done only when the dead-zone nonlinearities are exactly known. The study of constructing adaptive dead-zone inverse was initiated by Tao and Kokotovic [START_REF] Tao | Adaptive sliding control of plants with unknown dead-zone[END_REF][START_REF] Tao | Discrete-time adaptive control of systems with unknown dead-zone[END_REF]. Continuous-time and discrete-time adaptive deadzone inverses for linear systems with immeasurable dead-zone outputs were built respectively in [START_REF] Tao | Adaptive sliding control of plants with unknown dead-zone[END_REF] and [START_REF] Tao | Discrete-time adaptive control of systems with unknown dead-zone[END_REF]. Simulation results show that tracking performance is significantly improved by using dead-zone inverse. This work was extended in [START_REF] Cho | Convergence results for an adaptive dead zone inverse[END_REF][START_REF] Bai | Adaptive dead-zone inverse for possibly nonlinear control systems[END_REF] and a perfect asymptotical adaptive cancellation of an unknown dead-zone was achieved with the condition that the dead-zone output is available for measurement. However, this condition can be very restrictive. In [START_REF] Kim | A two-layered fuzzy logic controller for systems with dead-zones[END_REF][START_REF] Lewis | Dead-zone compensation in motion control systems using adaptive fuzzy logic control[END_REF][START_REF] Jang | A dead-zone compensator of a DC motor system using fuzzy logic control[END_REF] fuzzy precompensators were proposed to deal with dead-zone in nonlinear industrial motion systems. In [START_REF] Selmic | Dead-zone compensation in motion control systems using neural networks[END_REF], the authors employed neural networks to construct a dead-zone inverse precompensator. Given a matching condition to reference model, an adaptive control with adaptive dead-zone inverse has been investigated in [START_REF] Wang | Model reference adaptive control of continuous-time systems with an unknown dead-zone[END_REF]. For a dead-zone with equal slopes, a robust adaptive control was developed, in [START_REF] Wang | Robust adaptive control of a class of linear systems with unknown dead-zone[END_REF], for a class of nonlinear systems without constructing the inverse of the dead-zone. In [START_REF] Shyu | Design of large-scale time-delayed systems with dead-zone input via variable structure control[END_REF], a decentralized variable structure control was proposed for a class of uncertain large-scale systems with state time-delay and dead-zone input. However, some dead-zone parameters and gain signs need to be known. In [START_REF] Zhou | Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity[END_REF], an adaptive output feedback control using backstepping and smooth inverse function of the dead-zone was proposed for a class of nonlinear systems with unknown deadzone. However, in this adaptive scheme, the over-parameterization problem still exists.

In other respects, most systems involved in control engineering are multivariable in nature and exhibit uncertain nonlinear behavior, leading thereby to complex control problems. This explains the fact that only few potential solutions are available in the general case. Some adaptive fuzzy control schemes [START_REF] Chang | Robust tracking control for nonlinear MIMO systems via fuzzy approaches[END_REF][START_REF] Li | A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems[END_REF][START_REF] Ordonez | Stable multi-input multi-output adaptive fuzzy/neural control[END_REF][START_REF] Tong | Fuzzy adaptive sliding model control for MIMO nonlinear systems[END_REF][START_REF] Tong | Fuzzy adaptive output feedback control for MIMO nonlinear systems[END_REF] have been developed for a class of MIMO nonlinear uncertain systems thanks to the universal approximation theorem [START_REF] Wang | Adaptive Fuzzy Systems and Control: Design and Stability Analysis[END_REF]. The stability of the underlying closed-loop control system has been analyzed in Lyapunov sense. A key assumption in these fuzzy adaptive control schemes is that the sign of the control gain matrix is known a priori. When there is no a priori knowledge about the signs of the control gains, the design of adaptive controllers for MIMO nonlinear systems becomes more challenging. For a special class of MIMO nonlinear systems with unknown gain signs, adaptive neural and fuzzy control schemes have been respectively proposed in [START_REF] Zhang | Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs[END_REF] and [START_REF] Zhang | Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones[END_REF]. In these control schemes, the Nussbaum-type function [START_REF] Nussbaum | Some remarks on the conjecture in parameter adaptive control[END_REF] has been used to deal with the unknown control directions. Moreover, two restrictive modeling assumptions have been made to facilitate the stability analysis and the control design, namely a lower triangular control structure for the system under control and the boundedness of the so-called high-frequency control gains.

In this paper, we consider a class of uncertain MIMO nonlinear systems with both unknown dead-zone and unknown sign of the control gain matrix. To the best of our knowledge, there is only two works in the literature dealing with uncertain MIMO nonlinear systems with unknown sign of high-frequency gains [START_REF] Zhang | Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs[END_REF][START_REF] Zhang | Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones[END_REF]. The main contributions of this paper with respect to [START_REF] Zhang | Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs[END_REF][START_REF] Zhang | Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones[END_REF] are the following:

1. The considered class of systems is more larger as the modeling assumptions made in [START_REF] Zhang | Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs[END_REF][START_REF] Zhang | Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones[END_REF] are relatively restrictive, namely lower triangular control structure with bounded high-frequency control gains. Such modeling requirements are mainly motivated by stability analysis and control design purposes.

2. A unique Nussbaum-type function [START_REF] Nussbaum | Some remarks on the conjecture in parameter adaptive control[END_REF] is used in order to estimate the true sign of the control gain matrix unlike in [START_REF] Zhang | Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs[END_REF][START_REF] Zhang | Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones[END_REF] where many Nussbaum-type functions are used.

3. Motived by a matrix decomposition used in [START_REF] Chen | Adaptive Output Feedback Control for a Class of MIMO Nonlinear Systems[END_REF][START_REF] Costa | Lyapunov-based adaptive control of MIMO systems[END_REF], we decompose the control gain matrix into the product of a symmetric positive-definite (SPD) matrix, and a diagonal matrix with +1 or -1 on the diagonal (which are ratios of the signs of the leading minors of the control input gain matrix), and a unity upper triangular matrix.

4. The stability analysis is relatively simple and different from that pursued in [START_REF] Zhang | Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs[END_REF][START_REF] Zhang | Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones[END_REF].

Problem Formulation and Definition

Consider the following class of unknown nonlinear MIMO systems with unknown dead-zone nonlinearity:
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Then, the system (1) can be rewritten in the following compact form:
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where p R F ∈ (.) and

p p R G × ∈ (.)
. The objective of this paper is to design a control law v which ensures the boundedness of all variables in the closed-loop system and guarantees the output tracking of a specified desired trajectory 
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Notice that if we choose 0

> i λ , with p i ,..., 1 =
, then the roots of polynomial The relation [START_REF] Lewis | Dead-zone compensation in motion control systems using adaptive fuzzy logic control[END_REF] can be rewritten in the following compact form
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and therefore the dynamic of S can be written into the following compact form
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From ( 18), we can write (15) as follows
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Thereafter, (20) will be used in the development of the fuzzy controller and the stability analysis.

Dead-Zone Model

The dead-zone model with input i v and output i u in Fig. 1 can be described as follows.
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where 0

> ri b , 0 < li b and 0 > ri m , 0 > li m
are parameters and slopes of the dead-zone, respectively. In order to study the characteristics of the dead-zone in the control problems, the following assumptions are made:

Assumption 1 a) The dead-zone output i u (i.e. ) ( i i v N
) is not available for measurement.

b) The dead-zone slopes are same in left and right, i.e. Based on the above features, we can redefine dead-zone model as follows
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Then, the output vector of the dead-zone can be rewritten as follows:
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where ) (v d is an unknown bounded vector which can be treated as bounded disturbances.

[ ] = = T p u u u ,..., 1 [ ] T p p v N v N ) ( ),..., ( 1 
1
is the dead-zone output vector and recall that
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is the input vector.

Decomposition of the Matrix G(.)

Motived by [START_REF] Chen | Adaptive Output Feedback Control for a Class of MIMO Nonlinear Systems[END_REF][START_REF] Costa | Lyapunov-based adaptive control of MIMO systems[END_REF], in the control design, we need the following useful lemma.

Lemma 1. [START_REF] Costa | Lyapunov-based adaptive control of MIMO systems[END_REF] Any real matrix (symmetric or no-symmetric)
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with non-zero leading principal minors can be decomposed as follows:
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is a diagonal matrix with +1 or -1 on the diagonal, and
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is a unity upper triangular. Proof of lemma 1. See [START_REF] Costa | Lyapunov-based adaptive control of MIMO systems[END_REF] and [START_REF] Strang | Linear Algebra and its applications[END_REF].

It is worth noting that the decomposition of matrix (.)

G in ( 25) is very useful. In fact, the symmetric positive-definite ) (x G s will be exploited in the Lyapunovbased stability, D contains information on the sign of the original matrix (.) G , while the unity upper triangular matrix ) (x T allows for algebraic loop free sequential synthesis of control signals

i v , p i ,..., 2 , 1 = ∀ .

Nussbaum Function

In order to deal with the unknown sign of the control gain matrix, the Nussbaum gain technique will be used. A function

) (ζ N
is called a Nussbaum-function, if it has the following useful properties [START_REF] Nussbaum | Some remarks on the conjecture in parameter adaptive control[END_REF][START_REF] Ge | Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems[END_REF]:
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The following functions are Nussbaum functions [START_REF] Ge | Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems[END_REF]:
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Of course, the cosine in the above examples can be replaced by the sine. It is very easy to show that ) ( In the stability analysis, thereafter, we will need this lemma. Lemma 2. [START_REF] Zhang | Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones[END_REF][START_REF] Ge | Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems[END_REF] 
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where g is non-zero constant and 0 c represents some suitable constant, then
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Proof of Lemma 2. See the proof in [START_REF] Ge | Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems[END_REF].

Description of the Fuzzy Logic System

The basic configuration of a fuzzy logic system consists of a fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference engine and a defuzzifier, as shown in Fig. 2. The fuzzy inference engine uses the fuzzy IF-THEN rules to perform a mapping from an input vector

n n T R x x x x ∈ = ] ,..., , [ 2 1 to an output R f ˆ∈ .
The ith fuzzy rule is written as f is the fuzzy singleton for the output in the ith rule. By using the singleton fuzzifier, product inference, and centeraverage defuzzifier, the output of the fuzzy system can be expressed as follows :
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is the fuzzy basis function (FBF).

It is worth noting that the fuzzy system [START_REF] Boulkroune | General adaptive observer-based fuzzy control of uncertain nonaffine systems[END_REF] is the most frequently used in control applications. Following the universal approximation results [START_REF] Wang | Adaptive Fuzzy Systems and Control: Design and Stability Analysis[END_REF], the fuzzy system ( 28) is able to approximate any nonlinear smooth function ) (x f on a compact operating space to any degree of accuracy. In this paper, like the majority of the available results, it is assumed that the structure of the fuzzy system (i.e. pertinent inputs, number of membership functions for each input, membership function type, and number of rules) and the membership function parameters are properly specified by the designer. As for the consequent parameters, i.e. θ , they must be calculated by learning algorithms. 

Design of Fuzzy Adaptive Controller

Using the matrix decomposition (25), the system (2) can be rewritten as follows:

) ( ) ( ) ( ) ( ) ( v N x DT x G x F y s r + = (30) 
To facilitate the control design and the stability analysis, the following realistic assumptions are considered [START_REF] Boulkroune | Adaptive fuzzy control for MIMO nonlinear systems with unknown dead-zone[END_REF]. 
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,..., , ,..., ,..., , 1 [START_REF] Boulkroune | Adaptive fuzzy control for MIMO nonlinear systems with unknown dead-zone[END_REF].

From the equations (30) and ( 20), and since ) (x G s is SPD, the dynamic of S can be rewritten as follows
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Using ( 24), (32) can be rearranged as follows
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is also a PD matrix but not necessary symmetric. In order to preserve this useful propriety (i.e. the symmetry) which will be exploited later in the stability analysis, the following assumption is made on the matrix M : 
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It is very clear from the propriety of the matrix of . Define the compact sets as follows
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The unknown nonlinear function

) ( i i z
α can be approximated, on the compact set i z Ω , by the fuzzy system [START_REF] Boulkroune | General adaptive observer-based fuzzy control of uncertain nonaffine systems[END_REF], as follows:
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where ) ( i i z ψ is the FBF vector, which is fixed a priori by the designer, and i θ is the adjustable parameter vector of the fuzzy system.

Let us define
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As in literature [START_REF] Chang | Robust tracking control for nonlinear MIMO systems via fuzzy approaches[END_REF][START_REF] Li | A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems[END_REF][START_REF] Ordonez | Stable multi-input multi-output adaptive fuzzy/neural control[END_REF][START_REF] Tong | Fuzzy adaptive sliding model control for MIMO nonlinear systems[END_REF][START_REF] Tong | Fuzzy adaptive output feedback control for MIMO nonlinear systems[END_REF][START_REF] Wang | Adaptive Fuzzy Systems and Control: Design and Stability Analysis[END_REF][START_REF] Boulkroune | Adaptive fuzzy control for MIMO nonlinear systems with unknown dead-zone[END_REF][START_REF] Boulkroune | How to design a fuzzy adaptive control based on observers for uncertain affine nonlinear systems[END_REF][START_REF] Boulkroune | General adaptive observer-based fuzzy control of uncertain nonaffine systems[END_REF], we assume that the used fuzzy systems do not violate the universal approximator property on the compact set i z Ω , which is assumed large enough so that input vector of the fuzzy system remains within i z Ω under closed-loop control system. So it is reasonable to assume that the fuzzy approximation error is bounded for all
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From the above analysis, we have ),
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. 0 which will be later explained in details.

The adaptive laws are designed as follows:
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> i i σ γ γ are design constants. The term i i i i S θ γ σ 1
, which is called e modification term, is introduced in order to ensure both the parameters boundedness and the convergence of the tracking error to zero.

Note that the control law (40) is principally composed of the three control terms: a fuzzy adaptive term ) (z T ψ θ which is used to cancel the nonlinearities is used to estimate the true control direction.

After substituting the control law (40) into tracking error dynamics (33) and using (39), we can get the following dynamics of the closed-loop system:
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, where ii D are diagonal terms of D.

Multiplying (44) by T S , we have
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Theorem. Consider the system (1) with Assumptions 1-3. Then, the control law defined by ( 40)-( 41) with the adaptation law given by (42-43) guarantees the following properties:

•

All signals in the closed loop system are bounded. 
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Its time derivative is given by
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Using ( 45) and (42-43), V can be bounded as follows 
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According to Lemma 2, [START_REF] Zhang | Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones[END_REF][START_REF] Ge | Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems[END_REF], we have

) (t V , τ ζ ζ d gN t ∫ + 0 )) ( 1 ( , ζ are bounded in [0, f t ).
Similar to discussion in [START_REF] Zhang | Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones[END_REF][START_REF] Ge | Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems[END_REF], we know that the above discussion is also true for +∞ = In order to show the boundedness of i S , we must rearrange Equation (44) as follows

- + + + + - - - - = - ] ) ( ) ( [ ) ( ) ( ) ( 5 . 0 )[ ( 1 0 0 1 2 1 2 S K S Sign K z z z S Sign K S K S G x G S T T ψ θ ε ψ θ )] ( 1 v Dd M Dv - - (50) 
From (50) and since

i S , i θ ~∞ ∈ L v d z x v K i ) ( ), ( , , , , 0 ε θ , ) ( 1 2 x G - is positive- definite matrix (i.e. 0 0 > ∃σ , such as 0 1 2 ) ( σ ≥ -x G
) and ) ( ).

Simulation Results

In this section, we present simulation results showing the tracking performances of the proposed control design approach applied to a two-link rigid robot manipulator which moves in a horizontal plane. The dynamic equations of this MIMO system are given by: The control objective is to force the system outputs 1 q and 2 q to track the sinusoidal desired trajectories ) sin( , , , q q q q as inputs, while ) ( 1

⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + - - - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - 2 1 1 2 1 2 2 1 1 22 21 12 11 2 1 0 ) ( q q q h q q h q h u u M M M M q q , ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ) ( ) ( 2 2 1 1 2 1 v N v N u u (51) where ), sin( 2 ) cos( 2 2 4 2 3 1 11 q a q a a M + + = , 2 22 a M = ), sin( ) cos( 2 4 2 3 2 12 21 q a q a a M M + + = = ) cos( ) sin( 2 4 2 3 q a q a h - = with , 2 
1 1 z T ψ θ has 2 2 2 1 1
, , , , v q q q q as inputs. For each variable of the entries of the fuzzy systems, one defines three (triangular and trapezoidal [START_REF] Boulkroune | How to design a fuzzy adaptive control based on observers for uncertain affine nonlinear systems[END_REF]) membership functions uniformly distributed on the intervals [ ] 

Conclusion

In this paper, a fuzzy adaptive controller, for a class of MIMO unknown nonlinear systems with both unknown dead-zone and unknown sign of the control gain matrix, has been presented. The Nussbaum-type function has been particularly used to deal with the unknown sign of the control gain matrix. The decomposition property of the control gain matrix has been fully exploited in the control design. A fundamental result has been obtained. It concerns the closed-loop control system stability as well as the convergence of the tracking error to zero. Simulation results have been reported to emphasize the performances of the proposed controller.
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  The choice of the vectors i z (input arguments of the unknown functions i α ) is not unique. In fact, since we known that S and v are functions of state x and dx , then it can be seen quite simply that all i z are implicitly functions of x and d x (e.g. we can chose
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