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2 avenue Augustin Fresnel, 91127 Palaiseau cedex, France
2Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France

∗jean.etesse@institutoptique.fr

Abstract: As they can travel long distances, free space optical quantum

states are good candidates for carrying information in quantum information

technology protocols. These states, however, are often complex to produce

and require protocols whose success probability drops quickly with an

increase of the mean photon number. Here we propose a new protocol

for the generation and growth of arbitrary states, based on one by one

coherent adjunctions of the simple state superposition α|0〉+β |1〉. Due to

the nature of the protocol, that allows for the use of quantum memories, it

can outperform existing protocols.

© 2014 Optical Society of America
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1. Introduction

Engineering of arbitrary mesoscopic quantum states of light is a challenging task. Impressive

results were already obtained using giant enhancement in superconducting cavities [1, 2], and

protocols were proposed to generate arbitrary states with such systems [3], but the trapped state

cannot be used for quantum communication protocols. In the case of free space propagating

quantum states of light, the most common method for optical state engineering is to generate

the state directly, by using two entangled beams and by performing a measurement on one of

these, either by click counting [4, 5] or by homodyning [6, 7, 8]. Schrödinger cat states of light

for instance, consisting in a coherent superposition of two coherent sates and composing a

basic resource for quantum information processing, have been produced using these techniques

[9, 10].

Building a state step by step is however necessary in order to grow its size, as the above

mentioned methods are highly inefficient for large output states. Some protocols based on pho-

ton addition [11] or subtraction [12] propose this iteration of operations, but with the use of

photon detection events which imply very low success probability. On the other hand, iterative

generation based on homodyning has proven to be very efficient [14].

We propose here a generalization of the results presented in [14]: we present a setup for the

generation and for the growth of arbitrary quantum states of light by the successive applica-

tion of a simple protocol that will be described and explicitly calculated in a particular case in

section 2, and whose performances will be discussed in section 3.

2. Protocol

The idea of the protocol is to build a superposition containing up to n + m photons by the

“mixing” of two superpositions containing up to n and m photons. Let us first see the simple

case where n = m = 1.

2.1. Simple case

The resource that we need to feed our protocol is the elementary superposition of vacuum and

a single photon :

|ψ(1)〉= α|0〉+β |1〉. (1)

This superposition can be experimentally generated by using homodyne conditioning [7] or

photon counting [15], and we will assume it to be available on demand. Let us first see how the

mixing of two states of the form (1) on a beamsplitter can produce an arbitrary superposition

with two photons.

The principle is shown on the figure 1 (a): two of these resource states |ψ1〉 = |ψ(1)
1 〉 =

α1|0〉+β1|1〉 and |ψ2〉= |ψ(1)
2 〉= α2|0〉+β2|1〉 are sent on a beamsplitter with transmission τ ,

and a homodyne detection is performed on one output arm. When the homodyne conditioning

is successful (x′ = x′0), the wavefunction of the other output arm state is projected on:
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Fig. 1. Protocol for generation and growth of arbitrary states (a) Elementary protocol:

two states |ψ1〉 and |ψ2〉 are mixed on a beamsplitter with transmission τ . A homodyne

measurement is performed in one output arm, and the generation of a state |ψout〉 in the

other arm is conditioned upon the homodyne event x′ = x′0. (b) Total sucess probability of a

protocol involving eight input resource states (1) in a linear (solid blue line) and a symetri-

cal (dashed green line) configuration. The total success probability of a linear protocol not

using any quantum memory is shown for comparison (dot-dashed red line) .

ψout(x) ∝ (a1x−b1)(a2x−b2)e
− x2

2 , (2)

with a1 =
√

2β1τ , a2 =
√

2β2ρ , b1 =−(α1+
√

2β1ρx′0), b2 = α2+
√

2β2τx′0 and ρ =
√

1− τ2.

Let us then remember the expression of the wavefunction of a Fock state

〈x|k〉 = 1/(π1/4
√

2kk!)Hk(x)exp(−x2/2), where Hk(x) is the kth Hermite polynomial (of

degree k): this form tells us that any superposition with up to n photons will have a wavefunc-

tion that will be written as a polynomial of degree up to n, times a gaussian of unit variance.

This comes from the fact that the Hk polynomials are a basis of C[X ].

In the present case, the form (2) is the general writing of an arbitrary polynomial of degree

up to two times a gaussian (all the polynomial can be splitted in C[X ]). According to the pre-

vious remark, this means that the corresponding state is an arbitrary superposition of up to two

photons, whose parameters can be adjusted with αi, βi, τ and x′0.

2.2. General case

Let us generalize the idea of the previous paragraph by recurrence. Let us suppose that we have

been able to generate a superposition with up to n and m photons, and see how we can generate

a superposition with n+m photons.

Mathematically speaking, it means that we assume to have two states |ψ(n)〉 and |ψ(m)〉 whose

wavefunctions can be written as

ψ(n)(x) ∝ Pn(x)e
− x2

2 (3a)

ψ(m)(x) ∝ Pm(x)e
− x2

2 , (3b)

where Pn (resp. Pm) is a polynomial of degree n (resp. m).

Let us mix these two states according to the same scheme of figure 1 (a), by feeding the setup

with |ψ1〉= |ψ(n)〉 and |ψ2〉= |ψ(m)〉. The state that we will thereby generate can be written as

:



ψout(x) ∝ Pn(τx+ρx′0)Pm(τx′0 −ρx)e−
x2

2 . (4)

The wavefunction of this state is of the form of an arbitrary polynomial of degree n+m, times

a gaussian of unit variance, and according to what was noticed previously, this state is then an

arbitrary superposition of up to n+m photons.

The protocol transformation is true for n = m = 1 and can be iterated for any n or m, which

means that it is true for any n and m: we have proven that the use of the simple protocol of

figure 1 (a) iterated n times and fed by superposition of the form (1) can generate arbitrary

superpositions of up to n photons.

2.3. Structuration of the protocol

A great advantage of our protocol is that it allows for the use of quantum memories between

each homodyne conditioning. These devices are currently developing very quickly [16], and

they give a potential increase in the total sucess probability if the number of iterations in-

creases. In [14] is treated in detail the way one should design the protocol in order to maximize

the total success probability: the idea is to perform a maximum of operations in parallel. Two

types of configurations can then be distinguished: a linear configuration in which the output

states of the protocol are mixed with a resource state iteratively, and a symetrized configuration

in which the inputs of all the elementary protocols have been produced by using the same num-

ber of resource states. This configuration allows for the simultaneous realization of homodyne

conditionings, contrary to the linear one.

If one assumes for instance that all the homodyne conditioning have the same success proba-

bility Pmix, figure 1 (b) shows the tremendous increase in the total success probability allowed

with the use of quantum memories in a symetrical protocol configuration, in the case where

eight input resource states are used.

2.4. Example

Let us see with a concrete example how the protocol can be used to generate states of light, by

studying how the protocol can output an arbitrary superposition of the form proposed in [12]:

|ψtarg〉=
1

√

1+ |c0|2 + |c1|2
(c0|0〉+ c1|1〉+ |2〉). (5)

We have previously shown that we could generate any superposition of this kind by the use of

equation (2): what should be the parameters of our protocol to generate the state (5)?

First, given the expression of the target state, the weight of the two photon is never 0, so we

know that a1a2 6= 0. The two roots of the polynomial of the wavefunction (2) are then b1/a1

and b2/a2. These should then be identified to the roots of the polynomial in the wavefunction

(5) :

ψtarg(x) ∝

[

x2 + c1x+
c0√

2
− 1

2

]

e−
x2

2 . (6)

To simplify the calculation, we are going to suppose that the discriminant of this equation is

positive ∆ = c2
1 −4(c0/

√
2−1/2) > 0, then according to the expressions of a1, b1, a2 and b2,

we find the results:



β1 = ε1
1

√

1+2
[

x1τ −ρx′0
]2
, α1 =

√

1−|β1|2, (7a)

β2 = ε2
1

√

1+2
[

x2ρ − τx′0
]2
, α2 =

√

1−|β2|2, (7b)

with x1 =
√

∆+c1
2

, x2 =
√

∆−c1
2

, ε1 = sign(x1τ −ρx′0) and ε2 = sign(x2ρ − τx′0).

For a numerical application, let us consider the case of the simple superposition 2−1/2(|1〉+
|2〉). In this simple case, c0 = 0 and c1 = 1, and the previous results can be rewritten as:

β1 = ε1
1

√

1+2
[

√
3+1
2

τ −ρx′0
]2
, α1 =

√

1−|β1|2, (8a)

β2 = ε2
1

√

1+2
[

√
3−1
2

ρ − τx′0
]2
, α2 =

√

1−|β2|2, (8b)

with ε1 = sign(
√

3+1
2

τ −ρx′0) and ε2 = sign(
√

3−1
2

ρ − τx′0).
We clearly see that we have two supplementary degrees of freedom for the generation of our

state: x′0 and τ . As they can be freely adjusted, they will give us the possibility to maximize the

success probability of the operation. This is what we are going to study in the next section.

3. Performances

3.1. Success probability

Obviously, heralding on events matching exactly the homodyne condition x′ = x′0 will lead to a

zero success probability, so one has to accept the events within a window x′ ∈ [x′0−∆x,x′0+∆x].
Increasing its width ∆x will increase the success probability, but at the cost of a decrease in the

quality of the state. In order to perform the study of the success probability of the protocol we

propose to fix a target fidelity of the state we want to achieve, and to optimize the heralding

width of the homodyne conditioning in order to maximize the success probability of the

operation.

Let us first focus on the previous example: the state superposition 2−1/2(|1〉+ |2〉). We have

seen that the coefficients τ and x′0 could be freely chosen in order to generate it. By using

equations (8), we can plot the success probability as a function of these two coefficients. Figure

2 (a) shows this for a target fidelity of 90%, revealing that there is actually an optimal point

for (τ2,x′0) around (0.32,0.46) for the generation of the state, leading to almost 30% success

probability of generation.

This optimization can be performed on various states, showing some difference in the effi-

ciency of production. For instance, figure 2 (b) shows the optimized success probability as a
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Fig. 2. Optimization of the success probability. (a) Success probability of the protocol for

the generation of the state 2−1/2(|1〉+ |2〉) as a function of the quadrature conditioning x′0
and the energy transmission of the beamsplitter τ2. The coefficients of the resource states

are given by equation (8), and the target fidelity is 90%. (b) Optimized success probability

for the states (9) (solid blue), (10) (dashed red), (11) (dot-dashed green) and (12) (solid thin

black).

function of the target fidelity for the four states of the form (5):

|ψ1〉 = |2〉 (9)

|ψ2〉 =
1√
2
(|1〉+ |2〉) (10)

|ψ3〉 =
1√
2
(|0〉+ |2〉) (11)

|ψ4〉 =
1√
3
(|0〉+ |1〉+ |2〉), (12)

the optimization being performed on all the parameters that we can adjust for the state (αi, βi,

τ and x′0).

We see that the success probability of our protocol is very high compared to other previously

proposed setups. Indeed, the four states (9)-(12) were also studied in [12], and provided suc-

cess probabilities of the order of 10−5 for target fidelities of 90%. In our case, these success

probabilities are greater than 10% and reach almost 100% for the state (12): this impressive be-

haviour is simply explained by the fact that the unconditioned state (100% success probability

by definition) has already 87% fidelity with the target state.

3.2. Imperfections

Let us now study the influence of imperfections on the protocol. These will be taken of two

different types: either from the resource state itself or from the homodyne detection used for

the heralding.

For the sake of simplicity, and to picture precisely the effect of the protocol, we will consider

in this paragraph the generation of states with a protocol fed by two single photon Fock states

(α = 0 in (1)). The Hong Ou Mandel effect [17] makes the one photon contribution vanish

(c1 = 0 in (5)), and we are left with superpositions of the kind |ψ〉= 1√
1+|c′0|2

(c′0|0〉−|2〉) with



c′0 ≥ 0. We will focus on three particular cases: c′0 = 0 (the two photon Fock state), c′0 = 1

(equally weighted states) and c′0 = 1/
√

2 (states created in [14]). The generation of these states

can be performed for instance with a symetrical beamsplitter and a conditioning on x′0 = 1√
2
,

x′0 =
√

1+
√

2
2

and x′0 = 0 respectively. We won’t try to optimize the success probability here, as

we want to estimate the effects of the imperfections only. The conditioning width ∆x will then

be taken arbitrarily small.

3.2.1. Imperfections of the single photons

In the case where the photons used to feed the setup are imperfect, the performances of the

protocol are deteriorated. The imperfections that we are going to take into account are the most

common ones: the photons are no longer pure, but consist in a mixture of the single photon

|1〉〈1| with vacuum |0〉〈0|. The respective weights give the quality of the state:

|ψ〉= ηphot |1〉〈1|+(1−ηphot)|0〉〈0|. (13)

The fidelity F of the output state as a function of the quality ηphot of the photon is given in

figure 3 (a). Obviously, when this quality tends to 1 (no admixture of vacuum), the fidelity of

the output state tends to 1. In the opposite case, the fidelity tends to the square of the weight

of vacuum in the superposition, as expected (the input state is only composed of vacuum when

ηphot = 0).

An interersting point is that the quality does not deteriorate faster as the weight of the two

photon Fock state increases in the target state: the state with c′0 = 1 deteriorates faster than

the one with c′0 = 1/
√

2 for input qualities ηphot > 0.7, even if it has a smaller two photon

component.

This figure shows that the quality of the input photons is a key property for the proper realization

of the protocol, as the output fidelity is strongly dependant on it. For instance, an input fidelity

of 90% of the input single photons leads to an output fidelity of 70% for the two photons Fock

state output (c′0 = 0).

(a) (b)

Fig. 3. Influence of the imperfections on the quality of the output state in the case c′0 =

0 (solid blue line), c′0 = 1 (red dot-dashed line) and c′0 = 1/
√

2 (dashed green line), for

imperfections (a) on the photons or (b) on the homodyne detections.



3.2.2. Imperfections of the homodyne detections

Other imperfections that can be taken into account are the detection inefficiencies of the homo-

dyne detections used for the conditioning. These imperfections (treated in detail in [14]) can be

shown to artificially increase the heralding width, and their effects are shown on figure 3 (b),

for the same three cases mentioned previously.

Their effects are quite different, as the fidelity can remain reasonably high for low detection

efficiencies. For instance in the case c′0 = 1/
√

2, the output fidelity is above 90% for detec-

tion efficiencies as low as 55%, revealing a certain robustness of the protocol against its own

imperfections.

4. Conclusion

We have proposed a new protocol which enables the generation of arbitrary superpositions of

a given number of photons, by the iterative use of a simple protocol based on a mixing on a

beamsplitter followed by a homodyne conditioning measurement. This protocol is a real break-

through regarding quantum engineering of states, as it consists in the building piece by piece of

the state, and allows for the use of quantum memories in order to improve the success probabil-

ities which can then be very high, on the contrary to all the previous protocols. Another great

advantage of the homodyne conditioning technique is that it is very robust against detection

inefficiencies.

With all the recent advances in quantum memories technologies [16] as well as monomode

single photon generation [18], we believe that this proposal will open new perspectives in the

field of quantum optical states engineering.
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