Lattice-Based View
Access:

A way to Create Views
over SPARQL Query for
Knowledge Discovery

Mehwish Alam , Amedeo Napoli

RESEARCH
REPORT

N° 8591

August 2014

ISSN 0249-6399 ISRN INRIA/RR--8591--FR+ENG

Project-Teams Orpailleur

V4

: in]armu!ics,mathemutics

Lattice-Based View Access:
A way to Create Views over SPARQL Query
for Knowledge Discovery

Mehwish Alam [f, Amedeo Napoli *

Project-Teams Orpailleur

Research Report n° 8591 — August 2014 — 28] pages

Abstract: The data published in the form of RDF resources is increasing day by day. This
mode of data sharing facilitates the exchange of information across the domains. Although it
provides easier ways in the use of data, it also gives rise to new challenges. In order to access
these data general as well as specific queries can be posed with the help of SPARQL. These queries
over semantic web data usually produce list of tuples as answers which may be huge in number
or may require further manipulation so that it can be understood and interpreted. Accordingly,
this paper introduces a new clause View By in the SPARQL query for creating semantic views
over the raw SPARQL query answers. This approach namely, Lattice Based View Access (LBVA),
is a framework based on Formal Concept Analysis. It provides a classification of the answers of
SPARQL queries based on a concept lattice, that can be navigated for retrieving or mining specific
patterns in query results w.r.t. user constraints. In this way, the concept lattice can be considered
as a materialized view of the data resulting from a SPARQL query.

Key-words: Formal Concept Analysis, SPARQL Query vues, Lattice-Based Views, SPARQL,
Classification

* LORIA (CNRS - Inria Nancy Grand Est — Université de Lorraine) Vandoeuvre-les-Nancy, France

RESEARCH CENTRE
NANCY - GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lés-Nancy Cedex

Lattice-Based View Access:
A way to Create Views over SPARQL Query for Knowledge
Discovery

Résumé : Les données publiées sous la forme de ressources RDF augmentent de jour en
jour. Ce mode de partage donne la facilite d’échange d’informations entre les domaines. Bien
qu'il offre des moyens plus faciles de l'utilisation des données, il donne également lieu a de
nouveaux défis. Pour accéder a ces données générales, ainsi que les requétes spécifiques peuvent
étre posées a 'aide de SPARQL. Ces requétes produisent habituellement liste de tuples que sont
les réponses. Ces tuples peuvent étre énorme en nombre ou peuvent nécessiter une manipulation
supplémentaire pour quOil puisse étre compris et interprété. En conséquence, cet article présente
une nouvelle clause VIEW BY dans la requéte SPARQL pour la création de vues sémantiques sur
les premiéres réponses d’interrogation SPARQL. Cette approche, Lattice-Based View Access
(LBVA), est un cadre basé sur l’analyse formelle de concept. Il fournit une classification des
réponses de requétes SPARQL basé sur un concept de réseau. LBVA peut étre navigué pour
récupérer ou l'exploitation miniére des modéles spécifiques dans les résultats de la requéte en
ce qui concerne les contraintes de l'utilisateur. De cette facon, le concept de réseau peut étre
considéré comme une vue matérialisée des données issues d’une requéte SPARQL.

Mots-clés : Analyse Formelle de Concept, SPARQL Query Views, Lattice-Based Views,
SPARQL, Classification

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discovery3

Contents
1 Introduction| 4
2 Related workl 4
[B_Preliminaries| 5
3.1 Linked Open Datal 5
3.2 Formal Concept Analysis (FCA)| 6
4 Need for Classifying SPARQL Query Results| 8
6_TLattice-Based View Access| 10
5.1 SPARQL Queries with Classification Capabilities| 10
5.2 Designing a Formal Context (G,M,W,I)| 11
[5.3 Building a Concept Lattice] o i i e 13
5.4 Interpretation Operations over a Concept Lattice:l. 14
16 Experimentation| 15
[DBpedial. 15
B2 YAGOl oo 16
6.3 Dg-Basis of Implications|.o oo 17
6.4 Evaluationl.o 18
6.5 Application to Biomedical Data]. oo o oo 19
|7 Stability Based Faceted Browsing Over a Concept Lattice| 21
|8 Lattice-Based View Access (version 0.1) - How To?| 25
19_Conclusion and Discussion| 26

RR n° 8591

4 Alam € Napoli

1 Introduction

At present, Web has become a potentially large repository of knowledge, which is becoming main
stream for querying and extracting useful information. In particular, Linked Open Data (LOD)
[1] provides a method for publishing structured data in the form of RDF resources. These RDF
resources are interlinked with each other to form a cloud. SPARQL queries are used in order
to make these resources usable, i.e., queried. In some cases, queries in natural language against
standard search engines can be simple but in some others they are complex and may require
integration of data sources. Then the standard search engines will not be able to easily answer
these queries, e.g., Currencies of all G8 countries. Such a complex query can be formalized
as a SPARQL query over data sources present in LOD cloud through SPARQL endpoints for
retrieving answers. Moreover, users may sometimes execute queries which generate huge amount
of results giving rise to the problem of information overload [2]. A typical example is given by
the answers retrieved by search engines, which mix between several meanings of one keyword.
In case of huge results, user will have to go through a lot of results to find the interesting ones,
which can be overwhelming without any specific navigation tool. Same is the case with the
answers obtained by SPARQL queries, which are huge in number and it may be harder for the
user to extract the most interesting patterns. This problem of information overload raises new
challenges for data access, information retrieval and knowledge discovery w.r.t web querying.

This paper proposes a new approach based on Formal Concept Analysis (FCA [3]). It de-
scribes a lattice-based classification of the results obtained by SPARQL queries by introducing
a new clause VIEW BY in SPARQL query. This framework, called Lattice-Based View Access
(LBVA), allows the classification of SPARQL query results into a concept lattice, referred to as
a view, for data analysis, navigation, knowledge discovery and information retrieval purposes.
In the current study we introduce a new clause VIEW BY which enhances the functionality of
already existing GROUP BY clause in SPARQL query by adding sophisticated classification and
Knowledge Discovery aspects. Here after, we describe how a lattice-based view can be designed
from a SPARQL query. Afterwards, a view is accessed for analysis and interpretation purposes
which are totally supported by the concept lattice. In case of large data only a part of the
lattice [4] can be considered for the analysis.

In order to make interpretation operations, LBVA also provides faceted browsing over the
obtained wview. Along with browsing and navigation this view enables the reduction of the
navigation space for the navigational facets in two ways. First, it introduces the stability index
for each of the concepts obtained, second, it provides level wise reduction of the navigational
facets. In this way, this paper investigates also the capabilities of FCA to deal with Semantic
Web (SW) data.

The paper is structured as follows: Section [2] discusses the related work. Section [3] gives a
brief overview of Linked Open Data while section [] introduces a motivating example. Section [5]
defines LBVA and gives the overall architecture of the framework. Section [6] discusses some
experiments conducted using LBVA. Section [7] shows the visualization. Section [§] explains how
the associated software can be used. Finally, Section [9] concludes the paper.

2 Related work

The intuition of classifying results obtained by querying LOD is inspired by web clustering engines
[5] such as Carrot?H7 Clustyﬂ The general idea behind web clustering engines is to group the

Thttp:/ /project.carrot2.org/index.html
2http:/ /www.clusty.com

Inria

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discoveryb

results obtained by query posed by the user based on the different meanings of the terms related to
a query. The general idea underlying the web clustering engines is to provide a complementary
view over the search results obtained by standard search engines such as Google and Yahoo.
These web clustering engines extract features from the snippets in HTML/textual documents
by preprocessing the snippets using standard Natural Language Processing techniques. These
features are further fed to the clustering algorithm where the clusters of the documents are
generated. Finally, these clusters are visualised to provide navigational purposes.

However, such systems deal with unstructured textual data on web. By contrast, there are
some studies conducted to deal with structured RDF data. One such system is ASPARAGUS
[6] which deductively groups the results by taking into account the subsumption hierarchy de-
duced by knowledge bases. In [2], the authors introduce a clause Categorize By to target the
problem of managing large amounts of results obtained by conjunctive queries with the help of
subsumption hierarchy present in the knowledge base. By contrast, the View By clause generates
lattice-based views which provide a mathematically well-founded classification based on formal
concepts and an associated concept lattice. It also paves way for navigation or information re-
trieval by traversing the concept lattice through stability based faceted browsing. Moreover, data
analysis is performed by allowing the extraction of association rules from the lattice. Such data
analysis operations allow discovery of new knowledge. Additionally, unlike Categorize By, View
By can deal with data that has no schema (which is often the case with linked data). Moreover,
View By has been evaluated over very large set of answers (roughly 100,000 results) obtained over
real datasets. In case of larger number of answers, Categorize By does not provide any pruning
mechanism while this paper describes how the views can be pruned using icerberg lattices.

There exists some research work on the application of FCA to SW data. For example, [7]
discusses such an application by focusing on the performance of several algorithms designed to
overcome the efficiency issues in the construction of concept lattices based on the data in SW.
Moreover, unlike our proposal, this work does not provide any formal or definite transformations
from semantic web data to formal context.

3 Preliminaries

3.1 Linked Open Data

Linked Open Data (LOD) [I] is the way of publishing structured data for data sharing purposes.
LOD represents RDF data in the form of node-and-arc-labeled directed graphs. This represen-
tation helps in the connection between several resources through their schema. RDF allows the
specification of the named entities with the help of URIs which are further re-used across the
Web. These entities are further grouped into named classes which are related to each other
through named relations. The attributes related to each entity is defined with the help of literal
values.

Definition 1 (RDF Triple). Given a set of URIs U, blank nodes B and literals L, an RDF triple
is represented ast = (s,p,0) € (UuB) x U x (UuBuUL), where s is a subject, p is a predicate
and o is an object.

Definition 2 (RDF Graph). A finite set of RDF triples is called as RDF Graph G such that
G = (V,E), where V is a set of vertices and E is a set of labeled edges and G € G, such that
G=(UuB)xUx(UuBUL).

Each pair of vertices connected through a labeled edge keeps the information of a statement.
Each statement is represented as (subject, predicate, objecty referred to as an RDF Triple. In
G = (V,E), V includes subject and object while F includes the predicate.

RR n° 8591

6 Alam € Napoli

SPARQIE| is the standard query language for RDF. A SPARQL query is basically composed
of three parts, namely pattern matching, solution modifiers and output. The pattern matching
part takes into account pattern matching features used by the graphs such as union of patterns,
filtering of values etc. The solution modifiers include the operations which are applied after
the output from the pattern matching part is obtained such as limit, distinct (other clauses like
Group By, Having are also included in this part). The third part is the output which is of many
types such as boolean queries returning yes/no answers (ASK keyword), selection of values of the
variables matching the patterns, construction of new RDF data (through CONSTRUCT clause)
and descriptions of resources (DESCRIBE keyword).

A SPARQL query can also be represented in the form of head < body, where body includes
the RDF graph patterns including conjunction disjunction and other constraints also containing
variables. While the head of the query organizes the construction of answer of the query. A
SPARQL query Q is matched against a graph G to obtain a set of values bound to the variables
in the body. These values are then processed based on the information given in the head of Q to
produce answers.

In the current work we will focus more on the type of queries whose output performs value
selection over the variables matching the patterns. Such queries contain SELECT clause with
the projection over set of variables while evaluating a SPARQL query.

Now let us assume that there exists a set of variables V' disjoint from U in the above definition
of RDF, then (U u V) x (UuV) x (UuV)is a graph pattern called a triple pattern. Let us
consider a variable 7X € V and 7X = c then c € U. Given U and V a mapping u is a partial
function p : V' — U. If t is the triple pattern then p(¢) would be the triple obtained by replacing
variables in ¢ with respect to u.

[-Jc takes an expression of patterns and returns a set of mappings. Given a mapping pu :
V' — U and a set of variables W < V', p is represented as fiy , which is described as a mapping
such that dom(pw) = dom(u) "W and pyw (?X) = p(?X) for every 72X € dom(u) n W. Finally,
the SELECT SPARQL query is defined as follows:

Definition 3. A SPARQL SELECT query is a tuple (W, P), where P is a graph pattern and
W is a set of variables such that W < var(P). The answer of (W, P) over an RDF graph G,
denoted by [(W, P)]l¢ , is the set of mappings:

(W, P)lle = {mwlre [Plc}

In the above definition var(P) is the set of variables in pattern P where as W represents the
variables in the SELECT clause of the SPARQL query. In the rest of the paper we denote W
as V to avoid overlap between the attribute values W in many-valued context and variables W
in SELECT clause of SPARQL query. The related example is discussed in section [d] Further
details on the formalization and foundations of RDF databases are discussed in [§].

3.2 Formal Concept Analysis (FCA)

In this section we introduce the basics of Formal Concept Analysis (FCA) [3] which are necessary
for understanding the rest of the paper. FCA is a mathematical framework used for a number
of purposes, among which classification and data analysis, information retrieval and knowledge
discovery [9]. Let G be a set of objects and M a set of attributes, and I < G x M a relation where
gI'm is true iff object g € G has attribute m € M. The triple K = (G, M, I) is called a “formal
context”. Given A € G and B € M, two derivation operators, both denoted by ’, formalize the
sharing of attributes for objects, and, in a dual way, the sharing of objects for attributes:

Shttp://www.w3.org/ TR /rdf-sparql-query/

Inria

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discovery?

A'={meM | gIm for all ge A} (1)
B'={geG | gIm for all m € B} (2)

The two derivation operators ' form a Galois connection between the powersets p(G) and
p(M). Maximal sets of objects related to maximal set of attributes correspond to closed sets
of the composition of both operators ’ (denoted by ”). Then a pair (A, B) is a formal concept
iff A = B and B’ = A. The set A is the “extent” and the set B is the “intent” of the formal
concept (A, B). The set Cx of all concepts from K is partially ordered by extent inclusion (or
dually intent inclusion), denoted by <x as follows:

(AlvBl) < (AQ,BQ) <= Al < A2(<:> BQ < Bl) (3)

Consequently, Lx = (Cx, <x) forms the concept lattice of K. There exist several algorithms
[10} 1] to build a concept lattice which also focus on efficiency of building the lattices for large
number of objects.

Many-valued Context: In some cases, a many-valued context is obtained instead of a formal
context. A many-valued context is defined as follows:

Definition 4. A many-valued context is denoted by (G, M,W,I) and consists of G the set of
objects, M the set of (many-valued) attributes, W the set of attribute values and a ternary relation
I between G, M and W i.e., [S G x M x W.

Here (g, m,w) € I is read as “the attribute m has the value w for the object ¢”. If W has n
values than G, M, W, I is called the n-valued context.

Conceptual Scaling: In order to obtain a one-valued binary context from the many-valued
context, scaling procedure is adopted. A scale S, of an attribute m of a many-valued context
is a one-valued context (G, My, I,) with m(G) = S, for m € M and then the new set of
attributes is M; = | J,,,cps Sm. During plain scaling the object set G’ remains unchanged, every
many-valued attribute m is replaced by the scale attributes of scale S,,.

Definition 5. If (G, M, W, I) is a many-valued context and S,,, m € M are scale contexts, then
the derived context with respect to plain scaling is the context (G, N, J) with

N = U M,,
meM

and
gJ(m,n) = m(g) = w and wl,n

Iceberg Lattices: In order to restrict the number of concepts in some cases iceberg concept
lattices can be used [4]. Iceberg concept lattices contain only the top most part of the lattice.
Formally, let B € M and let minimum support, denoted by minsupp, be an integer representing
a support threshold value. For a given concept (A,B), the support of B is the cardinality of A
denoted by |A|. Relative support is given by |A|/|G| and belongs to the interval [0,1]. An intent
B in concept (A,B) is said to be frequent as soon as supp(B) = |A|/|G| = minsupp. Likewise, a
concept is called a frequent concept if its intent is frequent. The set of all frequent concepts of
KC, for a given threshold, is called an iceberg concept lattice of K.

RR n° 8591

8 Alam € Napoli

Stability: The stability [I2] of a formal concept indicates how much an intent in the concept
depends on the objects in the extent of the concept and vice versa. The intensional stability of
a concept measures the likelihood that if a random set of object is removed from the extent of
a concept the intent of the concept would change. Similarly, extensional stability of a concept
measures the likelihood of change in its extent if a random set of attributes is removed from the
intent of the concept.

More formally, the intensional and extensional stability indexes for a concept (A, B) are
defined as follows:

o e AlC = By
0i(A,B) = SIA]

[
Ue(A,B) _ |{D = B|D — A}‘

2|B|

The intuition underlying these definitions, can be explained as follows: each concept (A, B)
has |A| objects in its extent. Total number of subsets of such objects is 2|A|. Suppose that
C < A, is used to construct the lattice whose context had otherwise remained unchanged. Such
a lattice would then contain a concept (C,C’), and the intent of this concept would be related
to the intent of the original concept by B = C’. Now the intentional stability of the original
concept, o;(A, B), is given by the proportion of object subsets in the given context, such as C,
that have the specific property that C’ = B. The intent of concept (A, B) is therefore stable
whenever any one (or more) of these subsets of objects such as C is used to construct a lattice,
assuming that the rest of the context remains unchanged. Conversely, if a new lattice is built
whose context does not have any single such subset of objects, then the resulting lattice will no
longer have a concept whose intent is B. Formally, when ¢;(A, B) = 0, each and every object in
these subsets has at least one attribute that is not in the intent of (A, B).

DG-Basis for Implications: FCA also allows knowledge discovery using association rules.
An implication over the attribute set M in a formal context is of the form B; — Bs, where
By, By < M. The implication holds iff every object in the context with an attribute in B; also
has all the attributes in Bs. For example, when (A1, B1) < (Asg, B2) in the lattice, we have that
B; — Bs. Duquenne-Guigues (DG) basis for implications [13] is the minimal set of implications
equivalent to the set of all valid implications for a formal context K = (G, M,I). Actually, the
DG-basis can be considered as a possible representation of all information lying in the concept
lattice.

4 Need for Classifying SPARQL Query Results

In this section we introduce a motivating example focusing on why LOD should be queried and
why the SPARQL query results need classification. Consider a query Q all the bands which play
different stringed instruments along with their origin. The RDF graph (i.e., set of triples) related
to this query are shown in Table[I] These triples belong to DBpedia, a central hub of LOD which
extracts data from Wikipedia info boxes and makes it available in the structured format. The
current version of DBpedia 3.9 contains 2.46 billion RDF triples. Out of these triples 470 million
are extracted from Wikipedia in English language, 1.98 billion are are in other languages and
about 45 million triples link DBpedia to the external data sets.

Let us name this query Q, then Q can not be answered by standard search engines as it
generates a separate list of bands and stringed instruments requiring multiple resources to be
integrated. However, Q can be answered by SPARQL queries over LOD. For example, let us

Inria

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discovery9

Table 1: RDF Triples for Musical Instruments from DBpedia. The prefixes dbo:, db:, dbp: stand

[Triples About Stringed Musical Instruments

t1

db:RHCH' [rdf:type dbo::Band

t2

db:Disturbed rdf:type dbo:Band

t3

db:RHCP dbp:origin db:United States

t4

db:Disturbed dbp:origin db:United States

t5

db:RHCP dbo:bandMember db:Josh _Klinghoffer

t6

db:Disturbed dbo:bandMember db:John_Moyer

t7

db:Disturbed dbo:bandMember db:Dan_ Donegan

t8

db:John _Moyer dbo:instrument db:Bass_ Guitar

t9

db:Dan_ Donegan dbo:instrument db:Electronic_ Keyboard

t10

db:Josh_ Klinghoffer dbo:intsrument db:Banjo

t11

db:Josh_ Klinghoffer dbo:intsrument db:Accordion

t12

db:Banjo dcterms:subject Category:Stringed _Instrument

t13

db:Bass_ Guitar dcterms:subject Category:Stringed _Instrument

t14

db:Accordion dcterms:subject Category:Keyboard Instrument

t15

db:Electronic_ Keyboard dcterms:subject Category:Keyboard _Instrument

for dbpedia-owl:, dbpedia: and dbpprop: respectively.

consider the SPARQL query Q over DBpediaﬂ shown in Listing [3| This query retrieves all the
bands with the instruments played by their band members along with the origin of the band.

1
2
3
4
)
6

?band ?instrument ?origin
dbpedia:RHCP dbpedia:Banjo dbpedia:US
dbpedia:Disturbed dbpedia:Bass Guitar | dbpedia:US
dbpedia:The Solution | dbpedia:Banjo dbpedia:Sweden

Table 2: Small section of results obtained as an answer to query Q.

Listing 1: SPARQL Query Q

SELECT ?band ?instrument ?origin WHERE {

?band rdf:type dbpedia—owl:Band.

?band dbpprop:origin ?origin.

?band dbpedia—owl:bandMember ?member.
?member dbpedia—owl:instrument ?instrument

?7instrument dcterms:subject dbpedia:Category:String instruments

7 GROUP BY 7instrument ?origin

Here the head of the query contains SELECT clause, V = {?band,?instrument, 7origin}
The pattern in line 2 of Q matches the triples {t1,t2}, line 3 select the triples {t3,t4} while line
4 and 5 select {t5,t6,t7} and {t8,t9,t10,t11} respectively. However, line 6 reduces the number
of triples selected by line 3 and 4 with the help of the constraint that the instruments to be
selected should be strictly stringed instruments. Finally, the selected triples by line 4, 5 and
6 are {t5,t6,t8,t7}. Moreover, line 4 and line 5 integrate the answer variable ?band with the
answer variable 7instrument with the help of the free variable ?member. The above SPARQL
query returns a set of tuples representing a list of bands along with the instruments they play
and their origin as an answer. An excerpt of the answers is shown in Table

In case of too many origins GROUP BY clause will lead to many small groups which would be
hard for the user to observe with respect to origin or instrument, failing in the task of grouping. A
classification technique can be used for navigation or interpretation. This classification technique
based on FCA serves as a view given a SPARQL query Q. Given Q and output tuple t a view
is partially ordered set of classes with groups of objects sharing some properties. For example,
Figure a) shows a concept lattice for a small part of query answers. Here we can see classes such
as the concept which contains all the bands which play Cuatro. If the search is more specified

Shttp://dbpedia.org/sparql

RR n° 8591

-}

10 Alam € Napoli

Ensamble Gurrufio

‘

: .
Chrome Hoof | | | [The Solution
.
- ! | Distrubed oLt
Sweden : [Fenezie) "l [France]; [Bistrubed T

. !
EET

Disturbed EnsambleGurrufio

(a) Classes of Bands w.r.t. Musical Instruments
and Countries, e.g., the concept on the top right (b) Classes of Musical Instruments w.r.t Bands
corner with the attribute Cuatro contains all the and their Origin

bands which play Cuatro.

TheSolution

\

Figure 1: Concept Lattices w.r.t Musical Instrument’s and Band’s Perspective.

then the origin of each of the bands can also be retrieved. It is possible to retrieve bands which
play Cuatro and are from UK, here Chrome Hoof is the band which plays Cuatro in the current
small example. On the other hand, Figure (b) shows a concept lattice where musical instruments
are classified with respect to bands and their origin, giving a totally different perspective over
the same set of answers.

5 Lattice-Based View Access

In this paper, we propose an approach called Lattice-Based View Access for classification of
SPARQL query results in the form of a concept lattice referred to as view. This view provides
users with analysis, navigation, classification and question/answering capabilities over these re-
sults. In the scenario of LOD, the RDF data and query processing procedure can not be con-
trolled, so, in our algorithm we do not process RDF triples (RDF graph) and the SPARQL query.
Here we define views over RDF data by processing the set of tuples returned by the SPARQL

query.

5.1 SPARQL Queries with Classification Capabilities

The idea of introducing a VIEW BY clause is to provide classification of the results and add a
knowledge discovery aspect to the results w.r.t the variables appearing in VIEW BY clause.

Let Q be a SPARQL SELECT query of the form Q = SELECT ?X ?Y ?7Z WHERE {pattern P}
VIEW BY 7X then the set of variables V = {7X,?Y,?Z} (As W represents set of attribute values
in the definition of a many-valued formal context, we represent the variables in select clause as
V to avoid confusion). According to definition [3[the answer of the tuple (V, P) is represented
as [({?X,?Y,?Z}, P)]| = pi where i € {1,...,k} and k is the number of mappings obtained for
the query Q. For the sake of simplicity, pw is given as pu. Here, dom(u;) = {?X,?Y,7Z} which
means that p(?X) = X;, u(?Y) =Y; and pu(?Z) = Z;. Finally, a complete set of mappings can
be given as {{?X — X;,?Y - Y;,?Z — Z;}}.

Now, variables appearing in the VIEW BY clause are referred to as object variableﬁ and is
denoted as Ov such that Ov € V. In the current scenario Ov = {?X}. The remaining variables
are referred to as attribute variables and are denoted as Av where Av € V such that Ovu Av =V
and Ov n Av = .

5The object here refers to the object in FCA.

Inria

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discoveryll

?band ?instrument | ?origin
w1 | RHCP Banjo US
to | Disturbed | Bass Guitar | US

Table 3: Generated Mappings for SPARQL Query Q

Example 1. Following the example in section[]], an alternate query with the VIEW BY clause can
be given as:

SELECT 7band 7instrument 7origin WHERE {

P, ?band rdf:type dbpedia-owl:Band.

P> ?band dbpprop:origin Torigin.

P53 7?band dbpedia-owl:bandMember ?member .

P, 7member dbpedia-owl:instrument 7instrument .

Ps 7instrument dcterms:subject dbpedi4ﬂ:Category:String_instruments .
VIEW BY 7band

Let us continue the sample query discussed in section. Here, V = {’band, 7instrument, 7origin}
and P = (P AND P, AND Ps AND P, AND Ps) then the evaluation of the SELECT query
[({?band, ?instrument, Porigin}, P)]| will generate the mappings shown in Table @ Accordingly,
dom(p;) = {?band, ?instrument, torigin}. Here, pi(?band) = RHCP, py(?instrument) =
Bangjo and u1(Torigin) = US. In the current ezample, we have, Ov = {?band} because it appears
in the VIEW BY clause and Av = {?instrument,?origin}. Figure shows the generated view
when Ov = {?band} and in Figure[1p, we have; Ov = {?instrument} and Av = {?band, Torigin}.

5.2 Designing a Formal Context (G, M,W,I)

The results obtained by the query are in the form of set of tuples, which are then organized as a
many-valued context. The design of a formal context relies on the selection of the object variable
and some of the attribute variables.

Obtaining Object and Attribute Sets (G, M,W): As described previously, we have Ov =
{?X} then u(?X) = {Xi}ieq1,... k}, where X; denote the values obtained for the object variable and
the corresponding mapping is given as {{?X — X;}}. Finally, G = u(?X) = {Xi}ieq,... k- Let
Av = {?Y,?Z} then M = Av and the attribute values W = {u(?Y), u(?2)} = {{Yi}, {Zi} biequ,...1}-
The corresponding mapping for attribute variables are {{?Y — Y;,7Z — Z;}}

Obtaining Ternary Relation (I): Consider an object value ¢g; € G and an attribute value
w; € W then we have (g;, “?7Y",w;) € I iff 7Y (g;) = w;, i.e., the value of g; for attribute 7Y is
wi, © € {1,...,k} as we have k values for ?Y.

Example 2. In the example Ov = {?band}, Av = {?instrument, Torigin}. The answers obtained
by this query are organized into a many-valued context as follows: the distinct values of the object
variable Tband are kept as a set of objects, so G = {RHCP, Disturbed, ...}, attribute variables

"http://dbpedia.org/resource/

RR n° 8591

12 Alam € Napoli

Band [Instrument | Origin |
RHCP Banjo US
Disturbed Bass Guitar US
Alcest Bass Guitar France
The Solution Banjo Sweden, US
Chrome Hoof Cuatro UK
Ensamble Gurrufio Cuatro Venezuela

Table 4: Many-Valued Context representing the answer tuple (X;,Y;, Z;).

Instrument Origin
Band Banjo | Bass Guitar | Cuatro | US | Sweden | UK | France | Venezuela
RHCP X X
Disturbed X X
Alcestr X X
The Solution X X X
Chrome Hoof X X
Ensamble Gurrufio X X

Table 5: Formal Context K pppedia-

provide M = {instrument,origin}, Wy = {Banjo, BassGuitar,...} and Wy = {US, UK,
France...} in a many-valued context. The obtained many-valued context is shown in Table .

Obtaining Binary Context (G,M,I): Afterwards, a conceptual scaling used for binarizing
the many-valued context, in the form of (G, M,I). Finally, we have G = {X;}icq1,.. 5y, M =
{Y:} v {Z;} where i € {1,...,k} for object variable Ov = {7X}.

Example: Following the above defined procedure a many-valued context is conceptually scaled
to obtain a binary context shown in Table[5] Table[6land Table[7]show the scales Sipstrument and
Sorigin for the attributes instrument and origin respectively. The corresponding concept lattice
is shown in Figure [I{a).

Algorithm [I] gives the overall view of how a formal context is designed for the output tuples
obtained by the SPARQL query Q. It takes the set of variables V, set of answer tuples u (for
the sake of simplicity we represent it as u) and the index of object variable v in V appearing
in the VIEW BY clause. Line 1 and 2 represent empty context X and empty set of objects G
respectively. Line 3 extracts the index of the object variable in the set of variables V. Line 4
and 5 loop over the vector of answer tuples and extracts the set of objects from each answer
tuple, the value at the same index as that of the object variable in W. Remember that each
tuple keeps the vector of terms in the same order as that of the answer variable in V. Finally,
G is obtained. Line 6 gets the set of attributes by removing the object variable from V and
the remaining attribute variables serve as the set of attributes M. Lines 7 extracts and stores
attribute values W for each of the variables from answer tuples and line 8 stores ternary relations
from the answer tuples. Finally, line 9 and 10 complete and return a many-valued context.

Algorithm [2] details how the attribute values are extracted from the answer tuples. This takes

‘ Origin ‘ UsS ‘ Sweden ‘ UK ‘ France ‘ Venezuela ‘
Instrument | Banjo | Bass Guitar | Cuatro Us X
Banjo X Sweden X
Bass Guitar X UK X
Cuatro X France X
Venezuela X

Table 6: Sinstrument-
Table 7: Sorigin-

Inria

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discoveryl3

Algorithm 1: Designing Formal Context

procedure: FormalContextFromTuples(V,u,0v)

begin
K= g;
G = o

Indexr «— indexOfObjectVariable Ov in V;
foreach tup € u do

| G — GetValueAtIndex(Index) of tup;
M <« V\ Ov;
W «— AttributeValuesFromTuples (M ,u,Index) ;
I «— TernaryRelationFromTuples(G,M ,W 1) ;
K —(GMW.I);
return KC;

answer tuples and the index of the object variable in V' as input. It removes the the term in
each tuple on the index of the object variable. Intuitively, it will generate another tuple without
the terms related to the object variables and the order of these terms would be the same as the
order of M. This finally returns the attribute values W for each of the attribute i.e., attribute
variable in M.

Algorithm 2: Extracting Attribute Values

procedure: AttributeValuesFromTuples(M ,u,Index)
begin
W =
foreach tup € p do
L W« tup \ TermAtIndex(Indez) of tup;

return W;

Algorithm [3| takes the set of objects G, set of attributes M, set of attribute values W and the
answer tuples as input. Initially I is empty, then the procedure iterates over each of the answer
tuples and checks if an object g € G and an attribute value w € W occur together in a tuple (if
condition). If it is the case, the index of that particular value in the tuple is extracted (line 6)
and the attribute variable associated to that value (line 7) is obtained. Finally, it returns the
ternary relations for the context.

5.3 Building a Concept Lattice

Once the context is designed, the concept lattice can be built using an FCA algorithm. This step
is straight forward as soon as the context is provided. There are some very efficient algorithms
that can be used [3, 1I]. However, in the current implementation we use AddIntent [II] which is
an incremental concept lattice construction algorithm. In case of large data iceberg lattices can
be considered [4]. The use of VIEW BY clause activates the process of LBVA, which transforms
the SPARQL query answers (tuples) to a formal context KCpypies through which a concept lattice
is obtained which is referred to as a Lattice-Based View. A view on SPARQL query in section
i.e, a concept lattice corresponding to Table [f]is shown in Figure [Th. At the end of this step the

RR n° 8591

14 Alam € Napoli

Algorithm 3: Extracting Ternary Relation

procedure: AttributeValuesFromTuples(G,M ,W ,u)
begin
I =
foreach g € GG do
foreach w € W do
foreach tup € u do
if g € tup €46 w € tup then

k < IndexOf(w) in tup;

m «— ValueAtIndex(k) of M;

I A (g7m7w) ;

return [;

concept lattice is built and the interpretation step can be considered.

Algorithm 4: LBVA Algorithm

procedure: CreateViews(Q,0v)
begin
V < GetAnswerVariables(Q) ;
u — ExecutingQuery(Q) ;
K <« FormalContextFromTuples(V,u,0v) ;
L — AddIntent(K) ;

Algorithm [4] gives the overall intuition of the LBVA algorithm. It takes a SAPRQL query Q,
and object variable v that appears in the View By clause. Line 1 extracts all the answer variables
from SELECT clause, line 2 stores all the answer tuples obtained after executing the SPARQL
query. Line 3 stores many-valued context which is then binarized and passed on to Add Intent
for building a concept lattice. The algorithm of Add Intent has already been explained in [I]

5.4 Interpretation Operations over a Concept Lattice:

A formal context effectively takes into account the relations by keeping the inherent structure of
the relationships present in LOD as object-attribute relation. When we build a concept lattice,
each concept keeps a group of terms sharing some attribute (i.e., the relationship with other
terms).

Navigation Operation: The obtained concept lattice can be navigated for searching and
accessing particular LOD elements through the corresponding concepts within the lattice. It is
possible to drill down from general to specific concepts according to some constraints.

For example, in order to search for bands in US playing Banjo, the concept lattice in Fig-
ure a) is explored levelwise. First the broader concept contains all the bands from US, RHCP,
The Solution, Disturbed. Then, the children concepts contain more specific concepts with the
instruments Banjo and Bass Guitar. According to the initial constraint, the attribute concept
of Banjo can be selected returning two objects namely RHCP, The Solution. Next, to check

Inria

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discoverylb

which instruments are played in music originating from US, another concept lattice can be ex-
plored, where objects correspond to instruments shown in Figure (b) The results in this case
is the set of objects Bas Guitar, Banjo.

FCA provides a powerful means for data analysis and knowledge discovery. Iceberg lattices
provide the top most part of the lattice filtering out only general concepts. The concept lattice
is still explored levelwise depending on a given threshold. Then, only concepts whose extent is
sufficiently large are explored, i.e., the support of a concept corresponds to the cardinal of the
extent. If further specific concepts are required the support threshold of the iceberg lattices can
be lowered and the resulting concept lattice can be explored levelwise.

Knowledge Discovery: Another way of interpreting the data is provided by Duquenne-
Guigues basis of implications which takes into account a minimal set of implications which
represent all the association rules that can be generated for a given formal context.

For example, DG-basis of implications according to the formal context in Table [5] state that
all the bands which play Banjo are from US (rule: Banjo — US). Moreover, the rule Venezuela
— Cuatro suggests that all the bands from Venezuela play Cuatro. This rule states that Cuatro
is widely used in the folk music of Venezuela.

6 Experimentation

We have conducted our experiments on real dataset. Our algorithm is implemented in Java
using Jenaﬂ platform and the experiments were conducted on a laptop with 2.60 GHz Intel core
i5 processor, 3.7 GB RAM running Ubuntu 12.04. We extracted the information about the
movie with their genre and location. The SPARQL query was enhanced with View By clause.
Both qualitative and quantitative analysis were performed which are discussed here after. The
qualitative evaluation shows how the concepts contained in a view obtained by LBVA can be
interpreted for obtaining interesting information. Moreover, these views can also give the general
overview and state of the underlying RDF data set. It may also help in evaluation of the RDF
datasets generated by some automated algorithm and the quality of the information contained.

For each of the queries we tested how our method scales with growing number of results. The
number of answers obtained by DBpedia were around 4000 and the answers obtained by YAGO
were 100,000. The resulting view kept the classes of movies with respect to genre and location.
Section [6.1] and section [6.2] give the qualitative analysis of DBpedia ad YAGO, while section [6.3]
gives an idea of the knowledge discovery aspect over the views obtained by the two experiments.
The DG-Basis of implications obtained from both the views were compared. However, section [6.4]
gives the qualitative evaluation and discusses the sparsity of semantic web data and the scalability
of out approach over growing number of answers obtained by SPARQL query.

6.1 DBpedia

DBpedia is currently comprised of a huge amount of RDF triples in many different languages. It
reflects the state of Wikipedia [I4], [15]. Due to information extraction from crowd-sourced web
site, triples present on DBpedia may contain incorrect information. Even if Wikipedia contains
correct information, a parser may pick up wrong information [16]. Due to the above described
reasons some of the properties may not be used uniformly. In the current experiment, we ex-
tracted the information about movies with their genre and location.

8https://jena.apache.org/

RR n° 8591

16 Alam € Napoli

ID Supp. | Intent
C#1 17 Hard Rock
C#2 15 Contemporary R&B

C+#3 18 Jazz

C#4 732 United States en
C#5 2 United States
C#6 16 USA en

CH#7 1225 India en

C+#-8 6 France

Table 8: Some Concepts from Lp Bpedia

SELECT 7movie 7genre 7country WHERE {
?movie rdf:type dbpedia-owl:Film .
?movie dbpprop:genre 7genre .

"movie dbpprop:country Zcountry .}
VIEW BY 7movie

The obtained concept lattice contained 1395 concepts. Out of which 201 concepts on the
first level were evaluated manually for correctness of the information about the movie genre.
60 concepts contained the distinct classes related to the country of the movies. The other
141 concepts kept the genre information about the movie. Out of these 141 concepts 45% of
the concepts contained wrong genre information as its intent. In Table [8] first three concepts
contain wrong information about the music genre. In such a case, the generated lattice-based
views helps in separating music genre from the movie genre and further guide in introducing a new
relation such as soundtrackGenre and adding new triples to the knowledge base, for example,
dbpedia : The _Scorpion _King, dbpedia — owl : soundtrackGenre, dbpedia : Hard _Rock.

Moreover, If we observe the obtained view, it can be observed that there are too few movies
from countries other than United States and India. For example, C#4,C#5,C#6 and C#7 are
the classes for movies from United States and India, where there are 1225 movies from India in
DBpedia and 750 movies from United States. In C#5 and C#6, the en suffix represents a literal
for the country United States and in C#4 the intent united States represents a URI, which is a
widely found error in DBpedia. Which means that such classes can be merged into one by taking
the union of the extent of C#4,C#5 and C#6. Finally, it can be concluded that the information
present on DBpedia still needs to be corrected and completed.

The concept lattice can help in obtaining classes of movies w.r.t countries also. As this
approach provides an added value to the already existing Group By clause, it is possible to find
movies which are made in collaboration with several countries. For example, The Scorpion
King was made in collaboration with United States, Germany and Belgium. However, one of
the problems encountered for obtaining such results is that the support and stability of such
concepts is very low.

6.2 YAGO

The construction of YAGO ontology [17] is based on the extraction of instances and hierarchi-
cal information from Wikipedia and Wordnet. In the current experiment, we posed a query to
YAGO the VIEW BY clause.

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

Inria

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discoveryl7

Impl. ID | Supp. | Implication
YAGO
96 wikicategory RKO Pictures films — United States

2. 46 wikicategory Oriya language films — India

3. 64 wikicategory Film remakes — wordnet remake
DBpedia

4. 3 Historical fiction — United Kingdom@en

5. 3 Adventure fiction, Action fiction — Science fiction

Table 9: Some implications from DG-Basis of Implication (YAGO, DBpedia)

PREFIX yago: http://yago-knowledge.org/resource/
SELECT ?7movie 7genre 7location WHERE {

?movie rdf:type yago:wordnet_movie_106613686 .
7movie yago:isLocatedIn 7location .

?movie rdf:type 7genre . }

VIEW BY 7movie

While querying YAGO it was observed that the genre and location information were also
given in the YAGO ontology. The classes related to Wordnet were more general than the one
extracted from Wikipedia, so we filtered some of the very general Wordnet categories. In the
resulting view, the first level of the obtained view kept the groups of movies with respect to
their languages. e.g., the movies with genre Spanish Language Films. Drilling down in the
concept lattice, more specific categories can be found from the location variable such as Spain,
Argentina and Mexico. Separate classes obtained for movies based on novels which can be
further specialized by the introduction of the country.

Finally with the help of lattice-based views, it can be concluded that YAGO provides a clean
categorization of movies by making use of the partially ordered relation between the concepts
present in the concept lattice. YAGO also learns instances from Wikipedia and contains many
movies from several countries in the world. This observation through views gives the idea about
the strong information extraction algorithm as it contains complete information.

6.3 Dg-Basis of Implications

DG-Basis of Implications for YAGO and DBpedia were calculated. This section compares the
information about movies present in DBpedia with information present in YAGO. The implica-
tions were filtered in three ways. Firstly, pruning was performed naively with respect to support
threshold. For DBpedia, the number of rules obtained were 64 for a support threshold of 0.11%.
However, for YAGO around 200 rules were extracted on support threshold of 0.2%. In order, to
make the rules observable, the second type of filtering based on number of elements in the head
of the rules was applied. All the implications which contained one item set in the head were
selected. However, if there still are large number implications to be observed then a third type of
pruning can be applied which involved the selection of implications with different attribute type
in head and body, e.g., in rule#1 head contains United States which is of type country and body
contains the wikicategory. Such kind of pruning helps in finding attribute-attribute relations.
Table [J contains some of the implications. Calculating DG — Basis of implications is actually
useful in finding regularities in the SPARQL query answers which can not be discovered from
the raw tuples obtained. For example, rule#1 states that RKO picture films is an American
film production and distribution company as all the movies produced and distributed by them
are from United States. Moreover, rule#2 says that all the movies in Oriya language are from

RR n° 8591

18 Alam € Napoli

No. of Tuples |G| |M| | No. of Concepts
20% 3657 | 2198 7885
40% 6783 3328 19019
60% 9830 4012 31264
80% 12960 | 4533 43510
100% 15272 | 4895 55357

Table 10: Characteristics of Datasets (YAGO)

No. of Tuples |G |[M] | No. of Concepts
20% 530 200 291
40% 1091 326 550
60% 1574 | 411 856
80% 2037 | 495 1149
100% 2619 | 584 1395

Table 11: Characteristics of Datasets (DBpedia)

India. This actually points to the fact that Oriya is one of many languages that is spoken in
India. Rule#3 shows a link between a category from Wikipedia and Wordnet, which clearly says
that the wikicategory is more specific than the wordnet category as remake is more general
than Film remakes.

On the other hand, some of the rules obtained from DBpedia are incorrect. For exam-
ple, rule#4 states the strange fact that all the historical fiction movies are from United
Kingdom. Same is the case with rule#5 which states that all the movies which are Adventure
fiction and Action fiction are also Science Fiction, which may not actually be the case.
Through the comparison of the DG-Basis for both the datasets it can be observed that the YAGO
may be more appropriate for further use by the application development tools and knowledge
discovery purposes.

6.4 FEvaluation

Besides the qualitative evaluation of LBVA, we performed an empirical evaluation. The charac-
teristics of the dataset are shown in Table[I0}|G| is the number of objects and | M| is the number
of attributes in the context). These concepts were pruned with the help of iceberg lattices and
stability for qualitative analysis.

The plots for the experimentation are shown in Figure 2] Figure 2{a) shows a comparison
between the number of tuples obtained and the density of the formal context. The density of
the formal context is the proportion of pairs in I w.r.t the size G x M. It has very low range
for both the experiments, i.e., it ranges from 0.14% to 0.28%. This means in particular that
the semantic web data is very sparse when considered in a formal context and deviates from the
datasets usually considered for FCA (as they are dense). Here we can see that as the number of
tuples increases the density of the formal context is decreasing which means that sparsity of the
data also increases.

For the above query we tested how our method scales with growing number of results. The
number of answers obtained by YAGO were 100,000. Figure b) illustrate the execution time
for building the concepts lattice w.r.t the number of tuples obtained. The execution time ranges

Inria

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discoveryl9

Desnity of Formal Context in %

0.15
L

1.0
L

0.25 0.30
L L

0.20
L

0.10
L

T T T T T
20 40 60 80 100
Number of Tuples in %

(a) Density of Ky ago

0.8
L

Execution Time (in seconds)

60 80 100 120
L L L L L

20
L

0
L

T
40

T
60

Number of Tuples in %

T
80

T
100

(b) Runtime for Building Ly aco

0.20
L

0.15
L

Execution Time (in seconds)
0.10
.

0.05
L
1]

Desnity of Formal Context in %
0.4 0.6
i

0.2
0.00
L

T T T
20 40 60 80 100 20 40 60 80 100

Number of Tuples in % Number of Tuples in %

(a) Density of KpBpedia (b) Runtime for Building £pBpedia

Figure 2: Experimental Results.

from 20 to 100 seconds, which means that the the concept lattices were built in an efficient
way for the test datasets. Which means that large data can be considered for these kinds of
experiments. Usually the computation time for building concept lattices depends on the density
of the formal context but in the case of semantic web data, as the density is not more than 1%,
the computation completely depends on the number of objects obtained which definitely increase
with the increase in the number of tuples (see Table .

6.5 Application to Biomedical Data

This experiment is performed to evaluate that LBVA is an application independent framework
i.e., it can be applied to any dataset. It also discusses how the view and the DG-Basis of
implications can be used for accessing useful knowledge. It also gives an overall idea of how
LBVA can be used to extract knowledge from biomedical datasets present in the LOD cloud.

It considers a SPARQL query with four variables. The query is run on Sider Databaseﬂ
for extracting drugs with their side effects and on Drug Banlﬂ for extracting drugs with their
categories and the proteins they target for the largest drug set Cardiovascular Agents (CVA).
In this scenario, one objective is to check the validity of prescriptions drug-diseases and second
objective is to check the side effects of some drugs. Following is the query:

SELECT ?drugname 7sideeffect 7protein 7category
WHERE {

9http://sideeffects.embl.de/
Ohttp://www.drugbank.ca/

RR n° 8591

20 Alam € Napoli

ID Supp. | Intent

C#1 39 se:Jaundice

C#2 24 se:Infection, se:Shock

C#3 13 p08588

C#4 12 p07550, p08588

C+#5 15 se:Acute coronary syndrome, cat:Antihypertensive Agents
C+#6 12 se:Tachycardia, cat:Anti-Arrhythmia Agents

Table 12: Some Concepts from the Iceberg Lattice

ID | Supp. | Implication

1. 22 se:Stevens-Johnson syndrome — se:Erythema multiforme

2. 8 se:Acute coronary syndrome, se:Arthralgia, se:Infection,
se:Pyrexia, se:Tachycardia — se:Cerebrovascular accident

3. 7 cat:Vasoconstrictor Agents — se:Acute coronary syndrome

4. 8 p43700 — se:Vision blurred

Table 13: Some implications from DG-Basis of Implication

?drug rdf:type drugbank:drugs .

?drug rdfs:label 7drug_name .

?drug drugbank:sideEffect ?sideeffect .

?drug drugbank:hasCategory 7category .

?drug drugbank:target 7protein .

filter regex(7category, ’Cardiovascular Agents’) }
VIEW BY 7drug

The obtained result set contain 4-tuples, i.e., drug name, side effect, protein id (UniProt ID)
and category. In this experiment the total number of tuples obtained is 4843. with 89 drugs
belonging to 10 distinct sub categories of CVA. These drugs target 161 proteins and have 72
distinct side effects. The objects count in the formal context is 89 and the attribute count
is 243. The concept lattice includes some interesting concepts where sets of drugs constitute the
extent while combination of side effects constitute the intents.

In the following, we discuss the possible interpretation of some concepts in collaboration with
some domain experts.

Navigation and Information Retrieval: For this an Iceberg lattice with the support thresh-
old of 12% gives 360 concepts (the maximum support is 46). Some of the concepts are shown in
Table[12] The prefixes se: for side effect, cat: for category help in differentiating categories from
side effects while interpreting. The maximum support 39 was for side effect Jaundice (C#1).
This confirms that many drugs which are CVA cause Jaundice. The concept lattice generated also
contain several interesting combinations of side effects caused by groups of drugs. For example,
Infection along with Shock are caused by 24 drugs. C'#3 provides the following explanation:
having some abnormality (mutation) in in the protein Beta-1 Adrenergic Receptor forbids
the use of these 13 drugs. Moreover, 12 drugs target two proteins (p07550,p08588) (C+#4).
A subgroup of CVA (C#35) used for hypertension cause Acute Coronary Syndrome. The most
eye catching result concern 12 drugs (in C#6) which are used for the treatment of Arrhythmia
(irregular heart beat) and cause the same kind of side effect (as its indication) Tachycardia.

DG-Basis of Implication: Some of the rules obtained in DG-Basis of implications for the
current formal context are shown in Table The first rule states that all the drugs which have
side effect Stevens-johnson Syndrome also have side effect Erythema multiforme (support of

Inria

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discovery21

22). This explains that if these drugs are prescribed and they cause Stevens-johnson Syndrome
then a patient is most likely to have Erythema multiforme. Rule#2 depicts that all the drugs
which have side effects Acute coronary syndrome, Arthralgia, Infection, Pyrexia and
Tachycardia have the side effect Cerebrovascular accident. Cerebrovascular accident is
the medical name for stroke. Thus if the drugs are causing the above mentioned side effects then
it is most likely that a patient may have this side effect also. Similarly, rule#3 says that all the
drugs which are used for the treatment of Vasoconstriction (narrowing blood vessels) have
the side effect Acute Coronary Syndrome. Finally, rule#4 mentions that when the drugs target
protein p43700 they cause blurred vision.

All these results show that a careful interpretation of some concepts in the lattice may provide
very useful explanation on some observations. These explanations can be reused by human agents
and software agents as well.

7 Stability Based Faceted Browsing Over a Concept Lattice

Visualization and interactions are the two milestones for better analysis and search capabilities
over a concept lattice. One of the ways is to enable analysis and browsing through faceted search.
The objective of this faceted search is to guide the user in the analysis and navigation of the
answers obtained by SPARQL queries.

Faceted browsing allows for exploration of the information based on restrictions. Facets
are the information elements, the values of which are referred to as features. The facets are
often derived by the existing collections which are represented as navigational facets. During
navigation, a selection can be performed on a set of items included in features. After selection
the restrictions are computed and displayed. There has already been some work related to
faceted search based on FCA. One such system, namely Camelis [18], is built based on Logical
Concept Analysis, an extension of FCA, which enables browsing and navigation of the documents.
Another such study [19] combines the utilities of faceted search and expressive query language
to allow navigation of the concept lattice by introducing a new query language LISQL (Logical
Information System Query Language).

Lattice-Based Faceted Search: A lattice-based faceted search uses concept lattice as a col-
lection over which navigational facets are defined. It not only guides FCA experts through the
interpretation procedure but also helps the novice user to analyse the resulting lattice. In the
current work, the concept lattice obtained for the results of each of the SPARQL query serves
navigational purposes. We provide navigation over SPARQL query answers through navigational
facets. As the views obtained over SPARQL query are large to be observed. Interpretation is
a challenge even for an expert. This visualization mechanism makes the interpretation process
more flexible. The intent of a concept is represented as a facet values, i.e., a feature. As we
move from level 1 to level 2 the number of restrictions increase and more specific concepts are
obtained.

Interface Description: Currently, we visualize the concept lattice with the help of the library
deE which is a JavaScript library dealing with the documents containing data. For convenience
of explanation in this report we generated concept lattice for the first 500 results of the query
in section [6.2] A concept lattice is visualized as a tree where each branch acts can be clicked
on and interacted with. Initially, there is only one node, which is the top concept in a concept
lattice (see Figure . When this node is clicked it opens the first level of the lattice. Figure

Uhttp://d3js.org/

RR n° 8591

22 Alam € Napoli

shows the first level of the concept lattice. On mouseover on any node it shows the extent and
intent of the selected concept in the panel on right hand side of the web page. For example, in
Figure [4 shows the intent and extent of one of the selected concept. The panel named Intent
on the top shows the intent wikicategory 1970 films and the panel names Extent shows the
URI of two movies from 1970.

Each of the concepts can be clicked for navigating through the children nodes. Figure 5]shows
the three clicked nodes which opens the subtree related to the selected node. On mouse over the
intent and extent of the node are shown. The right panel shows that the movies in this class
are English Language movies and are from United States. In case of large number of movies the
extent panel can be scrolled. Finally the first two levels of the generated concept lattice along
with intent and extent of the selected are shown in Figure [f]

Navigating and Interpreting a Concept Lattice: Figure [7] shows first two levels of a
concept lattice of 500 answers obtained by the SPARQL query over YAGO (the concept lattice
is named Ly q4, accordingly) described in section The labeled concept C7, Co and C5 create
a branch attached to the top concept and hence is called a sub-tree corresponding to the intent
Documentary Film. These sub-trees can be further navigated. Here Cj represents a class of
documentaries. After drilling down to the children concepts (going deeper into the branch), we
have Cy and C5. These two concepts keep the combination of several dimensions of attributes
and hence keep more specific information such as movie genre along with their country. Cs keeps
the group of American Documentary Films and Cj keeps the group of British Documentary
Films. After the concepts are selected the panel shows the links to the page of documentary
films.

Restrictions Based on Stability: Now, the question arises why we need to visualize a concept
lattice in the form of tree with nodes and edges and not as indented tree. The unique functionality
introduced by our faceted search is the use of stability index for each of the concepts. In the
concept lattice, the size of each node corresponds to the stability of the concept. Figure [7] shows
that the concepts are a mix of smaller and bigger nodes. The smaller nodes correspond to the
less stable concepts and the larger nodes correspond to more stable concepts.

Reducing the Navigational Space: Two types of reductions were applied over the navigation
space created by the views. The first kind of reduction is with respect to the number of levels
considered for navigation which is applied before hand. The second type of reduction uses
stability index for each of the concepts. The introduction of intensional stability in the faceted
browsing where the intent are referred to as facets gives the ability to reduce the number of
concepts to be navigated on the run while browsing the concept lattice. In the example shown
in Figure[7] it can be seen that C is more stable than Cy which means that if the objects from
the concept containing documentary films from United States are removed than the concept will
disappear. To this end, the C5 can be ignored in and the navigation can be continued after Cl.
Visualization for the experiments discussed in the previous section along with the implementation
can be accessed onlind™2]

2http://webloria.loria.fr/~alammehw/lbva/

Inria

http://webloria.loria.fr/~alammehw/lbva/

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discovery23

Intent

Extent

Figure 3: Parent Node.

wikicategory 1970films

%

i 0] hitp://yago-knowledge. org/resource/BadouBoyakaBadBoy
hitp://yago-knowledge.org/resource/Dattuputhran

Figure 4: Level 1.

RR n° 8591

Alam € Napoli

Intent

UnitedStates
wikicategoryEnglish-languagefiims

&
b= s
oA 0.
8% o 6@0
Q;) @ % http//yago-knowledge.org/resource/ApacheDrums

‘e’ & htip://yago-knowledge.org/resource/CarolinaMoon(film)
http://yago-knowledge.org/resource/AChristmas WithoutSnow
http2//yago-knowledge.org/resource/DeltaofVenus(film)
http://yago-knowledge.org/resource/DetectiveSchoolDropouts
hitp://yago-knowledge.org/resource/Broadway Serenade
http:/lyago-knowledge.org/resource/Bubbles(film)
http:/fyago-knowledge.org/resource/Friday(series)
http//yago-knowledge.org/resource/AChristmas Wedding

http:/lyago-knowledge.org/resource/AVery SchoolGyrisHolla-
Nauvifitm) et

Figure 5: Opening children nodes on Click.

Intent

UnitedStates
wikicategory English-languagefiims

Extent

hitp://yago-knowledge.org/resource/ApacheDrums
http://yago-knowledge.org/resource/CarolinaMoonifilm)
hitp:/fyago-knowledge.org/resource/AChristmasWithoutSnow
hitp://yago-knowledge.org/resource/DeltacfVenus(film)
hitp:/lyago-knowledge.org/resource/DetectiveSchoolDropouts
http://yago-knowledge.org/resource/Broadway Serenade
hitp://yago-knowledge.org/resource/Bubbles(fiim)
hitp://yago-knowledge-org/resource/Friday(series)
hitp:/fyago-knowledge.org/resource/AChrisimasWedding

hitp:/lyago-knowledge.org/resource/AVerySchoolGyrisHolla-
Dauffilm =

Figure 6: Level 2.

Inria

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discovery25

C5 : Documentary Film
United States

Figure 7: First two levels of the concept lattice Ly 4o for the first five hundred results of the
query in section @

8 Lattice-Based View Access (version 0.1) - How To?

The current version (version 0.1) of LBVA is implemented in Java using Jena platform. It can be
downloaded from the download linklﬂ The software Lattice-Based View Access(lbva_v_0.1),
takes as input a SPARQL query along with the endpoint of the data resource present in Linked
Open Data Cloud and performs transformations according to what is required by a data mining
algorithm, i.e, Formal Concept Analysis. This data mining algorithm gives a classification of the
SPARQL query answers with the help of concept lattices.

This module can be executed with the help of command line. The attached file is in .zip
format. In order to run the software, extract the .zip folder. Open terminal (command line) and
go to the folder containing the extracted folder. Execute execute.sh along with the necessary
parameters. A sample command for running a SPARQL query over the DBpedia SPARQL
endpoint is shown in Listing [2] This command takes five arguments:

e SPARQL endpoint e.g., http://dbpedia.org/sparql.

SPARQL query sample_query.sparql with a SELECT and VIEW BY clause.

Support threshold for the Iceberg concept lattices i.e. 3.

Name of the file containing the context (test_new).

e The name of the output lattice file (output_lattice).

Listing 2: Sample Command

./ execute.sh http://dbpedia.org/sparql sample query.sparql
3 test_new output_lattice

SPARQL query with VIEW BY clause: The sample query for extracting movie and it’s
genre information is given in Listing[3] Here the classification is introduced with the help of VIEW
BY clause. This clause is a solution modifier so it is the last clause to appear in a SPARQL query.
Moreover, the variable appearing in the VIEW BY clause should be one of the answer variables
i.e., one of the variables provided in the SELECT clause. Currently this version works with two

Bhttp://webloria.loria.fr/~alammehw/lbva/

RR n° 8591

http://webloria.loria.fr/~alammehw/lbva/

26 Alam € Napoli

or more than two variables in the SELECT clause and only one variable in the VIEW BY clause. In
future, more than one variable will be considered in the VIEW BY clause to deal with relations.
Moreover, we are also considering the case of single variable in the SELECT clause.

Listing 3: sample query.sparql
PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf—schema#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf-syntax—ns#>
PREFIX dbpedia—owl: <http://dbpedia.org/ontology/>
PREFIX dbpprop: <http://dbpedia.org/property/>
SELECT ?movie ?genre WHERE {
?movie rdf:type dbpedia—owl:Film
?movie dbpprop:genre 7genre
}
limit 500
VIEW BY ?movie

Generating a Concept Lattice: As soon as the command is executed the query is executed
against the endpoint and the required results are generated. These results are then classified with
the help of FCA. In the current version of this software there are two methods implemented for
generating concept lattices, i.e., AddIntent and Charm. The software currently uses AddIntent
for building concept lattices.

The Charm algorithm is already implemented by Cororﬂ Currently the code for Charm
is not activated but if the user has knowledge of Java, it can be activated (uncommented) and
used. In order to run Coron, it should be downloaded and kept in the same repository where
AddIntent exists. The third argument of the command shown in Listing [2] i.e., 3 works only
with the Charm algorithm.

Interpreting the Generated Files: The name of the output lattice file (output _ lattice)
defined in the command shown in Listing [2] contains the coded information about the concept
lattice generated by AddIntent. It means that it keeps the codes for each object and attribute
in the extent and intent of the concept. It can be interpreted with the help of the helping files
generated automatically by the program in the folder AddIntent listing down the object and
attribute codes along with their labels (object_list.txt and attribute_list.txt).

Generating JSON Output: In order to further facilitate the interpretation process, the
algorithm provides the faceted browsing over the answers of the SPARQL query. In order to
do so, the software also generates the JSON file for the first two levels of the concept lattice
which can further be visualized. This file is generated in AddIntent folder with the name
lattice. json. The piece of code responsible for this part is currently deactivated which can be
activated (uncommented) by the user and directly used.

9 Conclusion and Discussion

In LBVA, we introduce a classification framework for the set of tuples obtained as a result of
SPARQL queries over LOD. We introduce a classification framework based on FCA for organizing
a view, i.e., the set of tuples resulting from a SPARQL query. In this way, the view is organized

"http://coron.loria.fr/site/index.php

Inria

http://coron.loria.fr/site/index.php

Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discovery27

as a concept lattice that can be navigated where information retrieval and knowledge discovery
can be performed.

For future work, we are interested in working with several object variables allowing to deal
with more complex relations, with the help of Relational Concept Analysis (RCA)[20]. In addi-
tion, here only binary contexts are taken into account. It is possible to go beyond this limitation
in using another variation of FCA which is the formalism of pattern structures [2I] for dealing
with heterogeneous data. Moreover, we also plan to further add provenance information to the
SPARQL query answers with the help of pattern structures.

References

[1] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far,” Int. J. Semantic
Web Inf. Syst., vol. 5, no. 3, pp. 1-22, 2009.

[2] C. d’Amato, N. Fanizzi, and A. Lawrynowicz, “Categorize by: Deductive aggregation of se-
mantic web query results,” in ESWC (1), ser. Lecture Notes in Computer Science, L. Aroyo,
G. Antoniou, E. Hyvonen, A. ten Teije, H. Stuckenschmidt, L. Cabral, and T. Tudorache,
Eds., vol. 6088. Springer, 2010, pp. 91-105.

[3] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations. Berlin/Hei-
delberg: Springer, 1999.

[4] G. Stumme, R. Taouil, Y. Bastide, and L. Lakhal, “Conceptual clustering with
iceberg concept lattices,” in Proc. GI-Fachgruppentreffen Maschinelles Lernen (FGML’01),
R. Klinkenberg, S. RAlping, A. Fick, N. Henze, C. Herzog, R. Molitor, and
0. SchrAqder, Eds., UniversitAxtt Dortmund 763, October 2001. [Online]. Available:
http://www.kde.cs.uni-kassel.de/stumme/papers /2001 /FGMLO1.pdf

[5] C. Carpineto, S. Osinski, G. Romano, and D. Weiss, “A survey of web clustering engines,”
ACM Comput. Surv., vol. 41, no. 3, pp. 17:1-17:38, Jul. 2009. [Online]. Available:
http://doi.acm.org/10.1145,/1541880.1541884

[6] A. Lawrynowicz, J. Potoniec, L. Konieczny, M. Madziar, A. Nowak, and K. T. Pawlak,
“Asparagus - a system for automatic sparql query results aggregation using semantics.”
in ICCCI (1), ser. Lecture Notes in Computer Science, P. Jedrzejowicz, N. T. Nguyen,
and K. Hoang, Eds., vol. 6922. Springer, 2011, pp. 304-313. [Ounline]. Available:
http://dblp.uni-trier.de/db/cont/iccci/iccci2011-1.html# LawrynowiczZPKMNP11

[7] M. Kirchberg, E. Leonardi, Y. S. Tan, S. Link, R. K. L. Ko, and B.-S. Lee, “Formal con-
cept discovery in semantic web data,” in ICFCA, ser. Lecture Notes in Computer Science,
F. Domenach, D. I. Ignatov, and J. Poelmans, Eds., vol. 7278. Springer, 2012, pp. 164-179.

[8] M. Arenas, C. Gutierrez, and J. Pérez, “Foundations of rdf databases,” in Reasoning Web,
ser. Lecture Notes in Computer Science, S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez,
S. Handschuh, M.-C. Rousset, and R. A. Schmidt, Eds., vol. 5689. Springer, 2009, pp.
158-204.

[9] C. Carpineto and G. Romano, Concept data analysis - theory and applications. Wiley,
2005.

[10] P. Krajca, J. Outrata, and V. Vychodil, “Advances in algorithms based on cbo,” in CLA,
ser. CEUR Workshop Proceedings, M. Kryszkiewicz and S. A. Obiedkov, Eds., vol. 672.
CEUR-WS.org, 2010, pp. 325-337.

RR n° 8591

http://www.kde.cs.uni-kassel.de/stumme/papers/2001/FGML01.pdf
http://doi.acm.org/10.1145/1541880.1541884
http://dblp.uni-trier.de/db/conf/iccci/iccci2011-1.html#LawrynowiczPKMNP11

28

Alam € Napoli

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D. van der Merwe, S. A. Obiedkov, and D. G. Kourie, “Addintent: A new incremental
algorithm for constructing concept lattices,” in ICFCA, ser. Lecture Notes in Computer
Science, P. W. Eklund, Ed., vol. 2961. Springer, 2004, pp. 372-385.

S. O. Kuznetsov, “On stability of a Formal Concept,” Ann. Math. Artif. Intell., vol. 49, no.
1-4, pp. 101-115, 2007.

J-L. Guigues and V. Duquenne, “Familles minimales d’implications informatives
rA(©)sultant d’un tableau de donnA(Ces binaires,” MathA@©)matiques et Sciences Humaines,
vol. 95, pp. 5-18, 1986.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann,
“Dbpedia - a crystallization point for the web of data,” J. Web Sem., vol. 7, no. 3, pp.
154-165, 2009.

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, and C. Bizer, “DBpedia - a large-scale, multilingual
knowledge base extracted from wikipedia,” Semantic Web Journal, 2014.

D. Wienand and H. Paulheim, “Detecting incorrect numerical data in dbpedia,” in ESWC,
ser. Lecture Notes in Computer Science, V. Presutti, C. d’Amato, F. Gandon, M. d’Aquin,
S. Staab, and A. Tordai, Eds., vol. 8465. Springer, 2014, pp. 504-518.

F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A core of semantic knowledge,”
in Proceedings of the 16th International Conference on World Wide Web, ser.
WWW °07. New York, NY, USA: ACM, 2007, pp. 697-706. [Online]. Available:
http://doi.acm.org/10.1145/1242572.1242667

S. Ferré, “Camelis: a logical information system to organise and browse a collection of
documents,” Int. J. General Systems, vol. 38, no. 4, pp. 379-403, 2009.

S. Ferré and A. Hermann, “Reconciling faceted search and query languages for the semantic
web,” IJMSO, vol. 7, no. 1, pp. 37-54, 2012.

M. Rouane-Hacene, M. Huchard, A. Napoli, and P. Valtchev, “Relational Concept Analysis:
Mining Concept Lattices From Multi-Relational Data,” Annals of Mathematics and Artificial
Intelligence, vol. 67, no. 1, pp. 81-108, 2013.

B. Ganter and S. O. Kuznetsov, “Pattern structures and their projections,” in ICCS, ser. Lec-
ture Notes in Computer Science, H. S. Delugach and G. Stumme, Eds., vol. 2120. Springer,
2001, pp. 129-142.

Inria

http://doi.acm.org/10.1145/1242572.1242667

V4

: in[orma!ics,mutheman’:s

RESEARCH CENTRE
NANCY - GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lés-Nancy Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related work
	Preliminaries
	Linked Open Data
	Formal Concept Analysis (FCA)

	Need for Classifying SPARQL Query Results
	Lattice-Based View Access
	SPARQL Queries with Classification Capabilities
	Designing a Formal Context (G,M,W,I)
	Building a Concept Lattice
	Interpretation Operations over a Concept Lattice:

	Experimentation
	DBpedia
	YAGO
	DG-Basis of Implications
	Evaluation
	Application to Biomedical Data

	Stability Based Faceted Browsing Over a Concept Lattice
	Lattice-Based View Access (version 0.1) - How To?
	Conclusion and Discussion

