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Observer synthesis for a class of MIMO non triangular nonlinear

systems

M. Triki1,2, M. Farza1, M. M’Saad1, T. Maatoug2, B. Dahhou3,4

Abstract— A high gain observer is proposed for a class of
nonlinear systems involving some uncertainties. In the absence
of the uncertainties, the considered class of systems becomes
a canonical form that characterizes a class of uniformly
observable systems and the observation error exponentially
converges to zero. In the presence of uncertainties, it is shown
that the observation error can be made as small as desired by
appropriately specifying the design parameter of the observer
gain. Two main contributions are worth to be emphasized: the
first one is related to the structure of the considered class of
systems which does not assume a complete triangular structure.
That is, each block may contain nonlinearities which depend
on the whole state. The second one lies in the simplicity of
the observer gain design since its calibration is reduced to the
choice of a single design parameter. More specifically, it involves
a design function that has to satisfy a mild condition which is
given. Different expressions of such a function are proposed.
Of particular interest, it is shown that high gain observers
and sliding mode like observers can be derived by considering
particular expressions of the design function. An example with
simulation results is given for illustration purposes.

keyword : Nonlinear systems. High gain observers. Slid-

ing mode observers. MIMO systems.

I. INTRODUCTION

The need to study the observer design problem for nonlin-

ear dynamical systems is, from a control point of view, well

understood by now. The list of references herein covers part

of the recent works done in that area ([11], [12], [13], [17],

[10], [8], [16], [14], [3], [1], [6], [7], [15], [4], [9]). In this

paper, one aims at designing a high gain observer for a class

of nonlinear uncertain systems satisfying some regularity

assumptions. The general framework of this observer design

is based on the contributions given in [2], [6], [9]. The gain

of the proposed observer is issued from the resolution of

a constant Lyapunov algebaric equation and it is explicitly

given. Its tuning is achieved through the choice of a single

parameter whatever the dimension of the considered system

is.

More specifically, one exhibits a state observer for nonlinear

systems which are diffeomorphic to:
{

ẋ = Ax + ϕ(u, x) + ε̄(t)
y = Cx

(1)
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where the state x =











x1

x2

...

xq











∈ IRn, with xk =











xk
1

xk
2
...

xk
λk











∈ IRnk , xk
i ∈ IRpk , i = 1, . . . , λk, k = 1, . . . , q,

q
∑

k=1

nk =

q
∑

k=1

pkλk = n with pk ≥ 1 and λk ≥ 2; the

output y =











y1

y2

...

yq











∈ IRp with yk ∈ IRpk , k =

1, . . . , q and

q
∑

k=1

pk = p; A =







A1

. . .

Aq






, Ak =











0 Ipk
0

...
. . .

0 . . . 0 Ipk

0 . . . 0 0











, C =







C1

. . .

Cq






,

Ck =
[

Ipk
0 . . . 0

]

and the nonlinear function

field ϕ(u, x) =











ϕ1(u, x)
ϕ2(u, x)

...

ϕq(u, x)











∈ IRn; ϕk(u, x) =











ϕk
1(u, x)

ϕk
2(u, x)

...

ϕk
λk

(u, x)











∈ IRnk where for k = 1, . . . , q, the element

ϕk
i (u, x) ∈ IRpk has the structural dependence on the states:

• for 1 ≤ i ≤ λk − 1:

ϕk
i (u, x) = ϕk

i (u, x1, x2, . . . , xk−1, xk
1 , xk

2 , . . . , xk
i ,

xk+1
1 , xk+2

1 , . . . , xq
1) (2)

• for i = λk:

ϕk
λk

(u, x) = ϕk
λk

(u, x1, x2, . . . , xq) (3)

The function ε̄(t) is a completely unknown function. Many

components of this function are zero since its structure can

be described as follows:
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ε̄(u, x) =











ε̄1(t)
ε̄2(t)

...

ε̄q(t)











∈ IRn with

• ε̄k ≡ 0 for k = 2, . . . , q.

• ε̄1
i ≡ 0 for i = 1, . . . , λ1 − 1.

• ε̄1
λ1

≡ ε(t) where ε(t) is an unknown bounded function

i.e.

∃η > 0; ∀t ≥ 0; ‖ε(t)‖ ≤ η (4)

Notice that in the absence of uncertainties, the class of

considered systems generalizes that considered in [15] in

two directions. Firstly, the output xk
1 of each sub-block k

is not a scalar as in [15] but belongs to IRpk . Secondly,

unlike in [15]where the nonlinearity intervening in the last

equation of each sub-block, namely ϕk
λk

(u, x), assumes the

same triangular state dependence as the previous variables of

the same sub-block, i.e. ϕk
λk

(u, x) satisfies (2) with i = λk,

a more general state dependence (3)is assumed in this paper.

Moreover, it has been also shown in [9] that in the case

where no uncertainty is considered, the class of systems the

authors considered is diffeomorphic to system (1) with q = 1
which means that in [9], all the output belong to the same

block. In the case where the uncertainties are considered,

system (1) includes the class of systems considered in ([4]).

In fact, many systems involving unknown inputs can be put

under form (1) and this allows to design nonlinear observers

that simultaneously estimate the state variables as well as the

unknown inputs as shown in [5].

This paper is organized as follows. In section 2, the observer

design is given and a full convergence analysis is detailed. It

is shown that the observation error exponentially converges

to zero in the absence of uncertainties, and can be made

as small as desired in the presence of uncertainties. The

latter result is achieved by appropriately specifying the

design parameter involved in the observer gain. In section

3, different expressions of the observer design function are

proposed giving rise to different observers. Simulation results

are given in section 4 to illustrate the effectiveness of the

proposed observer design.

II. OBSERVER DESIGN

As generally used in the high gain observer methodology,

one assumes that system (1) satisfies the following Lipschitz

assumption:

Assumption 1: ϕ(u, x) is a globally Lipschitz nonlinear

function with respect to x uniformly to u.

Before giving a candidate observer, one introduces the fol-

lowing notations:

• Let ∆k(θ) be the diagonal matrix defined by:

∆k(θ) = diag

(

Ipk
,

1

θδk
Ipk

, . . . ,
1

θδk(λk−1)
Ipk

)

(5)

where θ > 0 is a real number and one defines δk which

indicates the power of θ as follows:


















δk = 2q−k

(

q
∏

i=k+1

(λi − 1)

)

for k = 1, . . . , q − 1
δq = 1

(6)

Notice that for any k = 1, . . . , q − 1, one has

δk

2
= (λk+1 − 1)δk+1 (7)

Since λk ≥ 2, the δq’s constitute a decreasing sequence of

positive real numbers, i.e.

δ1 ≥ δ2 ≥ . . . ≥ δq > 0 (8)

It is easy to show that the following identities hold:

• ∆k(θ)Ak∆−1
k (θ) = θδkAk

• ∆−1
k (θ)Ck = Ck

(9)

• Let Sk be the unique solution of the algebraic Lyapunov

equation

Sk + AT
k Sk + SkAk = CT

k Ck (10)

where Ak and Ck are defined in system (1). It can be shown

that the explicit solution of (10) is symmetric positive

definite for every θ > 0 and in particular, one has

S−1
k CT

k = (C1
nk

Ipk
, . . . , Cnk

nk
Ipk

)T

• ∀ξk ∈ IRpk , let Kk(ξk) ∈ IRpk be a vector of smooth

functions satisfying:

ξkT

Kk(ξk) ≥ 1

2
ξkT

ξk (11)

A candidate observer for system (1) is described by the

following dynamical system:

˙̂xk = Akx̂k+ϕk(u, x̂)−θδk∆−1
k (θ)S−1

k CT
k Kk(Ckek) (12)

for k = 1, . . . , q with

• x̂ =











x̂1

x̂2

...

x̂q











∈ IRn, x̂k =











x̂k
1

x̂k
2
...

x̂k
λk











∈ IRnk , x̂k
i ∈

IRpk , i = 1, . . . , λk, k = 1, . . . , q,

q
∑

k=1

nk = n.

• x̂k
1 = xk

1 (output injection) for k = 1, . . . , q.

• x̂k
i = x̂k

i if i 6= 1.

• ek = x̂k − xk.

• The function Kk’s satisfy condition (11).

• u and y are known inputs and outputs of system (1).

Indeed, one can establish the following fundamental result.

Theorem 2.1: Assume that system (1) satisfies assump-

tion (1), then:

∀M > 0; ∃θ0 > 0; ∀θ ≥ θ0; ∃λθ > 0; ∃µθ > 0;

∃βθ > 0 such that for k ∈ {1, . . . , q}: ‖x̂k(t) − xk(t)‖ ≤
λθe

−µθt‖x̂(0) − x(0)‖ + βθη for every admissible control

2



u s.t. Essup‖u(t)‖ ≤ M where η is the upper bound

of ‖ε‖ given in (4) . Moreover, λθ is polynomial in θ,

lim
θ→∞

µθ = +∞ and lim
θ→∞

βθ = 0.

Proof of Theorem (2.1): set the estimation error e(t) =
x̂(t)−x(t) and let ek(t) be the k′th subcomponent of e(t) .

For writing convenience and as long as there is no ambiguity,

one shall omit the time t for each variable. One has:

ėk = Akek + ϕk(u, x̂) − ϕk(u, x)

− θδk∆−1
k (θ)S−1

k CT
k Kk(Ckek) − ε̄k (13)

where u is an admissible control such that ‖u‖∞ ≤ M ,

M > 0 is a given constant. For k = 1, · · · , q, set

ēk = ∆k(θ)ek (14)

From equation (13) and using identities (9), one gets:

˙̄ek = θδkAkēk − θδkS−1
k CT

k Kk(Ckēk)

+ ∆k(θ)(ϕk(u, x̂) − ϕk(u, x)) − ∆k(θ)ε̄k (15)

Set

Vk(ēk) = θ−2σk
1 ēkT

Skēk (16)

where the σk
1 ’s are some reals that shall be specified later

and let V (ē) =

q
∑

k=1

Vk(ēk) where S = diag(S1, · · · , Sq), be

the candidate Lyapunov function. One has:

V̇k = 2θ−2σk
1 ēkT

Sk ˙̄ek

= 2θδk−2σk
1 ēkT

SkAkēk − 2θδk−2σk
1 ēkT

CT
k Kk(Ckēk)

+ 2θ−2σk
1 ēkT

SkΛk(θ)(ϕk(u, x̂) − ϕk(u, x))

− 2θ−2σk
1 ēkT

SkΛk(θ)ε̄k

Using the algebraic Lyapunov equation (10), one gets:

V̇k = −θδk−2σk
1 ēkT

Skēk + θδk−2σk
1 ēkT

CT
k Ckēk

− 2θδk−2σk
1

(

Ckēk
)T

Kk(Ckēk)

+ 2θ−2σk
1 ēkT

Sk∆k(θ)(ϕk(u, x̂) − ϕk(u, x))

− 2θ−2σk
1 ēkT

Sk∆k(θ)ε̄k

Using property (11) satisfied by the function Kk, one obtains:

V̇k ≤ −θδk−2σk
1 ēkT

Skēk + θδk−2σk
1 ēkT

CT
k Ckēk

− 2θδk−2σk
1

(

Ckēk
)T

Ckēk

+ 2θ−2σk
1 ēkT

Sk∆k(θ)(ϕk(u, x̂) − ϕk(u, x))

− 2θ−2σk
1 ēkT

Sk∆k(θ)ε̄k

= −θδk−2σk
1 ēkT

Skēk − θδk−2σk
1 ēkT

CT
k Ckēk

+ 2θ−2σk
1 ēkT

Sk∆k(θ)(ϕk(u, x̂) − ϕk(u, x))

− 2θ−2σk
1 ēkT

Sk∆k(θ)ε̄k

≤ −θδkVk

+2θ−2σk
1 ‖Skēk‖‖∆k(θ)(ϕk(u, x̂) − ϕk(u, x))‖

+2θ−2σk
1 ‖Skēk‖‖∆k(θ)ε̄k‖

≤ −θδkVk +

+2
√

λk
max

√

Vk

λk
∑

i=1

1

θσk
i

‖(ϕk
i (u, x̂) − ϕk

i (u, x))‖

+2
√

λk
max

√

Vk

αk,1η

θσk
1
+(λ1−1)δ1

where λk
max is the maximum eigenvalue of Sk, σk

i = σk
1 +

(i − 1)δk and αk,1 is the Kroneker symbol, i.e αk,1 = 1 if

k = 1 and 0 otherwise.

Therefore,

V̇k ≤ −θδkVk

+ 2ρk

√

λk
max

√

Vk

λk
∑

i=1

q
∑

l=1

λl
∑

j=1

χk,i
l,j θσl

j−σk
i θ−σl

1‖ēl
j‖

+ 2
√

λk
max

√

Vk

αk,1η

θσk
1
+(λ1−1)δ1

where ρk=sup{
∥

∥

∥

∥

∥

∂ϕk
i

∂xl
j

(u, x)

∥

∥

∥

∥

∥

;x ∈ IRnand ‖u‖∞ ≤ M} and

χk,i
l,j = 0 if

∂ϕk
i

∂xl
j

(u, x) ≡ 0, χk,i
l,j = 1 otherwise.

Now, one has

V̇k ≤ −θδkVk

+ 2ρk

√

λk
max

√

Vk

λk
∑

i=1

q
∑

l=1

λl
∑

j=1

χk,i
l,j θσl

j−σk
i θ−σl

1‖ēl‖

+ 2
√

λk
max

√

Vk

αk,1η

θσk
1
+(λ1−1)δ1

≤ −θδkVk

+ 2ρk

√

λk
max

√

Vk

λk
∑

i=1

q
∑

l=1

λl
∑

j=1

χk,i
l,j θσl

j−σk
i

√
Vl

√

λl
min

+ 2
√

λk
max

√

Vk

αk,1η

θσk
1
+(λ1−1)δ1

3



where λl
min is the minimum eigenvalue of Sl.

Thus,

V̇k ≤ −(
√

θδkVk)2 + 2ρkµS

√

θδkVk

λk
∑

i=1

q
∑

l=1

λl
∑

j=1

χk,i
l,j θσl

j−σk
i −

δk
2
−

δl
2

√

θδlVl

+2
√

λk
max

√

Vk

αk,1η

θσ1

1
+(λ1−1)δ1

where µS =

√

λmax(S)

λmin(S)
.

Please notice the last term appearing in the right hand side of

the last inequality is to be dropped for k 6= 1. As a result, the

real σk
1 appearing in the denominator of this term is replaced

by σ1
1 .

The remaining of the proof is as follows. One firstly assumes

that the reals σk
1 , k = 1, . . . , q are chosen such that the

following conditions are satisfied:

0 = σ1
1 > σ2

1 > . . . > σq
1 (17)

if χk,i
l,j = 1 then σl

j − σk
i − δk

2
− δl

2
≤ −1

2
(18)

σk
1 + (λk − 1)δk is constant for k = 1, . . . , q (19)

Then, one shall shows that such a choice is possible and

provides a set of σk
1 ’s satisfying such conditions.

Now, suppose that condition (18) holds and assume that θ ≥
1. Then, one gets:

V̇k ≤ −(
√

θδkVk)2 + 2ρkµS

√

θδkVk

λk
∑

i=1

q
∑

l=1

λl
∑

j=1

θ−
1

2

√

θδlVl

+2
√

λk
max

√

Vk

αk,1η

θσ1

1
+(λ1−1)δ1

≤ −(
√

θδkVk)2 + 2λkρkµSθ−
1

2

√

θδkVk

q
∑

l=1

λl
∑

j=1

√

θδlVl

+2
√

λk
max

√

Vk

αk,1η

θσ1

1
+(λ1−1)δ1

Now, set V ∗

k = θδkVk for k = 1, · · · , q and V ∗ =

q
∑

k=1

V ∗

k .

Notice that

θV ≤ V ∗ ≤ θδ1V (20)

Then,

V̇k ≤ −V ∗

k + 2λkρkµSθ−
1

2

√

V ∗

k

q
∑

l=1

λl
∑

j=1

√

V ∗

l

+2
√

λk
max

√

Vk

η

θσ1

1
+(λ1−1)δ1

≤ −V ∗

k + 2λknρkµSθ−
1

2

√

V ∗

k

√
V ∗

+2
√

λk
max

√

Vk

η

θσ1

1
+(λ1−1)δ1

≤ −V ∗

k + 2λknρkµSθ−
1

2 V ∗

+2
√

λk
max

√

Vk

η

θσ1

1
+(λ1−1)δ1

Hence,

V̇ ≤ −(1 − 2n2ρµSθ−
1

2 )V ∗

+ 2
√

λmax

√
V

η

θσ1

1
+(λ1−1)δ1

where ρ = max{ρk, 1 ≤ k ≤ q} and λmax =
max{λk

max, 1 ≤ k ≤ q}.

Using (20), one gets

V̇ ≤ −θ(1 − 2n2ρµSθ−
1

2 )V + 2
√

λmax

√
V

η

θσ1

1
+(λ1−1)δ1

This leads to:

√

V (ē(t)) ≤ exp

(

−θ(1 − 2n2ρµSθ−
1

2 )

2
t

)

√

V (ē(0))

+
2
√

λmaxη

θ(1 − 2n2ρµSθ−
1

2 )θσ1

1
+(λ1−1)δ1

(21)

and therefore one obtains for k = 1, . . . , q:

√

Vk(ēk) ≤ exp

(

−θ(1 − 2n2ρµSθ−
1

2 )

2
t

)

√

V (ē(0))

+
2
√

λmaxη

θ(1 − 2n2ρµSθ−
1

2 )θσ1

1
+(λ1−1)δ1

(22)

On one hand, from the definition of V and Vk (equation

(16)), one has

θσk
1

√

Vk(ēk)
√

λk
max

≤ ‖ēk‖ ≤ θσk
1

√

Vk(ēk)
√

λk
min

(23)

On another hand, from the definition of ēk (equation (14)),

one has:

‖ēk‖ ≤ ‖ek‖ ≤ θ(λk−1)δk‖ēk‖ (24)

Finally, from the definition of Vk and according to (17) and

(5), one has

(
√

V (ē) ≤
√

λmax‖ē‖ ≤
√

λmax‖e‖ (25)

4



Combining (22), (23) and (24), one gets:

‖ek‖ ≤ θσk
1
+(λk−1)δk

√
λmax√
λmin

exp

(

−θ(1 − 2n2ρµSθ−
1

2 )

2
t

)

‖e(0)‖

+
2
√

λmaxη√
λmin

θσk
1
+(λk−1)δk

θ(1 − 2n2ρµSθ−
1

2 )θσ1

1
+(λ1−1)δ1

= θσk
1
+(λk−1)δk

√
λmax√
λmin

exp

(−θ(1 − 2n2ρµSθ−ε)

2
t

)

‖e(0)‖

+
2
√

λmaxη√
λmin

θ−σ1

λ1
+σk

λk

θ(1 − 2n2ρµSθ−
1

2 )

= θ(λ1−1)δ1

√
λmax√
λmin

exp

(−θ(1 − 2n2ρµSθ−ε)

2
t

)

‖e(0)‖

+
2
√

λmaxη√
λmin

1

θ(1 − 2n2ρµSθ−
1

2 )
(26)

The last equality comes from property (19) satisfied by the

σk
1 ’s. The parameters λθ, µθ and βθ of the theorem are hence:

λθ = θ(λ1−1)δ1

√
λmax√
λmin

, µθ =
−θ(1 − 2n2ρµSθ−

1

2 )

2

βθ =
2
√

λmax√
λmin

1

θ(1 − 2n2ρµSθ−
1

2 )

To end the proof of the theorem, one shall exhibit a set of

reals σk
1 satisfying conditions (17), (18) and (19).

Before providing the set of σk
1 ’s, one firstly notes that

according to the state dependence given by (2) and (3), the

case where χk,i
l,j = 1, k, l ∈ {1, . . . , q} and j ∈ {2, . . . , λl},

occurs if and only if one of the following three situations is

met:

• k > l and i takes any value in {1, . . . , λk}.

• k = l and i ∈ {1, . . . , λk} with i ≥ j.

• k < l and i = λk.

Now, for k = 1, . . . , q and i = 1, . . . , λk, let us define the

σk
i ’s as follows:

σk
i = σk

1 + (i − 1)δk

where σk
1 = −(λk − 1)δk + (λ1 − 1)δ1 (27)

and the δk’s are given by (6). According to (27), one has:

σl
j − σk

i − δk

2
− δl

2
= σl

1 + (j − 1)δl − σk
1 − (i − 1)δk

−δk

2
− δl

2
= −(λl − 1)δl + (j − 1)δl

+(λk − 1)δk − (i − 1)δk − δk

2
− δl

2

= (λk − i − 1

2
)δk + (j − λl −

1

2
)δl(28)

Let us now check condition (18) by considering the three

cases listed above.

• k > l and i takes any value in {1, . . . , λk}:

Please notice that since k > l, one has k ≥ 2. Equality (28)

becomes:

σl
j − σk

i − δk

2
− δl

2
≤ (λk − 3

2
)δk − δl

2

= (λk − 1)δk − δk

2
− δl

2

≤ (λk − 1)δk − δk

2
− δk−1

2
(29)

The last inequality results from (8).

Using (7), one obtains

σl
j − σk

i − δk

2
− δl

2
≤ −δk

2
≤ −1

2
(30)

• k = l and i ∈ {1, . . . , λk} with i ≥ j:

Equation (28) specializes as follows:

σl
j − σk

i − δk

2
− δl

2
= (j − i − 1)δk

≤ −δk ≤ −δq ≤ −1

2

• k < l and i = λk:

Equation (28) becomes:

σl
j − σk

i − δk

2
− δl

2
= −δk

2
+ (j − λl −

1

2
)δl

≤ −δk

2
− δl

2
≤ −1

2

To end the proof of the theorem , one has to check property

(17). It is easy to check from (27) that σ1
1 = 0. Thus, it

remains to show that

σk+1
1 − σk

1 > 0 for k = 1, . . . , q − 1 (31)

On one hand, one has:

σk
1 = −(λk − 1)δk + (λ1 − 1)δ1

On another hand, one has:

σk+1
1 = −(λk+1 − 1)δk+1 + (λ1 − 1)δ1

= −δk

2
+ (λ1 − 1)δ1

This leads to

σk+1
1 − σk

1 = −δk

2
+ (λk − 1)δk = (λk − 3

2
)δk > 0

III. SOME PARTICULAR DESIGN FUNCTIONS

Some particular expressions of the design function Kk that

satisfy condition (11) shall be given. It will be shown that

each of these expressions yields a well known observer.

Indeed, one has:

• The usual high gain design function given by

Kk(ek
1) = ρ ek

1 (32)

where ρ is a positive scalar satisfying ρ ≥ 1

2
. Notice

that the function Kk is bounded as soon as ek
1 is.
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• The design function involved in the actual sliding mode

framework

Kk(ek
1) = ρ sign(ek

1) (33)

where ρ is a positive scalar and ’sign’ is the usual

signum function. It is worth mentioning that the re-

quired property (11) holds in the case of bounded input

bounded state systems for relatively high values of

ρ. However, this design function induces a chattering

phenomena which is by no means suitable in practical

situations.

• The design functions that are commonly used in the

sliding mode practice, namely

Kk(ek
1) = ρ tanh(koe

k
1) = ρ tanh(koe

k
1)(34)

where tanh denotes the hyperbolic tangent function and

ρ and ko are positive scalars. One can easily show that

the design function (34) satisfies the property (11) for

relatively high values of ko. More particularly, recall

that one has lim
ko−→+∞

tanh(koe
k
1) = sign(ek

1).

IV. EXAMPLE

Consider the following dynamical system






























ẋ1 = x2 − tanh(x1)
ẋ2 = x3

2 + ε(t) − x4 − sin(x5)
ẋ3 = x4 − x3

2 − tanh(x3)
ẋ4 = x5 + x2/(1 + x2

2) + cos(x4)
ẋ5 = −x2 ∗ sin(x2) − x3

5

y = (x1 x3)
T

(35)

where the uncertainty term ε(t) is given by ε(t) = 2cos(t).
It is clear that system (35) is under form (1) with λ1 = 2 and

λ2 = 3. An observer of the form (12) can be hence designed

for the estimation of the state without any prior knowledge

on the expression of the uncertainties. Please notice that one

has δ1 = 2(λ2 − 1) = 4 according to (6).

Simulation results corresponding to the non measured state

variables are given in figure 1. This clearly shows the ability

of the observer in providing accurate state estimates as the

curves of x2 and x̂2 become quickly superimposed in spite

of different corresponding initial conditions. Indeed, these

simulations have been carried out using the following initial

conditions xi(0) = 1 for the model and x̂1 = x̂3 = 1,

x̂i = −1 for observer. The value of the design parameter θ
was set to 8.

V. CONCLUSION

A high gain observer for a large class of nonlinear MIMO

systems has been proposed in this paper. Unlike previous

works related to high gain observer design, a complete

triangular structure is not assumed. Moreover, the gain of the

proposed observer involves a well defined design function.

The latter provides a unified framework for the high gain

observer design, namely classical high gain observers and

several versions of sliding mode like observers are obtained

by considering particular expressions of the design function.
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Fig. 1. Simulation results for xi, i = 2, 4, 5
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