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ABSTRACT

Ontologies are widely adopted in the biomedical domain to characterize various resources (e.g. diseases,
drugs, scientific publications) with non-ambiguous meanings. By exploiting the structured knowledge
that ontologies provide, a plethora of ad hoc and domain-specific semantic similarity measures have been
defined over the last years. Nevertheless, some critical questions remain: which measure should be
defined/chosen for a concrete application? Are some of the, a priori different, measures indeed equiva-
lent? In order to bring some light to these questions, we perform an in-depth analysis of existing ontol-
ogy-based measures to identify the core elements of semantic similarity assessment. As a result, this
paper presents a unifying framework that aims to improve the understanding of semantic measures,
to highlight their equivalences and to propose bridges between their theoretical bases. By demonstrating
that groups of measures are just particular instantiations of parameterized functions, we unify a large
number of state-of-the-art semantic similarity measures through common expressions. The application
of the proposed framework and its practical usefulness is underlined by an empirical analysis of hundreds

of semantic measures in a biomedical context.
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1. Introduction

Over the last decade, considerable efforts have been made to
standardize our understanding of various fields by means of ontol-
ogies, i.e. formal and explicit specifications of shared conceptual-
izations [1]. Ontologies enable modelling domains through sets
of concepts and semantic relationships established between them.
Due to the importance of knowledge representation and terminol-
ogy in biology and medicine, the biomedical domain has been very
prone to the definition of structured thesauri or ontologies (e.g.
UMLS, SNOMED-CT, MeSH). They enable characterizing medical re-
sources such as clinical records, diseases, genes, or even scientific
articles, through unambiguous conceptualizations. To take advan-
tage of this valuable knowledge for information retrieval and
knowledge discovery, semantic similarity measures are used to esti-
mate the similarity of concepts defined in ontologies and, hence, to
assess the semantic proximity of the resources indexed by them.

Ontology-based semantic similarity measures compare how
similar the meanings of concepts are according to the taxonomical
evidences modelled in the ontology. They are used in a wide array
of applications: to design information retrieval algorithms [2,3], to
disambiguate texts [4,5], to suggest drug repositioning [6] and to
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cluster genes according to their molecular function [7], to cite a
few. Semantic similarity measures are indeed critical components
of many knowledge-based systems [6,8,9]. Moreover, they are
nowadays receiving more attention due to the growing adoption
of both Semantic Web and Linked Data paradigms [10].

A plethora of measures have been proposed over the last dec-
ades (see surveys [7,9,11]). Although some context-independent
semantic similarity measures have been proposed [12-15], most
measures were designed in an ad hoc manner and were expressed
on the basis of domain-specific or application-oriented formalisms
[8]. Therefore, most proposals related to those measures target a
specific audience and fail to benefit other communities. In this
way, a non-specialist can only interpret the large diversity of
state-of-the-art proposals as an extensive list of measures. As a
consequence, the selection of an appropriate measure for a specific
usage context is a challenging task. Actually, no extensive studies
enabled characterizing the large diversity of proposals, even
though few seminal contributions focusing on theoretical aspects
of ontology-based semantic similarity measures exist [8,16,17].

Despite the large number of contributions related to ontology-
based semantic similarity measures, the understanding of their
foundations is nowadays limited. For a designer/practitioner, some
fundamental questions remain: Why does a measure work better
than another one? How does one choose or design a measure? Is
it possible to distinguish families of measures sharing specific
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properties? How can one identify the most appropriate measures
according to particular criteria?

To fill these gaps, this paper proposes an extensive study of
ontology-based semantic similarity measures from which a unify-
ing framework decomposing measures through a set of intuitive
core elements is proposed.

1.1. Contributions and plan

The framework presented in this paper proposes to model, in a
generic and flexible way, the core elements on which most mea-
sures available in the literature rely. Thus, particular semantic
measures can be properly characterized and can directly be
obtained as instantiations of the framework components. This
brings new insights for the study of semantic measures:

e Distinguishing the core elements on which measures rely. The
theoretical characterization of semantic measures helps to
understand the different measure paradigms and the large
diversity of expressions proposed in the state-of-the-art.

e Unifying measures through parameterized measures. Based
on the characterization of the core elements of semantic
measures, our framework enables the identification of
commonalities, bridges and equivalences between exiting
measures. Indeed, their design could be unified through
abstract expressions, even if many of them are (i) of ad
hoc nature, (ii) domain-specific or (iii) based on different
theoretical principles. Expressing semantic similarity mea-
sures through parameterized expressions can therefore
facilitate the detection of their common properties and
the analysis of their behaviour in specific applications.

e Selecting appropriate domain-specific measures. Such a
framework provides a systematic, theoretically-coherent
and direct way to define or tune the semantic similarity
assessment for particular application scenarios. Semantic
similarity measures expressed through parameterized
functions could therefore be used to optimize measure tun-
ing in domain-specific applications.

e Designing new families of semantic measures. New measures
can be easily defined due to the modularity provided by the
framework. Their design can take into account (i) the ele-
ments that affect the semantic assessment the most (e.g.
estimation of concept specificity) and (ii) the particularities
of ontology/application to which it will be applied (e.g. the
presence of multiple inheritances).

o Identifying the crucial aspects of semantic similarity assess-
ment. Empirical studies could be used to highlight the core
elements best impacting measures’ accuracies. As a result,
the framework can be used to guide research efforts
towards the aspects that can improve measure
performances.

Such an approach will not just benefit a single measure
designed for a domain-specific application (which is, to date, the
focus of most related works) but will rather result in improve-
ments of a wide set of measures and applications.

The rest of the paper is organized as follows. Section 2 intro-
duces the reader to ontology-based semantic similarity measures,
distinguishing the various paradigms proposed for their design.
In addition, this section reviews previous works regarding the uni-
fication of semantic measures. Section 3 describes the proposed
framework from which state-of-the-art measures are unified, and
from which new proposals can be derived. Section 4 illustrates
the practical application of the framework in which semantic mea-
sures’ behaviours are analysed in a biomedical scenario. Section 5
provides the conclusions as well as some lines of future work.

2. Ontology-based semantic similarity measures

This section reviews the various paradigms used for the defini-
tion of ontology-based semantic similarity measures (SSMs). Each
paradigm is illustrated by a selection of proposals emphasizing
the essence of the approach. We then introduce the reader to exist-
ing contributions related to the unification of SSMs.

2.1. Paradigms for semantic similarity estimation

SSMs aim at estimating the likeness of two concepts consider-
ing the taxonomical knowledge modelled in ontologies. We con-
sider approaches measuring taxonomic distance/dissimilarity
indistinctly; notice that the latter can be converted to similarities
by means of a linear transformation. In this section, we present
state-of-the art SSMs organized according to the various paradigms
proposed for their definition.

As a running example to illustrate the study, Fig. 1 presents a
snapshot of the SNOMED-CT clinical healthcare terminology [18],
in which biomedical concepts are organized by taxonomic rela-
tionships. The topology of SNOMED-CT defines a partial order =<
between concepts, e.g. ‘Heparin’ < ‘Protein’ means that the concept
‘Heparin’ is subsumed by the concept ‘Protein’, that is, the heparin
is a specific class of protein.

2.1.1. Edge-based approaches

Edge-based measures estimate the similarity of two concepts
according to the strength of their interlinking in the ontology.
The most usual approach considers the similarity as a function of
the distance which separates the two concepts in the ontology.
For instance, Rada et al. estimate the distance of two concepts
u, v as the shortest-path linking them (sp(u, v)) [15].

Distpaaa (U, v) = sp(u, v) (M

In Fig. 1, the shortest path between the concepts c¢s and c3 is
Cs — C4 — C3. Leacock and Chodorow proposed a non-linear adapta-
tion of Rada’s distance to define the similarity measure Sim;¢ [19]:

sp(u, v) >

2 - Max_depth 2)

Simyc(u, v) = —log (
Rada’s distance is here normalized by the maximal depth of the
ontology, Max_depth, i.e. the longest of the shortest paths linking
a concept to the concept which subsumes all the others (the root
of the ontology, co in Fig. 1).

More refined approaches propose to consider variations of the
strength of the links between concepts; the deeper two linked
concepts are, the stronger their semantic relationship will be
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Fig. 1. Snapshot of the taxonomy of concepts defined in the SNOMED-CT.



considered. In most cases, the semantic similarity of two concepts
is estimated as a function of the depth of the Least Common Ances-
tor (LCA), also named Least Common Subsumer (LCS), i.e. their
common subsume, which has the maximum depth. In Fig. 1, the
LCA of concepts cs and c3 is cg. The deepest the LCA, the more spe-
cific it is considered and, thus, the more similar the compared con-
cepts are assumed. Based on this strategy, Wu and Palmer
proposed Simyp [13] and Pekar and Staab proposed Simpy [20]:

2 -depth(LCA,,)
~ depth(u) + depth(v)

Sime(u, Z/)

3)

sp(LCA,,», root) )
sp(u,LCAy») +sp(v,LCA,») — sSp(LCA, », TOOL)

SiTTlp]((ll7 1}) =

Most of these measures fulfil the Identity Of the Indiscernibles prop-
erty (IOI), i.e. the similarity (resp. distance) of a concept to itself is
maximal (minimal), e.g. Distggqq(u, u) = 0.

Table A1 in appendix presents some of the most usually refer-
enced SSMs based on edge counting, some of their properties are
also given.

2.1.2. Node-based approaches

Node-based approaches focus on the evaluation of concepts
defined in the ontology. Two specific strategies can be distin-
guished: the feature-based and the one based on Information
Theory.

2.1.2.1. Feature-based strategies. Feature-based strategies evaluate
a concept as a set of features. These strategies are rooted into the
feature-model proposed by Tversky [21]. For ontology-based mea-
sures, the features of a concept are usually considered as the set
of concepts subsuming it, i.e. its ancestors A(u) = {v|u < v}. In
other words, a concept is characterized by the semantics that are
inherited from its ancestors. In Fig. 1, the concept cg will therefore
be represented by the set of features A(cg) = {co, C, C3, C4, C}.
Feature-based strategies root semantic similarity in the context
of classical binary or distance measures (e.g. set-based measures,
vector-based measures). For example, Batet et al. assess taxonomic
distance as the ratio between distinct and shared features [22]:

AWN\A@)| +]A(w) \AW)| )
AWN\A@)|+A(2) \ AW +[A(u) NA(v)

Distpgrer (u, v) =log, (1 +

()

Another example of feature-based measure is given by Rodriguez
and Egenhofer [23]:

Sl.T'TlRE(Ll7 Z/) = |A(u) ﬁA(Z/)|

7-IAWNA@) + (1 =) - [A@) \AW)| + |A(w) NA(v)]
(6)

with y € [0, 1], a parameter that enables to tune measure symmetry.
Simcyarch, the Concept-Match similarity measure [24], is another
example of feature-based similarity measure:

_ A nA(v)|

Simeyaten (U, ) = W 3

Some proposals adopting the feature-based strategy are presented
in appendix Table A2.

2.1.2.2. Strategies based on Information Theory. Approaches based
on Information Theory assess the similarity of concepts according
to the amount of information they provide, i.e. their Information
Content (IC). To this end, Resnik computes the IC of a concept
according to Shannon’s Information Theory as a function of its
usage in a corpus [14]:

IC(u) = —log(p(u)) (8)

with p(u) the probability the concept u occurs in a document of the
corpus. The more a concept occurs, the less informative it will be con-
sidered, assuming that a concept also occurs when the concepts it
subsumes occur. By definition, the IC monotonically decreases from
the terminal concept (leaves) to the root of the ontology. This ensures
the taxonomic coherency of the results, i.e.u < v = IC(u) > IC(v). In
other words, the IC of a concept will always be greater than the IC of
one of its subsumers.

The similarity of two concepts is usually estimated according to
the IC of their Most Informative Common Ancestor (MICA), i.e. the
concept which subsumes the two concepts and has the maximum
IC. In Fig. 1, concept c; is the MICA of the pair of concepts (cs, ¢7). As
an example, Resnik proposes to estimate semantic similarity as fol-
lows [14]:

SiMgesnik (U, v) = IC(MICA, ») (9)

Resnik’s measure does not explicitly capture the specificity, that is,
the IC of evaluated concepts. Indeed, pairs of concepts with the
same MICA will have identical similarity, even if, considering the
taxonomical structure, their divergence towards their MICA is dif-
ferent. This is the case of the pairs (¢, ¢3) and (cy, ¢4), both having
co as MICA in Fig. 1. Therefore, Lin [25], Jiang and Conrath (JC)
[12], Pirr6 and Euzenat (Simgg,) [26] and Mazandu and Mulder
(Simpyc) [27], among others, e.g. [28], refined Resnik’s measure to
incorporate the IC of the compared concepts.

_ 2-IC(MICA, )

Simyin (U, v) = IC(u) +IC(v) v

Distye(u, v) = IC(u) + IC(v) — 2 - IC(MICA,») )
‘ B IC(MICA,.,)

SlmFaith(uv 1}) - IC(U) + ]C(y) — IC(MICAuv) (12)

Simpic(u, v) "oy 0 4

B ZceA(u)IC(C) + ZceA(v)IC(C)

Note that the above measures only consider the MICA to estimate the
information shared by two concepts. Indeed, in most cases, the MICA
summarizes the information contained in the set of shared ancestors,
as it is subsumed by this whole set. However, in some cases, due to
multiple inheritances, the notion of MICA only captures the informa-
tion shared by two concepts partially. For instance, in Fig. 1, consid-
ering that IC(c4) > IC(cy), the MICA of concepts c¢s and cg is ca.
However, the amount of information shared by cs and cg is composed
of the amount of information carried by {c4, c;}, their Set of Least
Common Ancestors (SLCAs). In this case, MICA-based measures will
only consider the most informative concept shared by two concepts.
To better estimate the information shared by two concepts, Couto
et al. proposed GraSM and DiShlin strategies in which the IC of the
SLCAs of two concepts are aggregated [29,30].

In appendix, Table A3 presents some well-known SSMs based
on Information Theory.

The cornerstone of the above measures is the accurate estima-
tion of the IC of concepts. In order to avoid depending on annotated
corpora, whose creation is time consuming, and which are some-
times difficult to obtain (due to data sensibility, e.g. patient record)
[31], various intrinsic IC calculus models have been proposed. They
estimate the IC of concepts by only considering structural informa-
tion extracted from the ontology. Intrinsic IC calculus can be based
on multiple topological characteristics such as the number of
descendants, ancestors and depth [31-33]. Seco et al. [32] propose
computing the IC of a concept as a function of its number of
descendants:



log(D(1))
Tog([C) 14

with D(u) = {v|v < u} and C the set of concepts defined in the
ontology.

In another approach, Sanchez et al. [31] estimate the IC of a con-
cept according to the ratio between the number of terminal con-
cepts (leaves) it subsumes and the amount of ancestors it has:

|leaves(u)|
Al ! )

ICSeco =1-

ICSanchez(u) (15)

=—log Max_Leaves + 1

with leaves(u) as the number of leaves subsumed by the concept u
(e.g. leaves(cy) = {cs, cg} in Fig. 1) and Max_Leaves as the number of
terminal concepts of the ontology.

2.1.3. Hybrid approaches

Hybrid approaches combine notions from edge-based and
node-based approaches [34-37]. They are usually defined as ad
hoc and weighted aggregations of ancestors, node degrees and con-
cept specificities (e.g. IC) [35]. In appendix, Table A4 presents some
proposals based on this principle.

2.2. Related work on unifying semantic measures

Tversky was the first to formulate a framework of semantic sim-
ilarity, the feature model, from which a family of semantic mea-
sures can be derived [21]. The feature model proposes to
characterize semantic objects in a broad sense and was not origi-
nally defined for ontological concepts. This model requires the
semantic objects to be represented as sets of features. Their simi-
larity is therefore intuitively defined as a function of their common
and distinctive features, an approach commonly used to compare
sets (e.g. Jaccard index). Tversky defined two parameterized SSMs:
the contrast model (Simcy;) and the ratio model (Simgy,). They can be
used to compare two semantic objects (u, v) through their respec-
tive sets of features U and V:

Simen(u, v) = f(UNV) —af (U\V) = Bf(V\ U) (16)

funv)
af (U\V)+Bf(VAU)+fUNV)

with o, f and y > 0.

Note that, considering f as the cardinality of the set, setting
Simgy with a=p=1 leads to the Jaccard index, and setting
o= B=0.5 leads to the Dice coefficient. In other words, set-based
measures can be used to easily express abstract formulations of
similarity measures.

The framework proposed by Tversky “just” defines that a
semantic object can be represented as a set of features and that
commonalities and differences must be evaluated to assess the
similarity. By definition, Simc, and Simg,, are therefore constrained
in the set-based frame, i.e. they require compared objects to be
represented as sets. They are, however, considered abstract mea-
sures as they rely on an undefined function f, specifying how to
capture the sets of features of compared objects.

Among the large diversity of proposals, most set-based mea-
sures can be split into two groups: those based on the Caillez
and Kuntz g, formulation, and those based on Gower and Legendre
o, formulation [17]. Since set-based measures can be used to de-
sign semantic measures, ¢, and o, can be expressed in a straight-
forward manner according to the Tversky feature approach.

o, (U, v) :f(UiﬁV)m (18)
<f<U>’§f(V>’>

Simgm(u, v) = (17)

CfO) V) +(B-2)f(UNV)

The abstract formulation ¢, can be used to express, among others,
Simpson (o = —oc) and Ochaiai (« = 0) coefficients [38]. The o refor-
mulation enables the definition of other numerous measures, e.g.
Sokal and Sneath (= 0.5), and Jaccard (f = 1) and Dice (8 = 2) coef-
ficients [17,38].

Blanchard et al. were the first to take advantage, in an explicit
manner, of abstract SSMs to compare pairs of concepts defined in
an ontology [17]. They focus on an information theoretic semantic
similarity to underline relationships between several existing mea-
sures. For example, based on the intuitive notion of commonality
and differences, they underlined that Wu & Palmer and Lin similar-
ity measures, Eqs. (3) and (10), can be derived from the Dice index.
They were also the first to stress the suitability of an abstract
framework to define new measures and to study properties of
groups of measures [17].

Other authors also demonstrated the relationships between, a
priori, different similarity measures and took further advantage
of frameworks to design new measures [8,26,39-41]. These contri-
butions mainly focused on establishing local relationships between
set-based measures and measures based on Information Theory. As
an example, Sanchez and Batet [8] proposed a framework,
grounded in Information Theory, which allows several measures
(i.e., edge-counting and set-based coefficients) to be uniformly
redefined according to the notion of IC. Cross et al. also proposed
a similar contribution in which feature-based approaches and
measures based on Information Theory are expressed through
the frame of the fuzzy-sets theory [40-42].

Despite the suitability of existing frameworks for studying
some of the SSM properties, only a few works rely on them to ex-
press measures [8,40]. Moreover, current frameworks only focus
on a specific paradigm (e.g. feature-based strategy), which is used
to express SSMs. In fact, existing frameworks only encompass a
limited number of measures and were not defined in the purpose
of unifying SSMs expressed using the variety of paradigms re-
viewed in Section 2. The following section is dedicated to the def-
inition of such a unifying theoretical framework.

G/;(u, U)

3. A unifying framework for ontology-based semantic similarity
measures

The analysis of the state-of-the-art allowed us to distinguish a
few core elements underlying most SSMs. Their notation and
meaning are given in this section. The abstract measures, which
can be defined as a function of those core elements, are then intro-
duced and discussed. Finally, we illustrate the suitability of the
proposed framework to express a selection of well-known SSMs
available in the literature.

3.1. Notation

In order to ease the readability of this section, the various nota-
tions which will be used to present the framework are listed be-
low; provided examples are presented in association with Fig. 2:

e G: the semantic graph (ontology) in which concepts are
defined.

e C: the set of concepts in, e.g., C={co, c1,. .., Co}.

e A(u): the set of concepts including u and its ancestors,
defined by the partial order =< of G, ie.
A(u) = {v € Clu < v}. For example, A(cg) = {cs, C1, C2, Co}

e D(u): the set of descendants of c, i.e. D(u) = {v € C|v < u}.
For example, D(cg) = {cs, Co}.
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Fig. 2. Taxonomical semantic graph defining a partial ordering between a set of
concepts.

e leaves(C): the concepts
leaves(C) = {cq, cs, C7}.

e {u ~ v}: the set of taxonomic paths leading from concept u
to concept v, e.g., {cg~ Co}={cs — €1 — Cp,Cs — C1 — C3
— C —>C0,...}.

e OQ,,CA(u)NA(v): the Set of Least Common Ancestors
(SLCAs) of concepts u and v, i.e., the minimal set of shared
ancestors of u and v which are subsumed by the maximal
number of common ancestors of the two concepts. The idea
is to distinguish the set of concepts which contains all the
meaning carried by the concepts subsuming u and v. Q,,,
therefore corresponds to the set of ancestors of both u
and v which are the more specific (e.g., deeper in the ontol-
ogy) and non-comparable with regard to the partial order
defined in G, i.e., x£y and y £x. Otherwise stated, Q,,, cor-
responds to the leaves of the graph induced by the concepts
found in A(u) NA(v). For example, in Fig. 2, we obtain
Qc,c; = {c1,c2} and Qc, ¢, = {c2}. More formally, the SLCAs
of the concepts u and v can be defined as the minimal set of
concepts respecting |J A(c) = A(u) NA(v). The notion of

ceQuy
SLCAs have also been introduced through the term Disjoint
Common Ancestors (DCAs) in the literature [29]. We abbre-
viate Q,,, by Q when there is no ambiguity.

e G C G: the graph induced by a concept c, considering both
its ancestors and descendants.

e G/ (resp.G;): a graph induced by a concept C, only consider-
ing its ancestors (resp. descendants). For instance, G§3 is the
sub-graph of G, only considering concepts A(cs)=
{co, €1, €2, Co} and associated relationships.

e [K: a domain containing any subset or subgraph of G:
{u ~ v}, A(u),D(u), Gy, G, .

respecting  D(c)={c}, e.g.

3.2. Core elements of semantic similarity measures

In this section, we first distinguish the core elements of SSMs;
secondly, we will further detail each of them through concrete
examples.

As stated in Section 2.1, similarity measures are designed
according to specific paradigms (e.g., edge-counting or node-based
strategies). Therefore, measure designers first adopt a specific par-
adigm from which estimators of commonalities and differences
will be defined. They next adopt a strategy by which those estima-
tors will be aggregated to express a similarity measure or a taxo-
nomical distance. Indeed, in a broad sense, when comparing two
things, their commonalities and differences are the only evidences
from which similarity (or dissimilarity) can be evaluated. In the

aim of distinguishing the core elements of SSMs, estimators of
commonalities and differences intuitively appear as critical ele-
ments of semantic measures. In fact, they are the roots of all exist-
ing similarity measures.

The definition of the estimators of commonalities and differ-
ences depends on the paradigm chosen to formulate SSMs. For in-
stance, for edge-counting approaches, the difference of two
concepts is assessed as a function of the length of the shortest path
linking them, while for feature-based approaches, concept differ-
ences are computed as a function of the features characterizing a
concept, which are not shared with the other.

The main differences between existing paradigms depend on
the strategy adopted to represent a concept. Such representation
will determine the expressions of the estimators of commonalities
and differences. Therefore, we formally introduce a function aim-
ing at representing a concept.

Definition 1. The mapping of a set of concept C' C C to its semantic
representation, denoted C’, which encompasses its semantic fea-
tures, is defined by the function p(C'):

p: P(C) - K
For convenience, we note p(u) and i, the representation of a single
concept u, i.e{u}. Concrete examples of the core elements will be
discussed later in this section.

We also formally define the function aiming to estimate the
commonalities and differences of two concepts (u, v), according
to their semantic representations (i, i):

Definition 2. The commonality of two concept representations
(u,u) is estimated using a function ¥'(u, u):

¥Y: KxK-—R'

Definition 3. The amount of knowledge represented in & not found
in » is estimated using a function ®(u, u):

O: KxK—R"

Those three abstract functions p, ¥, ® are the core elements of
most similarity measures. In the context of semantic similarity esti-
mation, they can be used to reformulate, in an abstract manner, all
SSMs based on commonalities and differences of compared con-
cepts. As an example, an estimation of the shortest-path linking
two concepts u, v [15] can be abstracted to the sum of their differ-
ences, being estimated regarding their LCA:

sp(u, v) =~ O(u, v) + ©(2,1)

where ®(u, ) = sp(u,LCA,,) and ®(v,u)
e sp(u,v)

Designers of similarity measures sometimes consider the whole
semantic space in which compared elements are modelled [38].
We therefore define a function enabling to capture this
information.

= sp(v,LCAy,),with LCA,,

Definition 4. The amount of knowledge defined in G (i.e. modelled
in the ontology), which is neither found in @ nor in #, can be
estimated by a function {(u, v):

: KxK—R'

Fig. 3 presents an intuitive feature-based representation of the
functions introduced by the framework. The representation of the
concept u, i.e. p(u), is here defined as A(u), i.e. the set of subsumers
of u. The commonalities and differences (¥, ®) of two concept
representations are intuitively defined by the set operators (N and
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Fig. 3. Example of expression of the framework’s core elements according to the feature-based approach.

\ respectively). The part of the universe which is not contained in
compared concepts is denoted by .

Most measures can be expressed in an abstract manner using
the functions p, W, @ and, in some particular cases, {. However,
there are situations in which functions ¥ and ® may also be ex-
pressed according to the specificity of a concept or, more generally,
according to the amount of information carried by a concept repre-
sentation (e.g. Lin and Resnik for information theoretic measures).
Thus, we further define two functions capturing these notions.

Definition 5. The specificity of a concept u is estimated by a
function 0(u).

0: C—R"

The expressions used to compute the IC of a concept, presented in
Section 2.1.2.2, are particular expressions of function 6. Other esti-
mators, which are not framed in Information Theory (e.g. the depth
of a concept) can be used to estimate concepts’ specificity.

Finally, we also generalize the notion of specificity of a concept
to a representation of a concept:

Definition 6. The degree of specificity of a concept representation
u can be estimated by a function ®(u):

®: K—R"

The ® function generalizes function 0 defined to estimate concept
specificity. This is required to express state-of-the-art semantic
measures based on an aggregation of 0 [27,43]. As an example, con-
sidering the representation of concept u by u = A(u), in Eq. (13),
Mazandu et al. defined ®(u) as:

OAW) = > o)
ceA(u)

We further detail how the various core elements distinguished by
the framework can be associated to ontological knowledge.

3.2.1. Mapping a concept to its semantic representation in the
ontology (p)

The semantic representation of a set of concepts contained in an
ontology can be viewed as a subset of the knowledge that the
ontology models. Thus, the function p defines the mapping be-
tween a set of concepts and its semantic representation in the

ontology. We first consider the case in which the set of concepts
only contains a single concept. Fig. 4 shows some semantic repre-
sentations of a concept that are commonly used to design semantic
measures.

One of the most general semantic representations of a concept u
is G, i.e. the graph induced by the ancestors (A(u)) and the descen-
dants (D(u)) of u. However, in most cases, SSMs are based on G,
the graph induced by u, only considering its ancestors Indeed, as
stressed in Fig. 4, from G,, multiple concept representations can
be derived, such as the set of ancestors A(u) or the set of paths link-
ing the concept to the root {u ~ root} to cite a few. As we have seen
in Section 2.1.2.1, representing a concept by A(u) is extensively
used to express measures based on the feature approaches
[22,23], or based on Information Theory [12,25,44]|. Moreover,
the representation of a concept through {u ~ root} is commonly
adopted in defining measures based on the edge-counting ap-
proach [13,15,20].

In order that the function p is defined for a set of concepts, we
consider that union operators are defined for the proposed concept
representations. This is indeed the case of all representations based
on sets and of those corresponding to graphs. Formally, the repre-
sentation of a set of concepts C' C C can be derived from the repre-
sentation of a single concept, i.e. p(C') = U, p(u), e.g. defining
p(C/) = UueC’ A(u)

3.2.2. Estimating concept specificity (60 and @)

Numerous measures rely on the notion of the amount of infor-
mation captured by a concept. The notion of Information Content
(IC) exploited by information theoretic measures was defined for
this purpose. Other strategies, which are not grounded in Infor-
mation Theory, have also proposed to evaluate the specificity of
a concept according to, for instance, its depth in the ontology
[13]. We therefore generalized the notion of IC by introducing a
function 0 which estimates the specificity of a concept. Since
the central element of the framework is the semantic representa-
tion of a concept (p), we also introduced a function ®, which as-
sesses the specificity of that semantic representation; in other
words, this function generalizes 0. In the same manner as 6,
and in coherency with the taxonomical structure, ® also de-
creases monotonically from the leaves to the root of the ontology,
ie.u=xv=0(1) > 0(v).
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Fig. 4. Semantic representations of a concept commonly used to design semantic similarity measures.

Depending on the representation adopted for p, various strate-
gies can be defined to evaluate ®(u1). Without loss of generality, we
focus here on the case where ©(u1) is assessed for 1 CG,, e.g.
it = A(u). Two commonly used strategies are briefly discussed:

e Evaluating the cardinality of u. We obtain ®(u) = |A(u)|, which
can be substituted by 0(u) so that 0(u)=|A(u)|. In this case, a
commonly used strategy is to define O(l) = maXceaw)0(C)
= 0(u). This strategy was adopted by Lin, Resnik, Wu, Palmer
and numerous SSMs.

Aggregating the specificity of the concept contained in A(u) by
considering a particular 6 function. This leads to O(u) =
> ceaw0(c), which can be extended to O(ol) = > 4, @(C)
Mazandu and Mulder recently proposed an information content
using such strategy to evaluate the specificity of a concept [27]
(see Eq. (13)).

3.2.3. Estimating the commonalities of two concepts ()

The commonality between concept pairs, evaluated by the func-
tion W, can be associated with the amount of information captured
by features shared among the semantic representations of these
concepts, i.e. intuitively ®(u N 2). For example, when u is associ-
ated with sets, e.g. it = A(u), a commonly used strategy is to define
commonalities by |A(u) N A(v)| (e.g. Eq. (6), Simgg). In other words,
the function W assesses the specificity of the features shared
between the semantic representations of the compared concepts.

Numerous similarity measures consider taxonomies as tree
structures (e.g. [13,20]). In a tree, there is just a single concept w
that subsumes two other concepts u, v such that A(w) = A(u) N A(v).
The notions of LCA/LCS and MICA correspond to this concept .
Moreover, in a tree, the depth of a concept is particularly suited
to evaluate its specificity as A(u) =1 + depth(u). Thus, in trees, the
function ¥ can assess the commonalities of two concepts by just
considering ®(®), defining, for example, ®(LCA, ,). However, be-
cause of the presence of multiple taxonomic inheritances in most
widely used ontologies (e.g., SNOMED-CT, MeSH), the notion of a
single subsuming concept w characterizing the whole commonal-
ity of two concepts is not usually fulfilled. Therefore, in order to
capture commonalities, W(u, ) must define an aggregation strat-
egy while taking into account the specificity of all concepts com-
posing Q,,,, that is, the set of non-comparable common ancestors
of concepts u and v. In other words, for most ontologies, «» must
be generalized to Q,,.

Each concept in Q,, represents a particular semantic facet of
the commonality between the concepts u and ». Some approaches
which evaluate these commonalities explicitly aggregate the
amount of information of the semantic facets in Q [14,25].

However, most measures adopt the maximal strategy as they only
exploit w*, that is, the concept of Q which maximizes a selected 0
function. Measures relying on the MICA (e.g. Lin [25], Resnik [14])
or on the LCA (e.g. Wu and Palmer [13]) are examples of this strat-
egy. Nevertheless, other aggregations have been proposed [29,30];
for example, GraSM propose to average the specificities of concepts
in Q:
+0(c
Weras(i, 7) = %

Note that for ontologies incorporating multiple inheritances, the
commonality of a pair of concepts can be also estimated by taking
into account their common descendants, which can be seen as their
shared potential extensions. The problem is symmetrical to the esti-
mation of the commonality based on the shared ancestors Q (which
could be renamed Q). Likewise, a set Q™ representing the non-
comparable common descendants of two concepts can also be ex-
pressed. Estimation of concepts’ commonality based on the study
of their descendants has been recently introduced in [45].

As we have seen, evaluating the commonalities of two terms is
equivalent to evaluating the specificity of the semantic representa-
tion built from the group of concepts Q. Existing approaches (LCA/
MICA [13,14], GraSM and DiShiIn [29,30]) only aggregate the spec-
ificity of the semantic facets represented by Q.

3.2.4. Estimating the differences of two concepts ()

Some measures also rely on the differences between the seman-
tic representations of the compared concepts, to which we refer as
function ®. Considering two concepts u,7, the information con-
tained in u that is not in v is intuitively expressed by:

D, ¥) = O(i1) — V(i1 ) (20)

In practice, @ is usually computed as ®(u, v) = (1) — 0(Q), with
B(Q) as the amount of information carried by the set of concepts
in Q. Moreover, similarly to ¥, numerous ® approaches only con-
sider w*, i.e. the concept from Q, maximizing an expression of the
function 6. This results in ®(u, ¥) = O(t) — O(w*), which is usually
expressed by ®(u, v) = 0(u) — 0(w*) (e.g. [13,14,46]). We present an
example of such a formulation used in the well-known Jiang and
Conrath measure [12]:

Distjc(u, v) = IC(u) + IC(v) — 2 - IC(MICA,,,)
~OU)+0(v)—2-Y1,v)
~ O(il) — W(il, ¥) + O(?) — P(il, )
~ 0(u) — 0(w*) + 0(v) — O(w*) = DU, V) + (v, 1)

Thus, by defining ®(u, ) = IC(u) — IC(MICA, ,), we obtain:



Distyc(u, v) = IC(u) + IC(v) — 2 - IC(MICA, )

For edge-counting approaches, as introduced in Section 3.2, the dif-
ferences of a concept u with respect to » are usually assessed from
the length of the shortest path between the concept and their LCA.
Thus:

®(u, v) = sp(u, LCA,»)

Other strategies can be defined to aggregate the differences
between the concept and those contained in Q. As an example,
some node-based measures (e.g. Simp,c Eq. (13)) take into account
all the information related to Q, as follows:

D@, v) =0 AQu)\ UA(C)> =0O(A) \ (A(u)NA(2)))
ceQ

Despite particular instantiations of @, the vast majority of measures

exploiting semantic differences (e.g. Jiang and Conrath, Lin, Resnik,

Rada, Wu and Palmer, see equations Section 2) estimate the dissim-

ilarity between two concepts as ®(i, 7) = O(u) — ¥(u, D).
3.3. Expressing semantic measures

Once we have distinguished the core elements of SSMs, they can
be used to express a large diversity of measures by instantiating
abstract expressions such as set-based coefficients. To illustrate
the generality and possibilities of the proposed framework, we
present some instantiations corresponding to existing measures
that can be obtained from the Jaccard index. The Jaccard index
can be intuitively generalized by considering an abstraction of
the set-based operators, i.e., with U,V two sets, ¥(i,2) =UNV
and ®(u, ) = U\ 'V, as follows:

W(u, v)
Y(u,v)+ ®u, v) + O(v,u)

Sim]accard(uz Z)) =
considering ®(u, v) = O(u) — ¥ (u, v).

(i, )
o) +0() - ¥Y(@,v)

Sim]accard(u: 7/) =

Based on specific expressions of the functions W and @ (see Table 1),
the Jaccard index can be used to express Pekar and Staab (Simpg)
[20], Simpgien [26] or Simepgaeen [24] (see Egs. (4), (12),(7), Section 2.1).
It can also be used to express Sim.cic, an unpublished pairwise mea-
sure based on Simgc [43], which was initially designed to compare
groups of concepts:

SimCGIC(U 7/) = chA(u)m(U)IC(C)
, ZceA(u)IC(C) + ZCEA(V)IC(C) - ZCEA(U)HA(y)’C(C)

The proposed framework also enables taking advantage of studies
made for other binary measures (e.g. measures used to compare
vectors or sets). Indeed, the proposed core elements can be mapped
to existing theoretical tools used by other communities for studying
binary measures. Table 2 shows abstract expressions of the Opera-
tional Taxonomic Units (OTUs), classically used to represent binary
measures [38]. Thus, such mapping can be used to easily express
SSMs based on binary measure expressions relying on OTUs [38].

Table 1

Table 2

Links between Operation Taxonomic Units (OTUs) commonly used for the definition
of binary measures and the theoretical framework core elements (see Choi et al. [38]
for numerous expressions of binary measures using OTUs).

u\v O(v) O(v)
(i) W(i1, D) o, D)
o(1) »(v.11) (@, o)

In a similar manner to the approach relying on information theory,
the amount of information expressed in an ontology G can be
viewed as ©(G). The amount of information encompassed in the
semantic representation of a concept is expressed by ©(c), and
the amount of information expressed in G, which is not found in ¢
can be defined by ©(7).

Therefore, based on the seventy expressions of binary measures
distinguished by Choi et al. [38] and the correspondences proposed
in Table 2, numerous new measures can easily be expressed. The
main idea is to generalize existing binary measures using the pro-
posed core elements of the framework to derive numerous SSMs,
as performed above using an abstract formulation of the Jaccard in-
dex. Three examples of measures expressions are presented:

Simpice (U, V) = m

Distramming (U, v) = (11, V) + O(v, 1)
u

. _ . )
SiMgraun-Blanquet (Us V) = sk 70(0.0), P07 7000)

This section illustrates that distinguishing the core elements of
SSMs and defining them at an abstract level is important to high-
light relationships between them, and to better understand and
capture the semantics associated to a measure. Moreover, based
on contributions made for other types of similarity measures, we
explicitly established a relationship between existing theoretical
tools and show how a large diversity of SSMs can be easily
generated.

3.4. Unification of abstract measures

In this sub-section, we demonstrate the relationships between
known abstract expressions of measures through the definition
of a new parameterized SSM.

In previous sections we have identified the core elements of
SSMs and we have shown how they can be used to instantiate
and design specific measures. Moreover, we have underlined that
set-based measures can be used to express abstract measures. By
extension, Caillez and Kuntz ¢, and Gower and Legendre ¢, formu-
las (presented in Section 2.2) may be considered abstract parame-
terized measures. Moreover, by focusing on the unification of
measure expressions, we here demonstrate that under some condi-
tions, 6, and o, can be partially unified and extended through a
common expression.

We first demonstrate that g, can be easily extended to the well-
known generalized mean of order o (Result 1). In addition, we
show that o, is a particular case of the ratio model proposed by
Tversky (Result 2). Finally, based on Results 1 and 2, we demon-
strate that a new abstract tunable measure can be used to express
a large diversity of abstract measure (Result 3).

Examples of particular expressions of core elements, from which similarity measures can be obtained as instantiations of the Jaccard index. These can also be used to obtain other

measures using different set-based coefficients.

Core elements Simpy SiMEqicn Simemateh Simccic

p(u) =1 Gy A(u) Au) A(u)

O(u) sp(u, root) Iq(u) [A(u)l > ceamIC(C)

W (a,u) sp(LCAy,, Toot) IC(MICA,y) [A(u) NA()| > ceaurawIC(c)
(i1, ) o) — ¥(ii, v) o) — (i1, v) (i) — Y(ii, ») (i) — Y(ii, )




Result 1. First, note that Cauchy’s mean o, implies a symmetric
contribution of ®(u) and O(v). In a straightforward manner, we
extend o, to the generalized mean of order « [47] by introducing two
parameters x and y, enabling us to tune ®(u1) and ®(?) contributions.

P(il, )

Tt oy 000

— 1)
With x+y=1 and x,y > 0. 0, is a special case of o4x, when
x=y=1

Result 2. We demonstrate the relationship between o and the ratio
model (Eqs. (19) and (17) respectively). Recall that ®u (resp. ®v)
represents the specificity of the representation of a concept u (resp. v).
oy is defined by:

p¥(, v)
O(1)+0(2)+ (B—2)¥ (1, v)

Note that the function ®; is commonly considered as additive, i.e.
B(1uU v) =0O(u) + O(?) for any pair of non-comparable semantic
representations (u, ). With this condition we can demonstrate
the following lemma.

Gﬁ(u7 V)=

Lemma. Considering ©(u) = ®(u,v) +¥(u,v), oz (Gower and
Legendre abstract formulation) is a particular case of the ratio model.

Proof. Considering the inverse of both ¢4 and the ratio model
Simgy, We obtain: O

Simpm (U, v) = P, 2)
BT T %@, 7) + y@(2,0) + (4, )
Setting x = y, we have:
1 B O, v) _ D(D,il)
Smm@ o) - @) T @ )
In addition,
1, 2. 1em 1 06@
op(u, v) B Y@ pY(u )
(i) o(v)
=1 2"”—‘{/(&,@)”—\{1@,@)

Considering ©(u1) = ®(u, v) + ¥ (u, ), we obtain:

1 O(iL, )+ (i, 7) O, i) + P(iL, )

P T R 7% ) @)
0wy o 1
=@ ) T Y@, 0)  Sime(w, 0)

Thus, o is a particular case of the ratio model proposed by Tversky,
considering an equal contribution of ®(u, ) and ®(u1, ?) (i.e. x=y).

Result 3. o, and the ratio model (which includes, see result 2) may
be expressed by the general function X, (shorten by X).

Y(u, )
(x- O +y -0 +z-¥(u,v)")

Z(u,v) = (22)

1/
with x,y,z>0 and x+y+z=1. Note that by setting
o =1and ©(u) = ¥(u, ») + (i, v)) the abstract measure X can
also be formulated as:
Y(u, )
Z(u,v) = — — — 23
,2) X-0u,v)+y - Ov,u)+x+y+2)-¥Yu,v) (23)

In this section we have demonstrated that existing abstract mea-
sures can be generalized to the X abstract measure, from which a
large diversity of measures can be derived. Unifying abstract mea-

sures opens interesting perspectives for measure optimization. In-
deed, expressing existing measures through a common
parameterized formula enable better understanding the relation-
ships between the various proposals. Moreover, a large variety of
measures can easily be instantiated by tuning few parameters. Uni-
fication of measures is therefore a prerequisite in order to distin-
guish the parameters best impacting measure accuracy.

4. Practical application of the framework

This section is devoted to the application of the proposed
framework in a practical setting. The main goal is to discuss how
SSMs can be designed and studied by means of the core elements
identified by the framework, from which the most commonly used
are:

e The estimator of the specificity of a concept defined in an
ontology (function 0).

e The representation of a concept or a set of concepts corre-
sponding to a canonical form which can be processed in
order to extract the semantics of the (set of) concept(s)
(function p).

o The estimator of the specificity of a concept representation,
that is, the amount of information provided by the repre-
sentation of a concept with regard to the information
defined in the ontology (function ®).

e The estimator of the commonality of two concept represen-
tations (function V).

e The estimator of the difference between two concept repre-
sentations (function ®).

In this section, we first detail some guidelines for the practical
definition of measures based on the proposed framework. As done
in Section 3.3, we define how existing measures can be mapped to
the framework and how new proposals can be formulated. Sec-
ondly, we use the proposed framework to study and evaluate sev-
eral SSMs in a biomedical usage context.

4.1. Guidelines for framework instantiation

In this subsection, we define the guidelines to instantiate/de-
sign a semantic similarity based on the proposed framework.
Two main steps can be distinguished:

1. Selection of an abstract measure, such as >, a4, Simgy (see
Section 3.3, Egs. (22), (18), and (17)).

2. Definition of the expression of the core elements. This step
consists in selecting a specific semantic representation of a
concept (p function) and the definition of the expression of
the abstract operators on which the selected abstract mea-
sure relies, for instance to estimate the commonality (W) or
the difference (®) between two concept representations
(e.g. see Table 1).

The first step to design a semantic measure is to select an ab-
stract measure relying on some of the core elements distin-
guished by framework. The multiple set-based expressions
introduced in Section 3.3 and the parameterized abstract mea-
sures discussed in Section 3.4 can be used to express a large
diversity of measures.

The selected abstract measure defines the semantics related to
the compared concepts which will be taken into account during
the comparison, e.g. commonalty (¥), difference (®), and also
their weight in the similarity assessment. As an example, both
the Jaccard index and the Dice coefficient can be derived from



the Tversky’s ratio model by setting «, =1 and a, = 0.5, respec-
tively. It is therefore explicit that the Dice coefficient gives more
importance to commonalities (and less importance to differences)
for similarity estimation compared to the Jaccard Index. The
selection of the abstract measure is therefore important to finely
control the semantics of the scores produced by a measure. This
aspect may be particularly important for context-specific
applications.

The next step consists in defining how to semantically represent
a concept according to the available ontological knowledge. Such
representation, i.e. function p, is required to define the expression
of the operators used by the abstract measure. The selection of a
specific representation (p function), e.g. set of concepts A(u), par-
tially defines which semantics will be considered in the similarity
assessment. Finally, expressions for abstract operators (e.g. estima-
tors of commonalities or differences) must be defined in accor-
dance with the selected expression of function p, which defines
how to represent a concept.

The users will therefore have to consider (i) specific expressions
of the primitive functions distinguished by the framework, (ii) ab-
stract semantic measures (e.g. abstract Tversky’s Ratio model) and
(iii) specific parameter freedom. Two scenarios can therefore be
distinguished:

e The designer has a very clear idea about the more relevant
elements that guide the similarity assessment in the con-
crete scenario and their relative weights and thus tunes
and obtains the measure accordingly. Some of the parame-
ters on which the measures rely can, for example, be
restricted due to constraints defined by the context of use
(e.g. the measure must be symmetric - the user will there-
fore only consider setting where o = 8 in the abstract ratio
model).

e The designer has a training set of similarity scores
(human-rated) that would be expected in such a scenario
and that can be used to evaluate the accuracy of measures
resulting from the framework instantiation. The set of
measures to be evaluated can eventually be restricted
according to specific properties induced by specific core
element expressions, such as the algorithmic complexity
(cf. scenario 1). The selection of the best suited measures
will therefore be performed empirically using the training
set from which performances of measures can be esti-
mated. Such a training set or test sample must be com-
posed of expected scores of similarity for a reasonable
amount of pairs of concepts. It must be built alongside
the experts of the domain according to the behaviour
we want the system to have. In this case, the process
detailed in Section 4.2, that is, the calculus of correlation
values can be used to select the most appropriate mea-
sure. Using the Semantic Measures Library [59] (http://
www.semantic-measures-library.org), the users can
indeed easily implement a test in which the correlations
between various configurations of semantic measures will
be evaluated in order to distinguish the most suited set of
parameters and therefore the most suited semantic mea-
sures according to a specific use case.

With the above-described method, our framework can be used
to easily instantiate existing or new SSMs, while finely controlling
the semantics considered during the similarity assessment. Such
constructive approach draws interesting perspectives for evaluat-
ing semantic measures, such as testing the influence of the vari-
ous SSM components (i.e. abstract measures, core element
expressions) over the accuracy of concrete measures in domain-
specific tasks.

4.2. Case study in the biomedical domain

As we have seen, once an abstract measure has been selected,
e.g. the Tversky’s ratio model, the various components on which
the abstract measure relies need to be defined in order to instanti-
ate a SSM. Among them, we distinguish the parameters of the ab-
stract function, if any (e.g. o, 8 for the ratio model), but also
expressions of the core elements (e.g. the representation of a con-
cept p the way to assess the commonality of two concept represen-
tations P, their difference ®).

The selection of the parameters governing the measure instan-
tiation is partially driven by the usage context (i.e. ontology). How-
ever, values of specific parameters can be difficult to tune and may
only be assessed through empirical evaluations. The objective of
this section is to discuss the impact of choices made while design-
ing a measure. This study can only be made from the perspective of
a specific usage context, since the suitability of SSMs may vary
depending on the goal to achieve, in the same manner as human
criteria may also vary from one setting to another. As stated in
the introduction, due to the importance of SSMs and ontologies
in biomedical research, the biomedical domain has been selected
as the usage context. Next, we introduce the questions this exper-
iment aims to answer. Then, we detail the experiment design and,
finally, we present the results and discussions.

The aim of the experiment is to analyse semantic similarity
accuracy in a specific biomedical-related usage context. We specif-
ically want to evaluate which are the parameters of SSMs, distin-
guished by the framework, which best impacts semantic
similarity performance:

e The selection of the abstract measure and its tuning.
e The expression of the core elements of the measures.

This experiment highlights the relevance of the proposed
framework to provide answers in a specific usage context. We left
additional experiments in other domains, with the use of other
measures and parameters for future work.

4.2.1. Experiment design

For this experiment we considered the well-known Pedersen
et al. benchmark, which is commonly used in the biomedical do-
main to evaluate SSMs according to human judgements of similar-
ity [9]. Indeed, to be accurate, most of algorithms and treatments
which extensively rely on semantic measures (e.g., in information
retrieval, disambiguation and data analysis) require semantic mea-
sures to be highly correlated with human judgement of similarity
[9,48,49]. Semantic measures are therefore commonly evaluated
regarding their ability to mimic human experts’ appreciation of
similarity between domain-specific concepts. The accuracy of mea-
sures is in this case evaluated regarding their correlations to the
similarities assessed by domain experts for a set of concept pairs;
the more the results of a measure are correlated to the scores of
similarity assessed by the experts, the more accurate the measure
will be considered.

Pedersen et al. benchmark contains 29 pairs of terms related to
the biomedical domain; for each one, the corresponding pair of
concepts has been extracted from the SNOMED-CT biomedical
ontology [18] (see appendix, Table B1 for the complete list of terms
and associated SNOMED-CT concepts). For each pair of concepts,
two semantic similarity scores associated to two sets of experts,
9 medical coders and 3 physicians, are given. Those scores have
been obtained by averaging the ratings given by the experts of each
group. An additional averaged score of similarity is also generally
considered for each pair, which is computed by averaging the sim-
ilarities assessed by both coders and physicians. Evaluation of
SSMs is then tackled by computing the Pearson correlation against
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Table 3

Core element expressions evaluated by the experiments.

Instantiation 1 2 3 4

pu)=1u Gy A(u) A(u) Au)

(i) sp(u ~» root) IC(u) IA)| eeawC(©)

q‘(ﬂ i)) SP(LCAIA,V "~ root) IC(MICAM,V) ‘A(u) n A(U)‘ ZceA(u)ﬁA(y)lC(c)

D(u, v) O(u) —¥(u,v) o) - Y(u,) o) - Y(u,v) Ou) - Y¥(u,)
Table 4

Examples of correspondences that can be established between existing SSMs and measure instantiations considering the contrast/ratio models, and the instantiation of the core

elements defined in Table 3.

Measures Refs. Abstract measure Parameters Instantiation
Resnik [14] Contrast model a=0,8=0 2
Wau and Palmer [13] Ratio model o=0.5, g=0.5 1
Lin [25] Ratio model a=0.5,=0.5 2
Sim DIC [27] Ratio model a=0.5, =0.5 4
Pekar and Staab [20] Ratio model a=1,p=1 1
Sim Faith [26] Ratio model a=1,8=1 2
Concept Match [24] Ratio model a=1,p=1 3
Simecic This paper Ratio model a=1,p=1 4
Table 5
Best Pearson correlations obtained against coder ratings. Best values obtained using each abstract functions are specified in bold.
Instantiation Best tuning of Contrast model Best tuning of Ratio model Correlations
o B o B Contrast model Ratio model
1 0.5 1.0 149 2.1 0.764 0.849
2 0.2 0.7 13.6 33 0.801 0.862
3 0.5 0.4 149 35 0.613 0.865
4 0.4 0.3 8.1 1.9 0.714 0.858
Table 6
Best Pearson correlations obtained against physician ratings. Best values obtained using each abstract functions are specified in bold.
Instantiation Best tuning of Contrast model Best tuning of Ratio model Correlations
o B o B Contrast model Ratio model
1 0.2 1.5 6.6 3.2 0.779 0.678
2 0.8 0.1 3.6 2.8 0.752 0.683
3 0.3 0.5 3.8 34 0.587 0.710
4 0.4 0.4 1.1 1.7 0.670 0.715
Table 7
Best Pearson correlations obtained against the average of physician and coder ratings.Best values obtained using each abstract functions are specified in bold.
Instantiation Best tuning of Contrast model Best tuning of Ratio model Correlations
o B o B Contrast model Ratio model
1 0.3 13 149 2.6 0.799 0.789
2 0.5 0.4 6.9 3.2 0.805 0.798
3 0.4 0.4 7.9 3.7 0.623 0.810
4 0.4 0.4 2.8 2.0 0.719 0.808

the similarity ratings given by each group of human experts (phy-
sicians, coder, both). In this experiment, the semantic similarity of
each pair of concepts has been computed using SNOMED-CT as
ontology.

The study focuses on two abstract measures: the contrast model
(Simgy) and the ratio model (Simgy;) (equations 16 and 17).The o
and p parameters, which tune the contribution of the information
found in u (resp. ) which is not found in v (resp. u), were set from 0
to 15 with a step of 0.1, i.e., 150 « and g values. As a result of this

parameter tuning, 22,500 abstract expressions (150 * 150) of both
Simcyy and Simgy, have been obtained and systematically evaluated.
Notice that in Simcy,, the y parameter, which tunes the contribution
of the commonality, was fixed to 1 as we did not want to study the
effect of the variation of both the commonality and the difference
(e and B) since they are both inversely correlated in most cases. For
each abstract expression among the 22,500 evaluated, we further
tested the four instantiations of the core elements shown in
Table 3.



(A1) Tversky CONTRAST_MODEL CASE_2 AVERAGE (B1) Tversky RATIO_MODEL CASE_2

AVERAGE

0.80
g 0.75
0.6
2 070 Q
g 2
% 0.65 ® 04
> 3
2
Resnik Lin &
5 —_ &
Sim Faith 5 @

4{0/76 10
15 0

(AZ) Tversky CONTRAST_MODEL CASE_4 AVERAGE (Bz) Tversky RATIO_MODEL CASE_4 AVERAGE

Sim DIC g
s &
Sim cGIC

4/p/,a 10

15 0

Fig. 5. Surfaces associated to the Pearson correlations of similarity measures against the average of physician and coder ratings. Measures have been instantiated from the
contrast model (A) and the ratio model (B) using core elements expressions defined Table 3: expression #2 (A1, B1) and expression #4 (A2, B2). Each point composing the

surface corresponds to a specific tuning of o and . For each surface, the dot labeled max corresponds to the maximal value observed. Other dots reflect instantiations that
correspond to existing measures, cf. labels and Table 4.

(A) Tversky CONTRAST_MODEL CASE_ 1 AVERAGE (B) Tversky RATIO_MODEL CASE_ 1 AVERAGE
06 —|
0.7 —
(@]
9 e
g 3 04—
D 06— 8
8 o
g >
A Ay, 0
'0/765 02 — “hes
110 10
05
T | T |
%o 5 10 15 5, 5 10 15
Beta Beta

Thus, for each abstract similarity measure, the four instantia-
tions of the core elements lead to 90,000 individual measures,
i.e. 22,500 * 4. Note that IC-dependent configurations used San-
chez et al. IC calculus model [31]. The final experiment is then

Fig. 6. Plot of the Pearson correlations of the contrast and the ratio model using instantiation #1 (Averaged benchmark).

based on the evaluation of more than 1 million measure
configurations, i.e. 360,000 measure configurations for each eval-

uation benchmark: physicians, coders and the average of both
ratings.



Notice that some measures available in the literature corre-
spond to particular points into the range of measure instantiations
performed in this experiment. Table 4 highlights some of these
correspondences.

Empirical evaluations were performed using the Semantic Mea-
sures Library [59]' a library dedicated to large-scale analysis and
computation of SSMs. The source code and detailed documentation
related to the experiment is open sourced and available at http://
www.lgi2p.ema.fr:8090/~sharispe/publications/JBI2013.

4.2.2. Results and discussions

Tables 5-7 summarize the best results that have been obtained
for each configuration of abstract measures and for the four spe-
cific strategies used to express the core elements (cf. Table 3).
The correlations have been computed against averaged scores ob-
tained considering only coders scores (Table 5), only physicians
scores (Table 6) and the average of both coders and physicians
scores (Table 7).

Some conclusions can be extracted from the analysis of the
results:

- The effect of core elements’ expressions on measures’ accura-
cies depend on the abstract measure considered: for the con-
trast model, the core elements’ expressions corresponding
to instantiation #3 always resulted in the lowest correla-
tions (0.613, 0.587, 0.623). On the contrary, considering
the ratio model, instantiation #3 resulted in some of the
best correlations (0.865, 0.710, 0.810).

- The accuracy of the measures is mainly explained by the
selected abstract measure: indeed, changes in the expression
of the core elements only modified the shape of the surface
slightly. Moreover, most instantiations associated with
well-tuned o and g parameters produced good correlations.
The maximum variation between the best correlation
observed for the ratio model was +0.04 (0.678-0.715, see
Table 6). However, using the contrast model, greater varia-
tions were observed: +0.19 (0.587-0.779, see Table 6).
We can therefore conclude that relevancy of tuning o and
p depends on the selected abstract measure from which
the similarity measure will be instantiated.

- The variability of scores is mainly due to the selection and tun-
ing of the abstract measure: by considering the contrast
model, an important variability of results is observed
depending on the values of o and j (see Fig. 5A1 and A2).
However, despite the variability of the results, it is also
observed for the ratio model that the variability signifi-
cantly decreases with large values of o and g (see Fig. 5B1
and B2). It is therefore interesting to remark that the sensi-
bility of measures does not depend on the expression of the
abstract operators, but on the selected abstract measure.

- Asymmetrical measures tend to provide the best results: all
experiments provided the best correlations by tuning the
measures with asymmetric contributions of o and g param-
eters (see Tables 5-7 and Fig. 6). In Fig. 6, the asymmetry of
the surfaces underlines the benefits of considering asym-
metric o and B values. The improvement of an asymmetric
tuning of parameters is best outlined in the ratio model
(Fig. 6 B). Such result stresses the need of tools to best esti-
mate parameters for domain-specific settings.

Note that the observations made in this experiment are only
driven by the analysis of specific configurations of measures, using
a single ontology and a unique benchmark. However, our results
stress the usefulness of such experiments and the added value of

1 See dedicated website http://www.semantic-measures-library.org.

the proposed framework to both ease and improve SSMs under-
standing, selection and design. Such tool is also essential to opti-
mize SSMs for domain-specific usage contexts and to facilitate
selection of specific measures.

5. Conclusions and future work

A large diversity of semantic similarity measures (SSMs) has
been proposed over the last decades, most of them focused on spe-
cific applications or domains. In this paper, we unified most well-
known approaches through the definition of a theoretical frame-
work dedicated to SSMs. The main advantages of the proposed
framework rely on the identification of the core elements commonly
used to design SSMs. We have indeed underlined that most measures
can be expressed considering a limited set of core elements (functions)
such as those defining (i) how to represent a concept through a
processable canonical form (p), (ii) how to estimate its specificity
(0) and the specificity of its representation (®), and (iii) how to
estimate the degree of commonality (W) and difference (®) be-
tween two concept representations. In fact, we demonstrate how
those core elements can be used to express a large diversity of
(existing) measures based on generic parametric measures which
can be seen as the backbone of semantic measures. The character-
ization of the measures through the distinguished core elements
enabled us to better characterize measures relying on different
paradigms and therefore to better understand the large diversity
of measure expressions proposed in the state-of-the-art. In addi-
tion to this contribution, we also bring out, through detailed case
studies and examples, the practical applications and interesting
perspectives this framework provides:

e Theoretical analysis and understanding of semantic measures.
Distinguishing the core elements on which SSMs are based
allow us to highlight narrow relationships between exist-
ing proposals. Indeed, we found that SSMs can be easily
expressed through the definition of a few intuitive core ele-
ments and that most, if not all, measures are just particular
expressions of a limited set of abstract measures. We there-
fore demonstrated that several measures which rely on the
same abstract measure (e.g., abstracted ratio model), only
differ due to a specific set of parameters selected to instan-
tiate them (e.g., strategy used to represent a concept or to
assess the commonality/difference between concept

Table A1
Selection of SSMs adopting the edge-counting approach. IOI=Identity of the
Indiscernibles, the * symbol denotes that the measure is a distance.

Name Refs. Range 101

Rada et al.* [15] R* True
Pekar and Staab [20] [0,1] True
Wu and Palmer [13] [0,1] True
Slimani et al. [50] [0,1] True
Nagar and Al-mubaid [51] R True

Table A2
Selection of SSMs adopting the feature-based strategy. IOl = Identity of the Indis-
cernibles, the * symbol denotes that the measure is a distance.

Name Refs. Range 101

Sanchez et al. [22] [0,1] True
Ranwez et al.” [52] R True
Batet et al. [53] [0, 1] True
Rodriguez and Egenhofer [23] [0,1] True
Petraskis et al. [54] [0,1] True
Maedche and Staab [24] [0,1] True
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Table A3
Selection

of SSMs based on Information Theory. IOl = Identity of the Indiscernibles,

the * symbol denotes that the measure is a distance; *1: the range of Resnik similarity
measures depends on the selected IC function.

Name Refs. Range 101
Resnik [14] RH*1 False
Jiang and Conrath* [12] [0,1] True
Lin [25] [0,1] True
Sim Rel [55] [0,1] False
Sim DIC [27] [0,1] True

Table A4

Selection of SSMs based on the hybrid approaches. I0I = Identity of the Indiscernibles.
Name Refs. Range 101
Li et al. [37] R False
Mao and Chu [56] R False
SSM [36] [0, 1] False
Al-Mubaid and Nguyen [57] R True
SSA [58] [0, 1] False

Table B1

representations). This strong result is therefore important
for the theoretical analysis of semantic measures. Indeed,
most applications in which the measures are not selected
through empirical analyses, expect the measures to fulfil
specific properties, e.g., symmetry, respect of the identity
of the indiscernible. Thanks to the breakdown of the mea-
sures proposed by the framework, properties of measures
can be analysed, not only regarding specific measure
instantiation (e.g. Lin's, Resnik’s), but also focusing on both
the abstract measures from which they derived (e.g.
abstract contrast model) and the properties induced by

the core elements. This enables a better understanding
and analysis of the algorithmic complexity of measures,
which is critical for most application contexts but never-
theless rarely considered in semantic measure proposals.

Creation and tuning of semantic measures. The separation of
measures from the core elements on which they rely
enables researchers to focus not just on new ad hoc mea-
sures, but also on the design of specific strategies to
improve the assessment of those core elements. As an
example, we have seen that an accurate estimator of the
commonality between two concepts (¥ function), which
depends on the canonical form adopted to represent a con-
cept (p function), is of major importance to define semantic
measures. Designers of measures can therefore improve
several existing measures by improving the way the V¥
function is estimated with regard to a specific representa-
tion of a concept. It is therefore important to understand
that improving the assessment of core elements distin-
guished by the framework leads to improvements in multi-
ple measures, and not just to a specific measure in a
concrete context. By distinguishing the core elements of
semantic measures, the theoretical tool proposed in the
paper therefore opens interesting perspectives for the def-
inition and improvement of semantic measures in general.
Moreover, by comparing measure performances in a bio-
medical-related context, we also illustrate how the frame-
work can be used to express parameterized measures and
to guide the adoption of a specific strategy. For example,
if one wants to design an application aiming to cluster doc-
uments according to the similarity of their semantic anno-
tations, he will have to select an appropriate measure for
this task. With the help of our framework, instead of asking
experts to evaluate the clusters produced by various simi-
larity measures, which is time consuming, one can just

Pedersen et al. benchmark used to evaluate semantic measures using SNOMED-CT ontology (version 2013). The SNOMED-CT concept identifiers corresponding to each terms
involved in the benchmark are given. 29 pairs have been used, the average similarity associated to each pairs by the groups of Physicians (Phy.), Coders (Cod.) and
Physicians + Coders (Avg.) are also reported.

Term 1 Term 2 Concept 1 Concept 2 Phy. Cod. Avg.
Renal failure Kidney failure 42399005 42399005 4 4 4
Heart Myocardium 80891009 74281007 33 3 3.15
Stroke Infarct 230690007 55641003 3 2.8 29
Abortion Miscarriage 70317007 17369002 3 33 3.15
Delusion Schizophrenia 48500005 58214004 3 22 2.6
Congestive heart failure Pulmonary edema 42343007 19242006 3 14 2.2
Metastasis Adenocarcinoma 128462008 443961001 2.7 1.8 2.25
Calcification Stenosis 125369001 415582006 2.7 2 2.35
Diarrhea Stomach cramps 2.3 1.3 1.8
Mitral stenosis Atrial fibrillation 79619009 49436004 2.3 13 1.8
Chronic obstructive pulmonary disease Lung infiltrates 2.3 19 2.1
Rheumatoid arthritis Lupus 69896004 200936003 2 1.1 1.55
Brain tumor Intracranial hemorrhages 254935002 1386000 2 13 1.65
Carpel tunnel syndrome Osteoarthritis 57406009 396275006 2 1.1 1.55
Diabetes mellitus Hypertension 73211009 38341003 2 1 1.5
Acne Syringes 11381005 61968008 2 1 1.5
Antibiotic Allergy 255631004 106190000 1.7 1.2 1.45
Cortisone Total knee replacement 32498003 179344006 1.7 1 1.35
Pulmonary fibrosis Lung cancer 51615001 363358000 1.7 1.4 1.55
Cholangiocarcinoma Colonoscopy 70179006 73761001 1.3 1 1.15
Lymphoid hyperplasia Laryngeal Cancer 128863005 363429002 13 1 1.15
Multiple sclerosis Psychosis 24700007 69322001 1 1 1
Appendicitis Osteoporosis 74400008 64859006 1 1 1
Rectal polyp Aorta 1 1 1
Xerostomia Alcoholic cirrhosis 87715008 420054005 1 1 1
Peptic ulcer disease Myopia 13200003 57190000 1 1 1
Depression Cellulites 35489007 128045006 1 1 1
Varicose vein Entire knee meniscus 1 1 1
Hyperlipidemia Metastasis 55822004 363346000 1 1 1




ask them to rate the similarity of pairs of individual con-
cepts and use them as training data to systematically eval-
uate and select appropriate measures, as done in our
experiments. Therefore, the proposed approach can be used
to select the most appropriate measures according to par-
ticular criteria by driving the decision process, much in
the spirit of learning theories (e.g. correlation with respect
to expected values given by an expert, algorithmic com-
plexity of measures, etc.).

We are currently investigating semantic similarity perfor-
mances through the new insight provided by the proposed frame-
work. Considering the large diversity of measures available, an
important contribution for end-users of SSMs would be to provide
tools which enable to select the best-suited measures for domain-
specific usage contexts. The framework presented in this paper
provides the theoretical frame for developing such tool. In addi-
tion, the framework will be used to perform detailed evaluations
in other contexts and applications (i.e. other knowledge domains,
ontologies and training data). We also plan to extend the frame-
work to support semantic measures other than SSMs, i.e. related-
ness [9], by exploiting non-taxonomic relationships available in
the ontology and to compare groups of concepts, rather than pairs,
which are widely used, for instance, to compare genes annotations

[7].
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