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Abstract

In order to support the optimization of mortarless brick linings of steel producing furnaces it is
proposed in this paper to investigate only the compressibility of dry refractory joints. To this end,
optical measurements based on the Digital Image Correlation method were carried out during com-
pression of Magnesia-Carbon brick samples with dry joints. The second main objective is to assess
the accuracy of the secant linearization schemes (the classical secant procedure and its modified
extension) to reproduce the reference local and global behaviour of refractory mortarless linings ac-
counting for the identified inelastic convex power-law behaviour of the Magnesia-Carbon dry joint.
The reference nonlinear solution is obtained by means of finite elements method. Under normal
compressive loading, unlike for usual (concave) power-law viscoplastic composites for which the
secant schemes are known to provide too stiff results, it was found that the modified secant scheme
leads to good overall predictions. The classical secant procedure underestimates the reference local
and overall behaviour. To improve the latter result, an empirical improved secant formulation was
proposed and implemented. It leads to better estimates at local and global levels.

Key words: Mortarless joint; Digital Image Correlation; Nonlinear (convex) power-law
behaviour; Linearization; Classical secant procedure; Modified secant method; improved empirical
secant scheme; Homogenization

1. Introduction

Many large-sized structures as civil engineering or historical buildings, monumental structures
and refractory ceramic linings of metallurgical vessels are made of masonry material. Masonry is
a composite material obtained by joining natural (clay, stone, etc) or artificial (ceramic) bricks
by means of mortar layers as in refractory linings. For reasons of durability and resistances to
harmful factors (fire, water, chemical products, etc.), the conventional bonded masonry is replaced
by mortarless masonry systems such as interlocking mortarless hollow concrete block systems [39],
dry-stack mortarless sawn stone constructions (as the Egyptian pyramids and the Zimbabwe ruins
for example) [37] and refractory linings of industrial furnaces including vessels of steel industry
where the ceramic bricks are laid in direct contact with each other [1, 11, 26].

For conventional mortared masonry structures, several approaches and models have been developed
and presented in the literature to investigate and predict their behaviours. For numerical purpose,
two main approaches have been adopted for mortared masonry modelling: macro-modelling and

Preprint submitted to European Journal of Mechanics May 14, 2014



micro-modelling. For the global structural behaviour, the macro-modelling approach [9, 17, 22]
intentionally ignores the interaction between units and mortar but smears the effect of joint presence
through the establishment of a relation between average strains and average stresses. It defines
then a fictious homogeneous and continuous material equivalent to the studied masonry composite
which is heterogeneous and discrete. Macro-approaches obviously require a preliminary mechanical
characterization of the model based on experimental laboratory or in-situ tests on sufficiently
large-sized masonry structures under homogeneous states of stress. The alternative micro-modelling
approach adopted by many researchers [13, 18, 19, 20, 29, 34] is suitable for small structural elements
with particular interest in strongly heterogeneous states of stress and strain. Its primary aim is to
closely represent masonry from the knowledge of the properties of each constituent and the interface.
The experimental data must be obtained from laboratory tests on masonry constituents and small
masonry specimens. In studies based on micro analysis, two main approaches have been used: the
simplified approach which is the more refined and the detailed micro-modelling approach. Simplified
methods consist in modelling the bricks, mortar and interface separately by adopting suitable
constitutive laws for each component. A simplified micro-model is an intermediate approach where
the properties of the mortar and the mortar interface units are lumped into a common element,
while expanded elements are used to model the brick units. Although this model reduces the
computational cost of the analysis, some accuracy is obviously lost. Even it is proved that the
micro-modelling approach gives highly accurate results especially at local level, such approach can
hardly be used in practice for structural design since its model requires a separate discretization of
bricks and joints, leads to intractable numerical difficulties as the size of the problem increases.
For mortarless masonry, there have been limited analytical and numerical studies which depend
mainly on the type of blocks used to assemble the walls. Among these studies, a finite element
model was proposed by Oh [27] to simulate the behaviour of interlocking mortarless block developed
in Drexel University. Such a procedure is useful to simulate the contact behaviour of mortarless
joint including geometric imperfection of the mortarless joint but is suitable only for modelling
small masonry assemblies. Material nonlinearity is not considered to account for the behaviour of
the masonry near the ultimate load and to predict failure mechanism. Alpa et al. [2] suggested a
macro-model based on homogenization techniques to model the joint and the block as a homogenous
material. That model focuses on the joint movement mechanism assuming perfect joint. This
model ignores significant issues such as material nonlinearity, joint imperfection and progressive
material failure. Recently, Thanoon et al. [39, 40] proposed a finite element model and developed
an incremental-iterative program to predict the behaviour and failure mechanism of the system
under compression. The nonlinear progressive contact behaviour of mortarless joint that takes into
account the geometric imperfection of the block bed interfaces is included based on experimental
testing. The developed contact relations for dry joint within specified bounds can be used for
any mortarless masonry system efficiently with less computational effort. As a continuity of the
work of Gasser et al. [11], Nguyen et al. [26] proposed a model based on linear homogenization
technique performed with finite element method. It derived four equivalent homogeneous materials
for which mechanical properties depend on the joint state, on the basis of the joint opening/closure
mechanism. The transition criteria between these joint states are based on the unilateral contact
conditions written in terms of macroscopic strain. Similar studies [6, 10] based on the same idea
of four equivalent homogeneous materials for which mechanical properties depend on the joint
state were carried on masonry refractory structures. On the other hand, Senthivel and Lourenço
[37] developed a nonlinear finite element analysis based on experimental data to model deformation
characteristics such as load-displacement envelope diagrams and failure modes of dry stack masonry
shear walls subjected to combined axial compression and lateral shear loading. This analysis is
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based on a multi-surface interface model where bricks and joints are assumed elastic and inelastic,
respectively. More recently, K. Andreev et al. [1] investigate the compressive closure of dry joints in
two classes of refractory bricks: Magnesia-Carbon and Magnesia-Chromite bricks. The general aim
of the investigation was to obtain data on the compressive joint closure behaviour to get a better
insight into the masonry stress state and the joint condition during the service cycle of the furnace.
To this end, the process of joint closure was measured indirectly by compressing samples with and
without joints in wide temperature range. At room temperature, also direct optical measurements
were performed. FEM computer analysis was used to interpret the measurement results.
Either for conventional mortared or mortarless masonry structures, a continuum model based on
micromechanical considerations seems more preferable. Indeed, recently, especially in the case of
regular masonry, efficient and reliable models based on periodic homogenization have been made
to allow nonlinear analysis of large scale structures at a low numerical cost. The present work
is closely connected with the latter kind of analysis. Its relevance is based on its dependence on
nonlinear homogenization methods sustaining mean-field theories classically applied to nonlinear
composites. In this paper, it is then proposed to assess the accuracy of predictive schemes belonging
to the class of secant methods (the classical [3, 15] and its modified approach [31, 35, 36]) to the
particular case of refractory mortarless masonry. At room temperature, the nonlinear behaviour of
the mortarless ceramic joint was identified experimentally based on Digital Image Correlation (DIC)
method. The behaviour of the brick unit was assumed to be linear elastic. Linearization procedures
defining a linear comparison composite (LCC) were then applied only for the head and bed dry
joint behaviours. The linear homogenization of the LCC’s behaviour was performed using finite
element method (FEM). Therefore, the approximations on the macroscopic level are related to the
sole linearization procedure. Results of nonlinear homogenization sustaining mean-field theories are
compared at global and local scales to the results of the nonlinear reference solution. Furthermore,
it is proposed to improve the results of the classical secant scheme in order to better estimate local
and global behaviours of mortarless masonry. Note that the methodology proposed in this paper
can be enlarged to the more general case of mortared masonry or eventually for masonry at high
temperatures.

2. Experimental characterization of mortarless joint behaviour

In many furnaces, e.g. converters of steel industry, Magnesia-Carbon (MaC) bricks are laid on dry
joint, without usage of mortar. The quantitative knowledge of the compressive behaviour of dry
joints is an essential design parameter. As an example one can regard the superposition of the stress
reducing effect of the joint. For these reasons and in order to support optimization of refractory
masonry structures only the compressibility of dry joint will be investigated. Compressive tests on
a stack of two Magnesia-Carbon (MaC) bricks (without mortar) were carried out. Commercially
available MaC bricks were used. Their composition is shown in Table 1. Because of their high
resistance against chemical and mechanical wear the bricks are used in the insulating linings of
steel making vessels. The morphology of the brick is bigger grains of Magnesia and graphite in the
matrix of small Magnesia grains. The maximal grain size is 5 mm. The bricks are resin bonded.

Tests were performed at atmospheric conditions on mechanical frame Instron 4507 with a load
cell of 200 kN (Fig. (1)). The load accuracy is about 0.2% of the reached load. The samples
are cut from bricks to dimensions of 100 × 50 × 50 mm3 and the faces are not polished. The
compression tests are performed with constant displacement rate of 0.033 mm/min. 2D Digital
Image Correlation (DIC) [38, 41] is used to measure the compressive behaviour of the dry joint
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Material Type MaC

Density, g/cm3 2.93
Open porosity, % 10
MgO, % 98
Cr2O3, % -
CaO, % 1
Fe2O3, % 0.5
Al2O3, % -
SiO2, % 0.5
Total C, % 14

Table 1: Chemical composition and physical properties of MaC bricks [1]

with a 7D correlation software [42]. The DIC is an optical method based on grey value digital
images. The plane surface of the specimen is observed by a CCD camera that has a resolution of
1380 × 1024 pixels in our case. Then, the images on the specimen surface, one before and others
after deformation, are recorded, digitized and stored in a computer as digital images. These images
are compared to detect displacements by searching a matched point from one image to another
by means of a series of mathematical mapping and cross correlation functions. Once the location
of this point in the deformed image is found, the local strain tensor can be determined from the
spatial distribution of the displacement field for each image.

As it is almost impossible to find the matched point using a single pixel, an area with multiple
pixel points is used to perform the matching process. This area usually called subset should
contain several clear features but it is often a compromise between resolution and accuracy. As a
general rule, larger subset sizes will increase the accuracy whereas a smaller subset will increase
the resolution but realistically the size of a subset is determined by the quality of the image and
speckle pattern. In our case, another criterion is added for the subset size. Indeed, in order to
evaluate the joint behaviour, the grid must be put in place on the joint and must have only a small
overlap onto the bricks. For that, the grid steps have been optimized before using the DIC analysis
on joints. The chosen subset is 6 × 6 pixels that corresponds to an area width of about 0.5 mm.
The accuracy of the DIC reaches 0.01 pixel which represents in our case a resolution of 0.001 mm
on the displacement. In order to perform this process, a grey scale random pattern that allows
matching the subset is needed on the surface of the specimen. In our case, the natural pattern of
the bricks is enough to produce a suitable pattern.

Due to roughness, shape defaults and non parallelism of faces, the dry joint is not horizontally
aligned and its thickness is not constant. It is difficult to contain the joint in the same line of
subsets. For this, measurements were performed at different locations along a joint (Fig. (2)). For
each location, the DIC method allows the measurement of the evolutions of the local normal εnn,
tangential εtt and shear εnt strains. These strain components were averaged over each grid area and
lead to the dry joint compressive stress-strain curves as shown on Fig. (3)-a for the third selected
area for example.

Note that the DIC method does not provide the local stress in the dry joint. Moreover, as the bricks
and dry joint are disposed in series, it is possible to assume that σ(x) is set equal to the imposed
normal stress σ̄nnn⊗ n. On Fig. (3)-a, it can be seen that at the beginning, intensive joint strain
develops at relatively low stresses. With progressive loading, reaction to the compaction increases.
At a certain stress level the joint appears to be closed completely as the closure curve aligns itself
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Figure 1: Experimental setup, compression test on brick-dry joint-brick laminate

Figure 2: Optical measurement areas during a two brick compression test (MaC)
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(a) (b)

Figure 3: ”Stress-strain components” curves (a) and ”σnn − εnn” evolutions at different areas selected around the
mortarless joint of MaC material

parallel to the compressive stress axis. After the joint closure, the compressive behaviour of the
sandwich brick/dry-joint/brick will be approximatively linear. Fig. (3)-b presents an example
of measurements taken at different locations of a MaC dry joint. We note that the compressive
strains are different according to the place where they were determined, but the dispersion remains
correct. The fluctuation of the obtained data is due to the pattern size which is function of the
microstructure size of the Magnesia-Carbon material. The bad contact resulting from natural
roughness or from the fact that the contacting surfaces are not perfectly plan parallel is also a
parameter that influences the fluctuation and the dispersion of the measured strains.
In the following, the subscripts b and j denote the bricks and joints, respectively. The properties
of the dry joint are evaluated in terms of the average over all the selected areas Ai (i = 1, N) of
the local normal stress and strain components εnn, εtt, εnt and εzz. Indeed, the latter component
is not null under the adopted assumption of plane stress. Moreover, the shear strain components
εlz (l = t or n) are null and the strain components εtt and εzz are assumed to be equal in the (t,
z) plane orthogonal to the direction of the compressive loading.

3. Nonlinear homogenization of refractory mortarless linings

Since refractory mortarless linings present periodic microstructure, it is possible to consider only a
periodic cell as shown on Fig.(4)-a. Note that the MaC bricks are assumed to follow an isotropic
linear elastic behaviour. That of the dry joints is nonlinear as identified previously by the DIC
method. The lining’s periodic microstructure enables a finite elements (FE) computation of the
local and global responses. The FE result is regarded as reference solution and denoted hereafter
by NL. Note that the local and overall behaviour of the mortarless masonry can also be estimated
or approximated by means of nonlinear mean-field homogenization theories such as the classical
secant procedure and its modified extension. Other ”stress-strain” linearization schemes (e.g. the
affine formulation) or potential-based approaches (the tangent second-order formulation, for in-
stance) are to be adressed in the future since they need much more material parameters such as
the polarization (or pre-stress) and the pre-strain for thermoelastic ”stress-strain” formulations or
the potential strain energy for ”potential-based” approaches.
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For mortarless refractory linings, in order to assess the accuracy of the existing secant linearization
schemes known to provide too stiff predictions for usual viscoplastic power-law composites (see for
instance [33]), it is proposed to compare their predictions at global and local scales by reference to
the NL solution. Moreover, in order to evaluate the sole effect of the linearization scheme without
any bias or ambiguity, it is proposed to avoid any approximation related to the linear homogeniza-
tion step. The main idea relies on the adoption of an LCC with an identical microstructure to that
of the original problem and to perform FE linear homogenization on this LCC by means of finite
elements method. Besides, as the periodic cell presents two axes of symmetry: the normal and the
tangential directions along the unit vectors n and t, respectively, only its quarter (see Fig. (4)-b)
will be retained for computation. In this paper note that the term ”exact” is let between quotation

Figure 4: Periodic masonry cell (a) and its quarter part (b) considered for the modelling.

marks since the accuracy of the reference solution depends on the numerical errors and mainly on
the accuracy of the adopted functions fitting the experimental data.

3.1. Reference solution: FE nonlinear homogenization

3.1.1. Reference material properties of the constituents

The following power-law relation between the local normal stress σnn and normal strain εnn is
identified using the experimental data for the MaC mortarless joint (see Figure (5)):

σnn(εnn) = Ejeεnn + σ0ε
m0
nn (1)

where the scalars Eje , σ0 (MPa) and m0 are given in Tab. (2). Note that the scalar Eje can be

Eje σ0 m0

0.489 2.11 106 4.6

Table 2: Parameters of the ”normal stress- normal strain” relation for the MaC mortarless joint.
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(a) (b)

Figure 5: Evolutions of the experimental data: the linear part of the MaC mortarless joint’s ”σnn- εnn” relation (a)
and ”(σnn − (Ejeεnn))- εnn” evolution (b) functions of the local normal strain εnn.

considered as the initial Young’s modulus of the interphase since it is determined by the linear part
of the curves ”σnn−εnn” (see Figure (5)-a). Moreover, by analogy with the usual (concave) power-
law viscoplastic materials, the constant σ0 can be assumed to represent the flow stress parameter.
Note that, in the current study, the exponent m0 is superior to 1 which is not the case for the usual
viscoplastic (concave) power-law composites for which it is well known that the work-hardening
exponent m is less than 1. This is due to the convex qualitative trend of the ”σnn−εnn” constitutive
law.
The local normal compressive behaviour of the dry joint can then be defined by the nonlinear convex
power-law ”< σnn >

j - < εnn >
j” relationship given by equation (1). However, the transversal

behaviour of the considered interphase can be defined by the evolution of the ratio − <εtt>j

<εnn>j
between

the tangential and normal strain field components over the interphase, denoted hereafter by the
parameter νj , as a function of the interphase local normal strain εnn. This evolution depicted on
Fig. (6)-a can be fitted by the ensuing polynomial second-order evolution

νj(εnn) = c2ε
2
nn + c1εnn + c0 (2)

The scalars ci (i = 0, 2) are given by Table (3). A linear approximation of the evolution of ”νj-εnn”

c2 c1 c0
29.16 −3.313 0.131

Table 3: Parameters of the evolution law of νj as function of the MaC mortarless joint’s local normal strain.

was avoided because it presents more than one slope (two different slopes) and the accuracy for
each linear approximation is less than 0.5 shown on Fig. (6)-a. Moreover, since this evolution (see
Fig. (6)-a) is very fluctuant, a polynomial approximation of the parameter νj with a degree greater
than 2 was also avoided. Indeed, in practice, such polynomial approximation does not necessarily
improve the accuracy shown on Fig (6)-a - either inferior or not much higher (around 0.6 instead
of 0.5 for e.g. for a polynomial function of degree 3 or 4). For the isotropic linear elastic behaviour
of the MaC bricks, the Young’s modulus and Poisson’s ratio are taken respectively set equal to
Eb = 10 GPa and νb = 0.1 (see [1]).
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(a) (b)

Figure 6: Evolution of the dry joint’s parameter νj as function of (a) the local normal strain εnn and (b) the spherical
part tr(ε) of the local strain.

3.1.2. Reference local and global behaviours of the nonlinear mortarless masonry

For the considered nonlinear problem, the local stress σ and strain ε fields in the periodic unit cell,
assumed to have the volume V and to be submitted to the macroscopic strain ε̄, are solutions of
the following set of equations [5]

u(x) = ε̄.x+ u∗(x), ∀x ∈ V and u∗# on ∂V
ε(u(x)) = 1

2(∇u(x) +t ∇u(x)) = ε̄+ ε(u∗(x))), ∀x ∈ V
div(σ) = 0, ∀x ∈ V and σ.n −# on ∂V
σ(x) =

∑
r=j,b χ

r(x)gr(ε(x)), ∀x ∈ V

(3)

where u is the local displacement vector and u∗ is its fluctuanting part. χr(x) is the characteristic
function of phase r (set to 1 if x ∈ V r and 0 otherwise) and gr is the nonlinear constitutive law
σ = gr(ε) followed by this phase. The general notations # and−# mean that the fluctuating part of
the displacement vector u∗ and the surface compression σ.n (n being the outer normal) are periodic
and anti periodic on the cell boundary ∂V , respectively. Note that the average < ε(u∗(x)) >V over
the periodic unit cell of the strain field of the fluctuating part u∗ of the displacement vector is null
[25].
The local and effective behaviours of the mortarless refractory unit cell are computed using the
software Cast3M [7] under the assumption of a plane stress field. In the unit periodic cell, the joints
and bricks are assumed to be perfectly bonded. To determine the effective behaviour of the cell,
three types of loading are applied to the periodic mortarless unit cell. Since the behaviour of the
dry joint’s can be assumed to be piecewise linear, it is possible to define at each strain increment the
following macroscopic law σ̄ = L̃ : ε̄ where σ̄ =< σ >V is the overall stress over the periodic cell
and L̃ denotes the instantaneous ”secant” reference effective stiffness of the mortarless refractory
unit cell.
According to the classical Voigt notation, the constitutive behaviour law of the unit cell reads: σ̄nn

σ̄tt
σ̄nt

 =

 L̃nnnn L̃nntt 0

L̃nntt L̃tttt 0

0 0 L̃ntnt

 ε̄nn
ε̄tt

2ε̄nt

 (4)

where σ̄kl = fj σ̄
j
kl + fbσ̄

b
kl, fr is the volume fraction of the phase r defined by fr = V r

V and
ār =< a >r is the average over phase r of the stress or strain field component a.
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Note that the software Cast3M provides the reference local strain and stress fields inside each phase
- the bricks and mortarless joints -. Moreover, it allows the calculation of the average fields over
each phase. For computation purposes, note that the components εtt and εzz inside the dry joint
are not assumed to be equal, as it is the case in the previous section, but they are given due to the
finite elements method.
The relations between the components of the effective stiffness L̃ijkl and the overall elastic engi-
neering constants (normal Ẽn and tangential Ẽt Young’s modulus, Poisson’s ratios ν̃nt and ν̃tn,
shear modulus G̃nt) under plane stress assumption read:

L̃nnnn =
Ẽn

1− ν̃ntν̃tn
L̃tttt =

Ẽt
1− ν̃ntν̃tn

L̃nntt =
Ẽnν̃tn

1− ν̃ntν̃tn
L̃ntnt = G̃nt
ν̃nt

Ẽn
=
ν̃tn

Ẽt

(5)

To assess the effective elastic engineering constants, it is proposed (as mentioned above) to subject
the unit cell to three types of loading: compression along t, compression along n and shear loading.
In the following, as we have only experimental data related to the compressive behaviour of the
MaC mortarless joint, we will consider only two types of loading as explained below. The case of
shear loading is left for a future work.

Axial compression along n.
The applied macroscopic strain reads:

ε̄ = ε̄nnn⊗ n (6)

As shown on Figure (7-a), the upper face of the quarter periodic cell is submitted to an uniform
normal displacement un = ε̄nnln, where ln represents the cell’s height. As the software Cast3M
allows to evaluate the average over the cell of the stress components σnn and σtt and according to
the relation (4), it is possible to determine the effective stiffness components L̃nnnn and L̃nntt as
follows:

L̃nnnn =
σ̄nn
ε̄nn

and L̃nntt =
σ̄tt
ε̄nn

(7)

Axial compression along t.
In order to determine the effective stiffness component L̃tttt, the macroscopic strain in this case
reads:

ε̄ = ε̄ttt⊗ t (8)

which corresponds to the uniform displacement: ut = ε̄ttlt prescribed on the right face of the
quarter cell (see Figure (7-b)). The length lt denotes the cell’s width. According to the equations
(4) and (8), the component L̃tttt is given by:

L̃tttt =
σ̄tt
ε̄tt

(9)
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Figure 7: Boundary and symmetry conditions for the considered quarter cell.

3.2. Assessment of linearization schemes: the classical secant procedure and its improved variants

It is worth noting that a nonlinear mean-field homogenization approach relies on two steps: the
linearization and the linear homogenization. The first step consists to apply one of the numerous
available linearization schemes in order to linearize the nonlinear behaviour and thus to define
a linear comparison composite (LCC). For secant linearization schemes, the original nonlinear
problem (3) can then be rewritten in the ensuing form

u(x) = ε̄.x+ u∗(x), ∀x ∈ V and u∗# on ∂V
ε(u(x)) = 1

2(∇u(x) +t ∇u(x)) = ε̄+ ε(u∗(x))), ∀x ∈ V
div(σ) = 0, ∀x ∈ V and σ.n −# on ∂V
σ(x) =

∑
r=j,b χ

r(x)Lr(ε(x))

 local linear problem

Lr = Lr(εr)
εr = 〈ε〉r (for SEC) or ¯̄εr (for VAR)

}
nonlinear relations

(10)

where Lr(ε) are known functions whose exact expressions depend on the chosen linearization scheme
(see section (3.2.1)). The procedure followed to solve this system of equations is described below
(see section (3.2.2)).
The second step of a nonlinear mean-field homogenization evaluates the effective properties of the
LCC defining thus the homogeneous equivalent material (HEM). The effective properties of the
HEM are assessed by applying one of the available approximative linear homogenization schemes
such as the Hashin-Shtrikman (HS) bounds or the Self-Consistent (SC) model [4]. Frequently, since
such approaches induce differences between the microstructure of the nonlinear composite and that
of the LCC, it is proposed in this paper - as in [33] - to carry out an ”exact” linear homogenization
step by considering an LCC with an identical microstructure to that of the nonlinear composite -
i.e. the periodic unit cell - and using the finite elements method to compute the effective properties
of the LCC. Accordingly, the sole effect of the linearization step can be evaluated without any bias
related to a change of microstructure or other hypothesis adopted by a classical linear homogeniza-
tion scheme.
For the linearization step, it is possible to adopt one of the several linearization schemes available in
the literature. Nevertheless, since the experimental data in our disposal, related to the dry joint’s
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properties are limited, only secant linearization schemes (the classical secant model [3, 15], referred
to as by SEC and the modified secant method [31, 35, 36] noted in the following by VAR) will be
treated in this paper. The interest of the VAR method is that it accounts for both the inter and
intra-phase strain fluctuations unlike its original version SEC which considers only the inter-phase
fluctuations.
In the following, we recall briefly the principle of the tested secant (SEC and VAR) linearization
schemes available in the literature. We propose also to test an empirical version of the classical
secant method referred to as by SECα for which the principle is also explained hereafter.
Note that only the linearization step is explained in this section since the principle of the second
step - the periodic linear homogenization procedure - allowing the determination of the effective

stiffnesses (L̃
SEC

, L̃
V AR

and L̃
SECα

) of the LCC is similar to that followed for the nonlinear peri-
odic unit cell (see section (3.1.2)). The only difference stems from the evaluation of the mortarless
joint stiffness tensor Lj = Lj(εj) (εj = ε̄j for SEC and ¯̄εj for VAR). The average over phase r of
the local stress σ(x) in the LCC was computed using finite elements method as it is the case for
the nonlinear problem.

3.2.1. Outline of the tested existing and proposed linearization procedures

The secant linearization schemes define elastic LCCs unlike others which define thermoelastic ones
such as the affine [21] or the second-order [31] methods. Such procedures are not considered in
this work for reasons mentioned previously. For elastic LCC, the linearity of the local problem
ensures the determination of the local strain field in the LCC from the macroscopic strain ε̄ using
the localization relation:

ε(x) = A(x) : ε̄ (11)

where A(x) is the fourth-order localization tensor. The per-phase average strain deduced from
relation (11) reads ε̄r =< ε >r= Ar : ε̄ where the fourth-order tensor Ar denotes the localization
tensor of each phase r. It is not necessarily symmetric and depends only on the microstructure and
the local properties, but not on the overall load.

Classical secant procedure (SEC). For this formulation, the constitutive behaviour per phase
r inside the LCC reads: σ(x) = Lr : ε(x), where Lr is defined as the isotropic tensor of secant
moduli evaluated at the reference strain εr, namely:

Lr = 3krsec(ε
r)J + 2µrsec(ε

r)K, (12)

where µrsec(εeq) =
σeq(εeq)

3εeq
is the secant shear modulus of the nonlinear constitutive relation of phase

r. εeq and σeq are the von Mises equivalents of the strain and stress tensors defined as usually by

εeq =
√

2
3ε : K : ε and σeq =

√
3
2σ : K : σ. The bulk modulus kr is given by: krsec(εm) =

σm(εm)

3εm
where σm = 1

3i : σ and εm = 1
3i : ε are the spherical parts of the stress and strain tensors,

respectively. εrm = ε̄rm = 1
3i :< ε >r is the spherical part of the average strain field in phase

r. The notation < C >r= 1
V r

∫
V r C(x)dx denotes the mean value of the tensor C over phase r

which occupies the volume V r. The fourth-order tensors K = I − J and J = 1
3i⊗ i are the

usual projectors on the subspaces of purely spherical or deviatoric second-order tensors. The
tensors i and I are second and fourth-order symmetric identity tensors. According to the SEC
method, the reference strain is defined as the equivalent per-phase average of the strain in the
LCC: εreq = ε̄req =< ε >req for the deviatoric part of the nonlinear behaviour and as the hydrostatic
part ε̄rm of the per-phase average strain field in phase r for its spherical part.
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Modified secant extension (VAR). This formulation coincides with the variationnal approach
of Ponte Castañeda [31, 35, 36]. In the LCC, the constitutive behaviour per phase is identical to
that defined by the SEC method but the reference strain εr is set equal to the scalar second-order

moment of the strain in phase r in the LCC, namely: εreq = ¯̄εreq =
√〈

ε2eq
〉r

for the deviatoric part

and εrm = ¯̄εrm =
√
〈ε2m〉

r for the hydrostatic part.

Improved ”empirical” secant procedure (SECα). This formulation is an empirical variant
derived from the classical secant scheme. It is proposed in the current work in order to improve
the overall predictions of SEC. Its principle is similar to that of some variants of the tangent and
classical secant schemes [24, 23] based on the introduction of a multiplicative coefficient or a tuning
parameter in the phases/matrix interaction law allowing the improvement of the self-consistent
results for viscoplastic polycristalline metals. Moreover, this tuning parameter is fitted to finite
element results available in the literature.
The proposed formulation SECα relies then on the linearization around the reference strain αε̄r as
a replacement of the per-phase average strain ε̄r adopted by the SEC scheme. The scalar α has to
be adjusted so as the overall prediction of SECα fits the reference global response. A computational
inverse procedure could provide the appropriate value of the scalar α. The stiffness isotropic tensor
per phase r is evaluated at the reference strain αε̄r, namely

Lr = 3krsec(αε
r)J + 2µrsec(αε

r)K, (13)

where µrsec(αεeq) =
σeq(αε̄eq)

3εeq
and kr(αεm) =

σm(αε̄m)

3εm
.

Note that, even though this formulation is empirical, it presents the advantage to be numerically
easy to compute. A similar empirical version can also be proposed for the VAR scheme. It is based
on the replacement of the second-order reference strain ¯̄εr by α¯̄εr in each phase r in the LCC. Such
an approach is not investigated in this work for reason explained in the next section (4). Note that
this procedure does not provide bounds neither an effectif potential. Moreover, its main limitation
is the necessity to dispose of a reference solution obtained by experiments or FEM or FFT (Fast
Fourier Transform) method.

3.2.2. The linearization step

Interphase properties in the LCC. Since a secant linearization scheme attributes to each phase
r in the LCC a secant shear moduli µrsct defined by the equation [35, 5]

µrsct(εeq) =
σeq(εeq)

3εeq
(14)

where the von Mises stress (respectively strain) measures the deviatoric part of the stress (respec.
strain) tensor as done in [14, 31, 33], it is useful to define the interphase’s behaviour in terms of
the ”σeq − εeq” evolution as shown in Figure (8) provided by the experimental data. According
to the definition (14), the secant shear modulus of the interphase in the LCC defined by a secant
linearization scheme reads

µj(εeq) = µje + µ1ε
m1
eq (15)

where the scalars µje and µ1 (MPa) and the exponent m1 are given in Table (4). Note that, in this
study, there is no use of the von Mises plasticity criterion since the deviatoric part of the dry joint’s
behaviour is assumed to be nonlinear elastic following a power-law type relation. The constant µje
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can be considered as the elastic shear modulus of the dry joint since it is provided by the linear part

(see Figure (8)-a) of the ”σeq−εeq” evolution (i.e. µje =
σeq(εeq)
3εeq

for εeq ≤ 0.012). It is worth noting

µje µ1 m1

0.208 107 4.05

Table 4: Parameters of the evolution of the dry joint’s secant shear modulus versus the local equivalent strain.

(a) (b)

Figure 8: Evolutions of the experimental data: the linear part of the MaC mortarless joint’s ”σeq − εeq” relation (a)
and ”(µjsec − µje)” evolution (b) functions of the local equivalent local strain εeq.

that a polynomial approximation of the shear modulus evolution (15) was avoided as it could lead
to aberrant (negative) values for µj for some ranges of the local equivalent strain. An exponential
approximation was also avoided since such function overestimates µj with the increase of the local
equivalent strain.
For this step, we choose to not linearize the spherical part of the joint’s behaviour but to use the
”exact” expression of the parameter νj as function of the spherical part tr(ε) of the strain field in
the joint. It reads

νj(tr(ε)) = b2 (tr(ε))2 + b1(tr(ε)) + b0 (16)

b2 b1 b0
33.23 -3.46 0.127

Table 5: Parameters used to approximate the MaC dry joint’s parameter νj = − <εtt>
j

<εnn>j as function of the spherical
part of the strain field in the joint.

where the scalars bi (i = 1, 3) are provided in table (5) and tr(ε) = i : ε.
The secant Young’s modulus of the interphase can then be deduced as follows Ejsec = 2µj(1 + νj).

Its bulk modulus reads kj = Ej

3(1−2νj)
. In the LCC, the MaC interphase is then assumed to be an

isotropic linear elastic phase characterized by the secant Young’s modulus Ejsec and the ”exact”
joint’s parameter νj (see formulae (16)). Recall that, the term ”exact” is let between quotation
marks since it is related to the accuracy of the approximative function used to fit the fluctuant
evolution of the parameter νj as a function of the spherical part of the local strain.
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For the interphase, it was also possible to linearize the (convex power-law) spherical part of the

MaC joint’s behaviour by evaluating the joint’s secant bulk’s modulus as follows: kjsec = σm(εm)
3εm

and

therefore to deduce the following Poisson’s ratio νj = 3kjsec−2µjsec
2(3kjsec+µ

j
sec)

. Nevertheless, the latter secant

bulk’s modulus kjsec risks to lead to aberrant (negative) values for the Poisson’s ratio if the adopted
(or chosen) function fitting the ”σm−εm” evolution provided by the DIC method is not so accurate.

Resolution of the nonlinear problem (equation (10)). To define the LCC for each loading
step, it is needed to assess the reference strain εj for the SEC and VAR procedures. Since there is
no experiments carried out on the periodic mortarless masonry cell using the DIC method as it is
the case for the laminate elementary structure (see section (2)), we do not have experimental data
allowing the deduction of the reference strains εj for the mortarless linings. Accordingly, we propose
to use an iterative method (the fixed-point for example) in order to resolve the nonlinear set of
equations (10). For this nonlinear system, it is recalled that Lr(ε) are known functions whose exact
expressions depend on the chosen linearization procedure. Moreover, to ensure numerical accuracy
in these investigations, the convergence criterion adopted for the iterative fixed-point method in

this work was set equal to 10−6
(
pr1+p

r
0

2

)
, where pr1 denotes the new evaluation of the reference

strain εr and pr0 is its initial value in each phase r. More details about this iterative method are
given in [33].

4. Results and discussion

This section provides an insight into the influence of the secant linearization procedures on the
global and local behaviour of MaC regular mortarless masonry. To this aim, we consider a periodic
cell made of bricks of dimensions 100x50 mm2 and mortarless joint of 0.104 mm thickness. This
cell is descretized through a mesh relying into 50x25, 4x50 and 2x25 4 nodes quadrilateral finite
elements inside the brick, the bed and head joints in the quarter cell, respectively. The choice
of such discretization instead of more refined mesh with 8 nodes quadrilateral finite elements was
motivated by the fact that the former allows the fixed point to converge faster and due to negligible
differences between results provided by both meshes. For the simulated results, it is noted that the
computations are run until ε̄nn = 2x10−5 (ε̄tt = 1.75x10−5) for unit cell under compression along
n (along t).

4.1. Effective properties and reference strains

Evolutions of the computed effective stiffnesses (L̃nnnn, L̃tttt (MPa)) and Poisson’s ratios (ν̃nt and
ν̃tn) with respect to the imposed macroscopic strain are depicted on Figure (9).
For the mortarless periodic cell submitted to compression along n, the secant estimates (see Figure

(9)-a and b) reproduce qualitatively well the evolutions of the reference solutions. Moreover the
VAR method provides good estimates for the effective stiffness L̃nnnn and Poisson’s ratio ν̃tn of
the MaC mortarless masonry. Unlike for usual viscoplastic (concave) power-law composites, the
classical secant model leads to too soft overall estimates for the mortarless masonry. The SECαn

empirical model where the scalar αn is found to be set to 1.3 improves the classical secant procedure
overall estimates. Note that αn is superior to 1. This amplification of the reference strain ε̄jeq for
the classical secant model allows then the definition of an improved LCC more relevant than that
defined by the SEC scheme. The computations of the reference strains ε̄jeq, ¯̄εjeq and αnε̄

j
eq for the

15



(a) (b)

(c) (d)

Figure 9: Periodic mortarless masonry cell under compression along n (a-b) or compression along t (c-d): effective
mechanical properties versus the macroscopic strain.

SEC, VAR and SECαn schemes as illustrated on Figure (10)-a show that the second-order moment
of the strain field ¯̄εjeq in the dry joint is higher than its first-moment ε̄jeq. This proves the fact that
the overall classical secant estimates are softer than those provided by VAR due to the convex trend
of the deviatoric part ”σeq − εeq” of the MaC mortarless joint’s behaviour. This justifies also the
recourse to a scalar α superior to 1 to obtain stiffer estimate than that provided by SEC for the
mortarless masonry. Note that the reference strain αnε̄

j
eq almost coincides with the second-order

moment of the strain field ¯̄εjeq. This argues the quasi-equality between the overall predictions of
SECαn and VAR. Note that, even though the VAR model is a sophisticated model accounting for
both the inter and intraphase strain field fluctuations, the empirical model SECα accounting only
for the interphase field fluctuations could be a satisfactory alternative for the VAR scheme as it is
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easier to implement and needs less theoretical investigations and numerical expenses. It requires
however the implementation of an automatized inverse identification procedure not yet done in this
work.
For computations carried out under compression along t (Fig. (9)-c and -d), it is observed that the
secant (SEC and VAR) schemes (highly) overestimate the overall reference response. The SECαt

estimates, with a scalar αt = 0.85 less than 1, softens the SEC estimates. Indeed as shown on
Figure (10)-b, the reference strain αtε̄

r
eq is softer than the second moment ¯̄εreq and obviously than

the first moment ε̄req with αtε̄
r
eq ≤ ε̄req ≤ ¯̄εreq. Accordingly and due to the convex qualitative trend

of the ”σeq − εeq” curve for the mortarless MaC joint, the scheme SECαt leads to better global
estimate than those provided by VAR and SEC. The inequality ¯̄εreq > ε̄req justifies also that VAR
overall estimate is stiffer than that provided by SEC in the current study unlike for usual results
obtained for usual viscoplastic (concave) power-law composites.

(a) (b)

Figure 10: Evolutions of the reference strains εjeq (ε̄req (SEC), ¯̄εreq (VAR), αtε̄
r
eq (SECα)) for the deviatoric part

of the MaC mortarless joint behaviour versus the macroscopic strain for a mortarless periodic masonry cell under
compression along n (a) and t (b).

The different general trends observed for the SEC and VAR predictions at the global scale for
mortarless masonry under compression along n and that along t can be justified by the set of
hypothesis adopted in this study. Indeed, for compression along t, the dry joint was assumed to
behave as a joint submitted to compression along n. Moreover the strain field components εtt and
εzz were assumed to be equal which is not necessarily true. The third hypothesis was related to
the plane stress assumption for the nonlinear problem and the linear problems associated to the
LCC defined by the secant schemes. Accordingly the overall trends observed for a unit mortarless
under compression along n should be more rigorous. Those obtained for the mortarless unit cell
under compression along t merit to be checked or confirmed by the investigation of the real dry
joint’s behaviour under compression along t investigated by means of DIC or other experimental
appropriate technique. Such idea is left for future work.
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4.2. Local fields

It is expected from this study to argue the results obtained at the global scale and to assess the
relevance of the secant schemes (SEC, VAR and SECα) at the local scale.
The deformed mortarless unit cell (in blue color) under compression along n and t are depicted
respectively on Figure (11)-a and (11)-b.
The maps illustrating the spatial distributions of the local stress (local strain) fields for the reference
solution and secant estimates are reported on Figures (13) and (15) (Figures (12) and (14)). It is
noted that the maps predicted by the micromechanical models are plotted according to the scales
of the FE fields maps. Nevertheless, the real scales of the strain and stress fields provided by the
secant models are illustrated in this paper in order to show the upper and lower values of these
fields. Moreover, only the map of reference stress or strain field will be presented if the secant
linearization schemes predict qualitatively well the reference local field. Scales of variation of stress
or strain field provided by the secant schemes (b, c, d) are also reported without their associated
map since their qualitative trend is similar to that of the reference map solution (a).
Note that only the upper brick moves along the t direction due to the presence of the joint with
mechanical properties very soft compared to those of the MaC bricks.

(a) (b)

Figure 11: Periodic mortarless masonry cell under compression along n (a) and t (b) (ε̄jj = 1.35x10−5)

Figures (12) and (14) show that the secant models reproduce qualitatively well the distribution
maps of the local equivalent strain εeq(x) of the NL solution. Moreover, they predict well the
zones of strong localization of εeq(x) located at the head dry joints (bed dry joints) for periodic
mortarless cell submitted to a compression along t (along n). Quantitatively, for periodic cell
under compression along t, it is depicted on Fig. (14) that the SEC scheme and especially the VAR
model underestimate the strain field εeq(x) in opposition to the SECαt (αt = 0.85) scheme which
estimates well the reference solution in the head mortarless joints. For all models (NL and secant
schemes), note that εeq(x) localizes also in the bed joints but quantitatively, the intensity of εeq(x)
is less than that observed for this field inside head joints.
For periodic cell under compression along n, it is observed in Fig. (12) that almost all models (SEC,
VAR and SECαn) estimate well the strain field εeq(x) even though VAR and SECαn (αn = 1.3)
slightly underestimate this field at the bed joints which represent the localization regions of εeq(x)
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Figure 12: Periodic masonry cell under compression along n (ε̄nn = 1.35x10−5): maps of the equivalent strain εeq(x)
in the left corner of the nonlinear cell (a) and LCCs provided by the SEC (b), VAR (c) and SECα (d) linearization
schemes.

Figure 13: Periodic masonry cell under compression along n (ε̄nn = 1.35x10−5): maps of the local equivalent stress
σeq(x) in the mortarless bed joint in the nonlinear cell (a) and LCCs provided by the SEC (b), VAR (c) and SECα
(d) linearization schemes.

19



under this loading.

Figure 14: Periodic masonry cell under compression along t (ε̄tt = 1.35x10−5): maps of the equivalent strain εeq(x)
in the left corner of the nonlinear cell (a) and LCCs provided by the SEC (b), VAR (c) and SECα (d) linearization
schemes.

For maps of the local equivalent stress σeq(x) in the periodic cell submitted to compression along
n, it is observed on Fig. (13) that all models reproduce qualitatively well the reference solution
and especially the zones of strong concentration of the local equivalent stress - inside the bed joints
and more strongly in the bricks-. The head joints are almost free from stress. Quantitatively, while
SECαn and VAR procedures slightly underestimate the reference map, the SEC scheme gives too
soft predictions for σeq(x) in zones of strong localization. This observation can justify that obtained
at the global scale (too soft overall estimate for SEC and good predictions for VAR and SECαn).
For mortarless unit cell under compression along t, the secant models reproduce qualitatively well
the stress local field distribution even though they predict more enlarged zones of concentration of
σeq(x) around the bed joint - but not inside bed joints which are free from stress - and particularly
at the right (left) corner of the higher (lower) brick compared to that observed on the reference
map (NL). Quantitatively, the SEC model predicts slightly stiffer estimates for the σeq(x) field in
these regions of strong concentration. The VAR scheme clearly highly overestimates the reference
solution. This local result argues the too stiff evaluations provided by VAR at the global scale. The
local predictions of SECαt are in good agreement with NL and lead then to better overall estimates.

5. Conclusion and perspectives

In this paper, the dry joint was assumed to be an interphase perfectly bonded with MaC bricks.
Accordingly it was possible to apply mean-field homogenization theories to the mortarless ma-
sonry. A convex power-law behaviour was identified for the dry joint using the DIC method for
an elementary mortarless specimen under compression orthogonal to the plane of the joint. A
rigorous assessment of the existing secant linearization schemes for a mortarless periodic masonry
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Figure 15: Periodic masonry cell under compression along t (ε̄tt = 1.35x10−5): maps of the local equivalent stress
σeq(x) in the mortarless bed joint in the nonlinear cell (a) and LCCs provided by the VAR (b), SEC (c) and SECαt

(d) linearization schemes. 21



by reference to the FE solution demonstrates the superiority of the VAR model compared to the
SEC scheme for mortarless unit cell under normal compression. This result confirms again - as it
is the case for usual viscoplastic (concave) power-law materials - the relevance of the VAR model
since it accounts for both the inter and intraphase strain fluctuations instead of the SEC model
which considers only the interphase fluctuations. Unusually, the SEC estimates are softer than the
VAR and NL responses. This is due to the convex qualitative trend of the deviatoric part of the
dry joint behaviour instead of the usual concave trend of viscoplastic power-law composites. For
mortarless unit cell under tangential compression, different trends have been observed. The secant
estimates, especially the VAR predictions, have been observed to be (too) stiff. To improve these
results, an empirical variant SECα of the SEC scheme was proposed. It relies on the adjustment of
a scalar α in order to reduce (amplify) the reference strain ε̄req if the SEC overall estimate is stiffer
(softer) than the NL solution. The appropriate value of the parameter α leads to global and local
estimates in well agreement with the reference solution. Even though the proposed model is not
based on theoretical investigations and accounts only for interphase field fluctuations, it could be
a satisfactory alternative for the secant schemes (SEC and VAR) if these models lead to too stiff
or soft estimates.
The evaluations and comparisons carried out in the current study can be extended to mortarless
refractory linings submitted to loading-unloading compressive cycles at room and high tempera-
tures. It can also be carried out under other mechanical tests (shear or bi-axial loading) at various
ranges of temperatures. However, it is important to have reliable reference solutions provided, for
instance, by experiments based on the DIC method. These perspectives are left for future works.
The empirical parametrical model proposed in this paper for the classical secant scheme can also
be applied for the VAR model. The relevance of the parametrical models SECα and VARα can
be tested for other materials or composites for which the behaviour of each constituents follows
other more general laws. These parametrical models require however a reference solution provided
by experiments or FEM or FFT method. A computational inverse procedure could facilitate the
determination of the tuning parameter α. This approach can also be extended either for other
types of brick materials or more generally for conventional mortared masonry at room or high
temperatures.
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