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Abstract—The prediction of molecule’s properties through
Quantitative Structure Activity (resp. Property) Relationships
are two active research fields named QSAR and QSPR. Within
these frameworks Graph kernels allow to combine a natural
encoding of a molecule by a graph with classical statistical
tools such as SVM or kernel ridge regression. Unfortunately
some molecules encoded by a same graph and differing only
by the three dimensional orientations of their atoms in space
have different properties. Such molecules are called stereoiso-
mers. These latter properties can not be predicted by usual
graph methods which do not encode stereoisomerism. In this
paper we propose a new graph encoding of molecules taking
explicitly into account stereoisomerism and propose a new kernel
between these structures in order to predict properties related to
stereoisomerism.

I. INTRODUCTION

Most of QSAR and QSPR methods are based on a basic
principle of the chemoinformatics framework which states
that: “two similar molecules should have similar properties”.
Prediction of molecular properties thus involves the design of a
model encoding molecules and a similarity measure between
such models. We here implicitly assume that similarity be-
tween models corresponds to a similarity between molecules.
However different models may encode different amount of
information about molecules hence leading to different degree
of relevance of their associated similarity measures.

Molecules can be represented by their molecular formula
(e.g. CH4). However, as this representation does not encode
the bond connections between atoms, different molecules,
called structural isomers, can have a same molecular formula.
An usual way to overcome this limitation consists in the use
of molecular graphs. A molecular graph is a simple graph
G = (V,E, µ, ν), where each node v ∈ V encodes an atom,
each edge e ∈ E a bond between two atoms and the labelling
functions µ and ν associate to each vertex and each edge a
label encoding respectively the nature of the atom (carbon,
oxygen,. . . ) and the type of the bond (single, double, triple or
aromatic). Molecular graphs, allow to encode neighborhood
relationships between atoms, and thus allow to differentiate
structural isomers.

However, molecular graphs have also a limitation: they
do not encode the spatial configuration of atoms. Indeed,
some molecules, called stereoisomers, are associated to a same
molecular graph but differ by the relative positioning of their
atoms. Hence, molecular graphs do not allow us to distinguish

Fig. 1. Two different spatial configurations of the neighbors of a carbon

two stereoisomers with different properties. Most of stereoiso-
mers are characterized by the three dimensional orientation
of the direct neighbors of a single atom or two connected
atoms. We can imagine for example, a carbon atom, with four
neighbors, each of them located on a summit of a tetrahedron.
If we permute two of the atoms, we obtain a different spatial
configuration (Figure 1). An atom is called a stereocenter if
a permutation of two atoms belonging to its neighborhood
produces a different stereoisomer. We should stress here that, to
a large extend, stereoisomerism is independent of a particular
embedding of a molecule. Indeed, in Figure 1, any particular
embedding keeping the same relative positioning of atoms
H, Cl, Br and F according to the central carbon atom C,
would correspond to a same stereoisomer. In the same way,
two connected atoms form a stereocenter if a permutation of
the positions of two atoms belonging to the union of their
neighborhoods produces a different stereoisomer (Figure 2).
According to chemical experts, within molecules currently
used in chemistry, 98% of stereocenters correspond either
to carbons with four neighbors, called asymmetric carbons
(Figure 1) or to couples of two carbons adjacent through a
double bond (Figure 2). We thus restrict the present paper to
such cases.

Fig. 2. Two different spatial configurations of two carbons linked by a double
bond.



Graph kernels [1], [2], provide a measure of similarity
between graphs. Under the assumption that a kernel k is
symmetric and definite positive, the value k(G,G′), where G
and G′ encode two graphs, corresponds to a scalar product
between two vectors Ψ(G) and Ψ(G′) in an Hilbert space.
This latter property allows us to combine graph kernels with
usual machine learning methods such as SVM or kernel ridge
regression by using the well known kernel trick, which consists
in replacing the scalar product between Ψ(G) and Ψ(G′) by
k(G,G′) in these algorithms.

Up to now, only few methods have attempted to incorporate
stereoisomerism within the graph kernel framework. Brown et
al. [3] have proposed to incorporate this information through an
extension of the tree-pattern kernel [1]. One drawback of this
method is that, patterns which encode stereo information, and
patterns which do not, are combined without any weighting
in the final kernel value. So for a property only related to
stereoisomerism, patterns that do not encode stereo informa-
tion may be assimilated to noise. Intuitively, stereoisomerism
property is related to the fact that permuting two neighbors
of a given atom produces a different spatial configuration.
Stereoisomerism property may be easily detected if all the
direct neighbors of an atom have different labels (e.g. Fig-
ure 1). However, if two neighbors of a stereocenter have a same
label, the influence of a permutation should be searched beyond
the direct neighborhood of this stereocenter. Based on this
ascertainment, Grenier et al. [4] have introduced the minimal
subtree which characterizes a stereocenter within an acyclic
molecule. They also proposed a kernel based on this minimal
subtree which takes into account stereoisomerism. This kernel
is however restricted to acyclic graphs.

Based on [4], we present in Section II an encoding of
molecules distinguishing stereoisomers. Section III presents
the construction of a subgraph, which allows to characterize
locally a stereocenter. A molecule can then be described by
the set of subgraphs describing each of its stereocenters. In
Section IV, we propose a new graph kernel which compares the
number of occurences of these subgraphs. This kernel is valid
for cyclic as well as acyclic molecules and thus, overcomes the
main limitation of [4]. We finally present in Section V results
obtained using this new kernel and compare these results with
state of the art methods.

II. ORDERED GRAPH AND STEREO VERTICES

The spatial configuration of the neighbors of each atom
may be encoded through an ordering of its neighborhood. For
example, considering the left part of Figure 1, and looking at
the central carbon from the hydrogen atom (H), the sequence
of remaining neighbors of the carbon: Cl, Br and F may be
considered as lying on a plane and are encountered clockwise.
Thus, this spatial configuration is encoded by the sequence H,
Cl, Br, F and the sequence H, Br, Cl, F encodes the second
configuration. The configuration around a double bond can also
be encoded by ordered sequences. Considering the left part of
Figure 2 and assuming a clockwise orientation with the plane
embedding provided by this figure, we encounter F and Cl
when turning around the carbon at the top of the molecule, and
H and O for the carbon at the bottom. Thus this configuration
may be encoded by both sequences F, Cl and H, O respectively

for the top and bottom carbon atoms. Sequences F, Cl and O,
H encode the second configuration.

In order to encode this information in a graph, we intro-
duce the notion of ordered graph. An ordered graph G =
(V,E, µ, ν, ord) is a molecular graph Gm = (V,E, µ, ν)
together with a function ord : V → V ∗ which maps each
vertex to an ordered list of its neighbors. Two ordered graphs G
and G′ are isomorphic (G ≃

o
G′) if there exists an isomorphism

f between their respective molecular graphs Gm and G′
m such

that ord′(f(v)) = (f(v1) . . . f(vn)) with ord(v) = (v1 . . . vn)
(where N(v) = {v1, . . . , vn} denotes the neighborhood of v).

However, different ordered graphs may encode a same
molecule. In the example of the left part of Figure 1, if we
look to the central carbon from a different neighbor, we can
obtain a different sequence, for example F, Br, Cl, H, that
represents the same configuration but now considered from
the atom F. In the same way, considering the molecule on the
left part of Figure 2 still with a clockwise orientation but now
from the opposite side of its plane embedding we obtain the
opposite sequences Cl, F and O, H. We thus have to define
an equivalence relationship between ordered graphs, such that
two ordered graphs are equivalent if they represent a same
configuration.

To do so, we introduce the notion of re-ordering function
σ, which associates to each vertex v ∈ V of degree n a
permutation σ(v) on {1, . . . , n}, which allows to re-order
its neighborhood. The graph with re-ordered neighborhoods
σ(G) is obtained by mapping for each vertex v its order
ord(v) = v1 . . . .vn onto the sequence vσ(v)(1) . . . .vσ(v)(n)
where σ(v) is the permutation applied on v.

In order to define a permutation σ(v) for each vertex of
a graph, we first introduce the notion of potential asymmetric
carbon which corresponds to a carbon with four neighbors.
Such a vertex corresponds to a stereocenter if one permutation
of two of its neighbors provides a different stereoisomer
(Section I). Permutations associated to a potential asymmet-
ric carbon correspond to all even permutations of its four
neighbors [5]. We can easily check that the different orders
obtained by these permutations, encode a same configuration
but either seen from a different neighbor or with a same view
point but with a different encoding of the cyclic order of the
three remaining neighbors. For example, even permutations
(1, 4)(2, 3) and (2, 3)(3, 4) applied on the order H.Cl.Br.F
of the central carbon in Figure 1 produce respectively the
orders F.Br.Cl.H and H.Br.F.Cl which both encode the
same configuration. For a double bond between two carbons,
permutations associated to each carbon of the double bound
must have a same parity. In the same way, we can check that
these permutations correspond to different representations of
a same configuration. Finally, for any vertex which does not
correspond to a potential asymmetric carbon nor to a carbon
of a double bond, we do not search to characterize its spatial
configuration. So these vertices are associated to all possible
permutations of their neighbors.

The set of re-ordering functions, transforming an ordered
graph into another one representing a same configuration is
called a valid family of re-ordering functions Σ [6]. Two
ordered graphs G and G′ are said to be equivalent according to
Σ (G ≃

Σ
G′) if it exists a re-ordering function σ ∈ Σ such that



σ(G) ≃
o
G′. This relationship defines an equivalence relation-

ship [6] and two different stereoisomers are encoded by non
equivalent ordered graphs. We denote by IsomEqOrd(G,G′)
the set of equivalent ordered isomorphism between G and G′.

Potentials asymmetric carbons, and double bonds between
carbons, are not necessarily stereocenters. For example if the
label of vertex Br of Figure 1 is replaced by Cl, both left and
right molecules of Figure 1 would be identical. In the same
way, if the label of the vertex F in Figure 2 is replaced by Cl,
the left and right molecules of this figure would also become
identical. For those cases, any permutation in the ordered list of
the carbons would lead to an equivalent ordered graph. We thus
define a stereo vertex as a vertex for which any permutation of
two of its neighbors produces a non-equivalent ordered graph:

Definition 1 (Stereo vertex). Let G = (V,E, µ, ν, ord) be an
ordered graph. A vertex v ∈ V is called a stereo vertex iff:

∀(i, j) ∈ {1, . . . , |N(v)|}2, i 6= j,

∄f ∈ IsomEqOrd(G, τvi,j(G)) with f(v) = v. (1)

where τvi,j(G) corresponds to an ordered graph deduced from

G by permuting nodes of index i and j in ord(v).

III. MINIMAL STEREO SUBGRAPH

Definition 1 is based on the whole graph G to test if a
vertex v is a stereo vertex. However, given a stereo vertex s,
one can observe that on some configurations, the removal of
some vertices far from s should not change its stereo property.
In order to obtain a more local characterization of a stereo
vertex, we should thus determine a vertex induced subgraph
H of G, including s, big enough to characterize the stereo
property of s, but sufficiently small to encode only the relevant
information characterizing the stereo vertex s. Such a subgraph
is called a minimal stereo subgraph of s.

We now present an heuristic, used to compute a minimal
stereo subgraph of a stereo vertex. We first focus our attention
on asymmetric carbons. Let H be a subgraph of G containing
a stereo vertex s corresponding to an asymmetric carbon. We
say that the stereo property of s is not captured by H if
(Definition 1):

∃(i, j) ∈ {1, . . . , |N(s)|}2, i 6= j,

∃f ∈ IsomEqOrd(H, τ si,j(H)) with f(s) = s (2)

To define a minimal stereo subgraph of s, we consider a
finite sequence (Hk

s )
n
k=1 of vertex induced subgraphs of G.

The first element of this sequence H1
s is the smaller vertex

induced subgraph for which we can test (2) :

V (H1
s ) = {s} ∪N(s)

where V (H1
s ) and N(s) denote respectively the set of vertices

of H1
s and the set of neighbors of s.

If the current vertex induced subgraph Hk
s does not char-

acterize the stereo property of s, we know by (2), that it exists
some isomorphisms f of equivalent ordered graphs between
Hk

s and τ si,j(H
k
s ) with i 6= j and f(s) = s. Let us consider

such an isomorphism f . By definition of equivalent ordered
isomorphism, it exists σ ∈ Σ such that f is an ordered

isomorphism between Hk
s and σ

(

τ si,j(H
k
s )
)

. By definition of

ordered isomorphisms, and since f(s) = s, we have:

∀l ∈ {1, . . . , |N(s)|}, f(vl) = vσ(s)◦τs
i,j

(l).

with ord(s) = v1, . . . , vn.

As σ(s) is an even permutation, σ(s) ◦ τ si,j is an odd one.

Hence it exists l in {1, . . . , |N(s)|} such that l 6= σ(s)◦τ si,j(l).

In other words, any equivalent ordered isomorphism cor-
responding to equation (2) maps at least one vertex in the
neighborhood of s in Hk

s onto a different vertex in the same
neighborhood. Let us denote by Ekf the set of vertices of Hk

s

connected to s by a path whose all vertices are mapped onto
other vertices by f :

Ekf = {v ∈ V (Hk
s ) | ∃c = (v0, . . . , vq) ∈ Hk

s

with v0 = s and vq = v s.t.

∀r ∈ {1, . . . , q}, f(vr) 6= vr} (3)

For any equivalent ordered isomorphism f satisfying (2),
the set Ekf is not empty since it contains at least 2 vertices. A

vertex v belongs to Ekf if neither its label nor its neighborhood

in Hk
s allows to differentiate it from f(v). The basic idea of

our algorithm consists in enforcing the constraints on each
v ∈ Ekf at iteration k + 1 by adding to Hk

s the neighborhood

in G of all vertices belonging to one Ekf , with f satisfying (2).

The set of vertices of the vertex induced subgraph Hk+1
s is

thus defined by:

V (Hk+1
s ) = V (Hk

s ) ∪
⋃

f∈Fk
s

N(Ekf ) (4)

where Fk
s denotes all equivalent ordered isomorphisms satis-

fying (2).

Since f ∈ Fk
s implies that Ekf is not empty, adding itera-

tively constraints on the existence of vertices in Ekf removes

f from Fk
s . The algorithm stops when the set Fk

s becomes
empty. Note that such a condition must be satisfied since
s is a stereocenter and hence the whole molecule does not
satisfies (2).

Algorithm 1 Construction of a minimal stereo subgraph

Input: a stereo vertex s and an ordered molecular graph G
Output: a minimal stereo sub graph

H1
s ← {s} ∪N(s)

(F1
s , E

1
f )← getIsomorphism(H1

s )
k ← 1
while Fk

s 6= ∅ do
k ← k + 1
V (Hk

s )← V (Hk−1
s ) ∪N(Ek−1

f )

(Fk
s , E

k
f )← getIsomorphism(Hk

s ,F
k−1
s )

end while

The main steps of our method are summed up in Algo-
rithm 1. The function getIsomorphism uses a fast isomorphism
algorithm [7] to compute the isomorphisms f between Hk

s and
τ si,j(H

k
s ) and the sets Ekf for each (i, j) ∈ {1, . . . , |N(s)|}2.



Fig. 3. An asymmetric carbon and its associated sequence (Hk

C
)3
k=1

Moreover, in order to improve execution times, isomorphisms
Fk−1

s found during a previous iteration between Hk−1
s and

τ si,j(H
k−1
s ) are used to initialize the isomorphism algorithm at

step k.

The intermediate vertex induced subgraphs found by our
algorithm are illustrated in Fig. 3. Note that at iteration 2, it
exists an equivalent ordered isomorphism f ∈ F2

C mapping
the path CCO (bottom right of the figure) onto the same path
located on the top right part of Fig 3. In this case E2f contains
the three carbons of these two paths and both oxygen atoms.
The oxygen atoms belong to E2f since their neighborhoods in

H2
C does not allow to differentiate them (Fig. 3). At iteration

3, the neighborhood in G of these oxygen atoms are added to
H3

C , hence adding N and Br which allows to differentiate both
paths and thus removes the equivalent ordered isomorphism f
from F3

C . Note that the neighborhoods of the three carbons
atoms are also added but without any influence on H3

C since
these neighborhoods already belong to H2

C .

Note that smaller subgraphs than Hn
s which also capture

the stereo property of s may be found. For example, in
Fig. 3, the subgraph HBr, obtained from H3

C by removing
the bromine atom (Br) also captures the stereo property of
the central carbon C since no equivalent ordered isomorphism
between HBr and τCi,j(HBr), i, j ∈ {1, . . . , |N(C)|}, i 6= j
may be found. In the same way, the subgraph HN obtained
by removing the nitrogen atom (N) from H3

C also captures
the stereo property of the central carbon C. However these
graphs capture the stereo property of the central carbon atom
only thanks to the absence of atoms N in HBr and Br in HN

which forbids to map their incident oxygen atoms one onto
the other. Hence these graphs only encode the stereo property
of the central carbon atom thanks to a lack of encoding of
an information present in the graph. Moreover, there is no
easy way to decide which of these graphs should represent
the stereo property of the central carbon. This last point may
induce a bias if one wish to compare two graphs through their
sets of minimal stereo subgraphs. We hence decide to keep
the subgraph H3

C produced by our algorithm which in Fig. 3
encodes the fact that the central carbon is a stereocenter from
the difference of labels between the vertex encoding nitrogen
(N) and the one encoding bromine (Br).

For double bond between two carbons, v and w, we have
to compute a single minimal stereo subgraph since the stereo

property of each carbon of a double bond is connected to the
stereo property of the other [6]. A minimal stereo subgraph
of v and w is defined the same way as for an asymmetric
carbon, the only difference being in the initialisation of the
sequence (Hk

v,w)
n
k=1. Indeed to test (2) the smaller vertex

induced subgraph for a double bond between carbons is defined
by the set of vertices:

V (H1
v,w) = {v, w} ∪N(v) ∪N(w)

IV. STEREO KERNEL

The method described in Section III allows to associate a
minimal stereo subgraph to each stereocenter of a molecule.
We can thus characterize the stereo properties of a molecule
through its set of minimal stereo subgraphs. However, a same
stereo subgraph may be present more than once in a given
molecule. In order to compute efficiently the frequency of a
given stereo subgraph within a molecule, we need to associate
a unique code to each such subgraph so that the existence of an
equivalent ordered isomorphism between two stereo subgraphs
may be tested efficiently. We perform such a transformation
from stereo subgraphs to codes thanks to [8] which associates
each stereo subgraph to an unique code. Note that this code
takes explicitly into account the stereoisomerism. Moreover,
unlike [7] which allows to find efficiently all isomorphisms
between two graphs, [8] associates to each molecule a unique
code which allows to test the existence of an equivalent ordered
isomorphism between two stereo subgraphs.

Given an ordered graph G, we can thus compute its set of
minimal stereo subgraphs H(G) together with its spectrum
spec(G) = (SH(G))H∈H(G) which encodes the frequency
SH(G) of each H ∈ H(G). The set H(G) and the spectrum
spec provide a characterisation of each stereo center of G and
hence describe the stereoisomerism of G.

The comparison of the spectrum of two ordered graphs,
is then used to define a kernel between two molecules taking
into account the stereoisomerism:

k(G,G′) =
∑

H∈H(G)∩H(G′)

K(SH(G), SH(G′)). (5)

where K denotes a kernel between real values (e.g. Gaussian,
intersection or polynomial). For example, if K is the inter-
section kernel, the kernel value k of two ordered graphs with
non intersecting sets H(G) of stereo subgraphs is zero. The
kernel value of two identical ordered graphs is equal to the total
number of occurences of their stereo subgraphs. The choice of
a particular kernel, together with its parameters is performed
through cross-validation.

V. EXPERIMENTS

We have evaluated our kernel on two datasets connected
with stereoisomerism properties. Both datasets correspond to
regression problems, one connected to the prediction of a
physical molecular property, the other one being related to
a biological property. We use the standard SVM regression
method [9] for all kernels evaluated in this section.

The first dataset [10] is composed of 90 molecules together
with their optical rotations. Optical rotation of a molecule is



TABLE I. ROOT MEAN SQUARED ERROR (RMSE) OBTAINED BY 4
KERNELS IN PREDICTING THE OPTICAL ROTATIONS OF MOLECULES.

Method RMSE

Tree patterns Kernel [1] 27.9

Treelet Kernel [2] 26.2

Tree patterns Kernel incorporating stereo information [3] 25.8

Stereo Kernel 17.9

a physical property measuring the deviation angle of a plane-
polarized light passing through a solution of this molecule.
In practice, we only select 35 molecules, since almost all
molecules have only one stereocenter, and for 55 molecules
this stereocenter is unique in the dataset. Such molecules
correspond thus to a property (a rotation angle) present only
once in the dataset which can not be accurately predicted. The
standard deviation of the optical rotation angle is equal to 38.25
for the 35 selected molecules. Due to the limited number of
molecules of this dataset we evaluate the rotation angle of
each molecule using a leave one out procedure. We used a
grid search to choose the different parameters: C of the SVM,
the type of sub kernel used in (5) and the parameters of [1], [3].
As we do not have a validation set, the selected parameters for
each kernel are the ones which obtain the lowest Root Mean
Squared Error (RMSE).

Table I shows the RMSE obtained by our method and
three other kernels [1], [2], [3]. The Tree pattern kernel [1]
and the treelet kernel [2] do not incorporate any information
related to stereoisomerism and obtain consequently the highest
errors. The adaptation of the Tree pattern kernel to stereoiso-
merism [3] obtains better results than these two latter methods.
However, in this experiment devoted to the prediction of a
property only related to stereoisomerism, the inclusion by this
kernel of information not related to stereoisomerism forbids an
important decrease of the mean error. Our method represented
on the last line of Table I obtains the lowest root mean
squared error. We can notice that this error is significantly
lower than both the error obtained by [3] (line 3) and the
standard deviation of the dataset. As shown in Table II, the
sizes of the minimal stereo subgraphs computed by our method
on this dataset remain small but are usually larger than the size
of the direct neighborhood of an asymmetric carbon (5) or a
double bound (6).

Figure 4 shows three molecules of this dataset. The closest
molecule from Figure 4(a) according to the treelet kernel is
shown in Figure 4(b). Indeed, the only difference between
those two molecules, besides the configuration around asym-
metric carbons, is an oxygen atom replaced by a nitrogen atom.
Thus all treelets, apart those which include the oxygen for
the first molecule and the nitrogen for the second molecule,
are identical. The third molecule (Figure 4(c)), is the most
similar to the first molecule according to our stereo kernel, as
they have a same minimal stereo subgraph. Since the treelet
kernel considers as similar, molecules with very different
optical rotation, it can not accurately predict this property.
Unlike the treelet kernel, the stereo kernel provides a suitable
measure of similarity when considering properties involving
stereoisomerism, and thus allows to obtain a better prediction
of optical rotation.

The second dataset is a dataset of synthetic vitamin D
derivatives, used in [3]. This dataset is composed of 69

       
       

              
       

       
       

       
       

       
       

       

(a) Optical Rotation: 78

       
       

              

       
       

       

       

       

       
       

       

(b) Optical Rotation: -57

       

       

       

       
       

       

       
       

(c) Optical Rotation: 54. The minimal stereo subgraph of
the central carbon is surrounded by a grey dotted line.

Fig. 4. Three molecules of the first dataset with their optical rotations. The
label of an atom is C if it is not specified.

TABLE II. SIZE OF GRAPHS (|G|) AND SIZE OF MINIMAL STEREO

SUBGRAPHS (|Hs|) IN THE TWO DATASETS

Dataset 1 Dataset 2

|G| |Hs| |G| |Hs|
Minimum size 14 6 68 10

Maximum size 32 13 88 24

Average size 21.3 10.4 76.9 13.7

molecules containing cycles, with an average of 9 stereocen-
ters per molecule. The value to predict is their biological
activity. This dataset has been selected since, like in many
biological properties, stereoisomerism is an important feature
of molecules. However, other molecular properties, non related
to stereoisomerism may also partially determine biological
properties of this dataset.

After normalizing the values of the dataset, the standard
deviation of biological activities is equal to 0.258. To choose
the different parameters and estimate the performance of each
kernel on this dataset we use a nested cross-validation. The
outer cross-validation is a leave-one-out procedure, used to
compute an error for each molecule of the dataset. For each
fold, we use another leave-one-out procedure on the remaining
molecules, to compute a validation error. Parameters which
provide the lowest root mean squared error on the validation
are selected. We obtain for each molecule an error, and report
in Table III, the mean of this distribution of errors together
with the confidence interval at 95 % of this distribution.

As in our previous experiment, greatest errors in Table III
are obtained by methods [1], [2] which do not include stereo

TABLE III. PREDICTION OF THE BIOLOGICAL ACTIVITY OF

SYNTHETIC VITAMIN D DERIVATIVES.

Method
Mean Confidence

Error interval at 95%

Tree patterns Kernel [1] 0.193 ± 0.060

Treelet Kernel [2] 0.207 ± 0.064

Tree patterns Kernel with stereo information [3] 0.138 ± 0.043

Stereo Kernel 0.141 ± 0.047

Stereo Kernel x Treelet Kernel 0.138 ± 0.044



TABLE IV. EXECUTION TIMES REQUIRED TO COMPUTE THE 69× 69
GRAM MATRICES OF OUR SECOND DATASET.

Gram’s matrices

Method computations (s)

Tree patterns Kernel [1] 230

Treelet Kernel [2] 7

Stereo Kernel 86

information. The adaptation of the tree pattern kernel to
stereoisomerism [3] and our method improve the results over
the two previous methods hence showing the insight of adding
stereoisomerism information. For this dataset, the inclusion
by [3] of information not related to stereoisomerism allows
to obtain slightly better results than our method alone, since
the biological property to predict is not only dependent of
stereosiomerism. By combining our method with the treelet
kernel [2], we obtain results as good as those obtained by
method [3]. To combine the two kernel, we multiply each
subkernel of the treelet kernel by the stereo kernel. Hence,
two molecules will be similar according to this new kernel
if they have a similar set of stereo subgraphs and a similar
set of treelets. We can note that the mean size of molecules
on this dataset is about 3 times larger than on the previous
one (Table II). However, the mean size of the minimal stereo
subgraphs only slightly increases from 10.4 to 13.7. This last
point illustrates the fact that the size of a stereo subgraph
mainly depends on the variability of vertices and edges labels
around its stereocenters and not on the size of the molecule.
Nevertheless, a greater number of larger molecules increases
the possibility of getting larger minimal stereo subgraphs as
observed in Table II.

Execution times required to compute Gram matrices of
the second dataset are displayed in Table IV. We do not
discuss the execution times required to compute the Gram
matrices of the first dataset, since this dataset is composed of
a reduced number of molecules having only one stereocenter.
The execution times required by our method on this dataset
would thus be low but not sufficiently significant.

The first line of Table IV shows that the Tree pattern
kernel [1] and its adaptation to stereoisomerism [3] take about
4 minutes to compute the whole Gram matrix. This important
execution time may be partially explained by the polynomial
complexity of this kernel. An additional and certainly more
explicative reason of this important execution time comes from
the use by this kernel of implicit bags of patterns. Such bags
should be computed for each evaluation of a value of the
kernel. On this particular dataset, the bag of each molecule
is computed implicitly 69 times. On the contrary, the treelet
kernel [2] is based on a bag extraction algorithm with a linear
complexity and the bag of treelets attached to each molecule
is stored explicitly. Such a bag is thus computed only once
for each molecule during the computation of the Gram matrix.
The execution time required to compute the Gram matrix of
the treelet kernel is consequently the lowest one. Finally our
stereo kernel obtains an intermediate result of 83 seconds.
This latter execution time, may be explained by the fact that
although our kernel uses a subgraph isomorphism algorithm,
these subgraphs are in practice of small size (Table II) hence
leading to small execution times. Moreover, like the treelet
kernel, our kernel is based on an explicit enumeration of
patterns. The bag of stereo subgraphs describing each molecule

is thus computed only once for each molecule during the
computation of the Gram matrix.

VI. CONCLUSION

The study and the definition of new stereoisomers con-
stitutes an important subfield of chemistry and thus a major
challenge in chemoinformatics. Indeed, stereoisomers of some
common drugs may be considered as violent poisons. For
example, a molecule called thalidomide was sold in the late
fifties as an anti nausea for pregnant women. However, it
turns out that one of the stereoisomer of this molecule could
cause fetal malformation. Up to now, only few methods have
proposed pattern recognition methods taking explicitly into
account stereoisomerism.

We have proposed in this paper, a graph kernel based
on an explicit enumeration of all the stereo subgraphs of
a molecule. Each stereo subgraph is associated to a stereo
vertex and encodes the part of the graph which provides the
stereo property to this vertex. Based on the notion of stereo
subgraph we propose to describe a molecule by its bag of
stereo subgraphs. The similarity between two molecules is then
encoded through a graph kernel based on the similarity of
both bags. Experiments on two datasets related to stereoiso-
merism properties demonstrate the relevance of our approach.
In a future work we plan to investigate the insight provided
by the addition to our kernel of larger subgraphs encoding
relationships between each stereo subgraph and the remaining
parts of a molecule.
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