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Abstract. An important field of chemoinformatics consists in the pre-
diction of molecule’s properties, and within this field, graph kernels con-
stitute a powerful framework thanks to their ability to combine a natural
encoding of molecules by graphs, with classical statistical tools. Unfor-
tunately some molecules encoded by a same graph and differing only by
the three dimensional orientation of their atoms in space have different
properties. Such molecules are called stereoisomers. These latter proper-
ties can not be predicted by usual graph methods which do not encode
stereoisomerism. In this paper we propose to encode the stereoisomerism
property of each atom of a molecule by a local subgraph. A kernel be-
tween bags of such subgraphs provides a similarity measure incorporating
stereoisomerism properties. We then propose two extensions of this ker-
nel incorporating in each sub graph information about its surroundings.

1 Introduction

A molecular graph is a graph G = (V,E, µ, ν), where each node v ∈ V encodes an
atom and each edge e ∈ E a bond between two atoms. The labelling functions
µ and ν associate to each vertex and each edge a label encoding respectively
the nature of the atom (carbon, oxygen,. . . ) and the type of the bond (single,
double, triple or aromatic). However, those graphs have a limitation: they do not
encode the spatial configuration of atoms. Some molecules, called stereoisomers,
are associated to a same molecular graph but differ by the relative positioning
of their atoms.

Most of stereoisomers are characterized by the three dimensional orientation
of the direct neighbors of a single atom or two connected atoms. We can consider
for example, a carbon atom, with four neighbors, each of them located on a sum-
mit of a tetrahedron. If we permute two of the atoms, we obtain a different spatial
configuration and hence an alternative stereoisomer (Figure 1(a)). An atom is
called a stereocenter if a permutation of two atoms belonging to its neighbor-
hood produces a different stereoisomer. We should stress here that, to a large
extend, stereoisomerism is independent of a particular embedding of a molecule.
Indeed, in Figure 1(a), any particular embedding keeping the same relative posi-
tioning of atoms H, Cl, Br and F according to the central carbon atom C, would
correspond to a same stereoisomer. In the same way, two connected atoms form
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(a) Two different spatial configurations
of the neighbors of a carbon

(b) Two different spatial configura-
tions of two carbons linked by a dou-
ble bond.

Fig. 1. Two types of stereocenters.

a stereocenter if a permutation of the positions of two atoms belonging to the
union of their neighborhoods produces a different stereoisomer (Figure 1(b)).
According to chemical experts [9], within molecules currently used in chemistry,
98% of stereocenters correspond either to carbons with four neighbors, called
asymmetric carbon (Figure 1(a)) or to couples of two carbons adjacent through
a double bond (Figure 1(b)). We thus restrict the present paper to such cases.

Graph kernels [10, 6], provide a measure of similarity between graphs. Under
the assumption that a kernel k is symmetric and definite positive, the value
k(G,G′), where G and G′ encode two graphs, corresponds to a scalar product
between two vectors Ψ(G) and Ψ(G′) in an Hilbert space. This latter property
allows us to combine graph kernels with usual machine learning methods such
as SVM or kernel ridge regression by using the well known kernel trick, which
consists in replacing the scalar product between Ψ(G) and Ψ(G′) by k(G,G′) in
these algorithms.

Up to now, only few methods have attempted to incorporate stereoisomerism
within the graph kernel framework. Brown et al. [2] have proposed to incorpo-
rate this information through an extension of the tree-pattern kernel [10]. One
drawback of this method is that, patterns which encode stereo information, and
patterns which do not, are combined without any weighting in the final kernel
value. So for a property only related to stereoisomerism, patterns that do not
encode stereo information may be assimilated to noise which deteriorates the
prediction. Grenier et al. [8] have introduced the minimal subtree which char-
acterizes a stereocenter within an acyclic molecule. They also proposed a kernel
based on this minimal subtree, which takes into account stereoisomerism. This
kernel is however restricted to acyclic graphs.

Based on [8], we present in Section 2 an encoding of molecules distinguishing
stereoisomers. Section 3 present the construction of a subgraph, which allows
to characterizes locally a stereocenter. Then in Section 4, we use this subgraph
to propose new graph kernels valid for cyclic as well as acyclic molecules, thus
overcoming the main limitation of [8]. We finally present in Section 5 results
obtained using those kernels and compare these results with state of the art
methods.
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2 Ordered Graph and Stereo Vertices

The spatial configuration of the neighbors of each atom may be encoded through
an ordering of its neighborhood. For example, considering the left part of Fig-
ure 1(a), and looking at the central carbon from the hydrogen atom (H), the
sequence of remaining neighbors of the carbon: Cl, Br and F may be considered
as lying on a plane and are encountered clockwise. Thus, this spatial configu-
ration is encoded by the sequence H, Cl, Br, F and the sequence H, Br, Cl, F
encodes the second configuration.

In order to encode this information in a graph, we introduce the notion of
ordered graph. An ordered graph G = (V,E, µ, ν, ord) is a molecular graph
Gm = (V,E, µ, ν) together with a function ord : V → V ∗ which maps each
vertex to an ordered list of its neighbors. Two ordered graphs G and G′ are
isomorphic (G ≃

o
G′) if there exists an isomorphism f between their respective

molecular graphs Gm and G′
m such that ord′(f(v)) = (f(v1) . . . f(vn)) with

ord(v) = (v1 . . . vn) (where N(v) = {v1, . . . , vn} denotes the neighborhood of v).
In this case f is called an ordered isomorphism between G and G′.

However, different ordered graphs may encode a same molecule. In the ex-
ample of the left part of Figure 1(a), if we look to the central carbon from a
different neighbor, we can obtain a different sequence, for example F, Br, Cl,
H, that represents the same configuration but now considered from the atom F.
We thus have to define an equivalence relationship between ordered graphs, such
that two ordered graphs are equivalent if they represent a same configuration.

To do so, we introduce the notion of re-ordering function σ, which associates
to each vertex v ∈ V of degree n a permutation σ(v) on {1, . . . , n}, which allows
to re-order its neighborhood. The graph with re-ordered neighborhoods σ(G)
is obtained by mapping for each vertex v its order ord(v) = v1 . . . .vn onto the
sequence vσ(v)(1) . . . .vσ(v)(n) where σ(v) is the permutation applied on v.

In order to define a permutation σ(v) for each vertex of a graph, we first
introduce the notion of potential asymmetric carbon which corresponds to a
carbon with four neighbors. Such a vertex corresponds to a stereocenter if one
permutation of two of its neighbors provides a different stereoisomer (Section 1).
Permutations associated to a potential asymmetric carbon correspond to all
even permutations of its four neighbors [11]. For a double bond between two
carbons, permutations associated to each carbon of the double bound must have
a same parity. Finally, for any vertex which does not correspond to a potential
asymmetric carbon nor to a carbon of a double bond, we do not search to char-
acterize its spatial configuration. So these vertices are associated to all possible
permutations of their neighbors.

The set of re-ordering functions, transforming an ordered graph into another
one representing the same configuration is called a valid family of re-ordering
functions Σ [7]. We say that it exists an equivalent ordered isomorphism f be-
tween G and G′ according to Σ if it exists σ ∈ Σ such that f is an ordered
isomorphism between σ(G) and G′ (σ(G) ≃

o
G′). The equivalent order relation-

ship defines an equivalence relationship [7] and two different stereoisomers are
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encoded by non equivalent ordered graphs. We denote by IsomEqOrd(G,G′) the
set of equivalent ordered isomorphism between G and G′.

Potential asymmetric carbons, and double bonds between carbons, are not
necessarily stereocenters. For example if the label of vertex Br of Figure 1(a) is
replaced by Cl, both left and right molecules of Figure 1(a) would be identical.
In the same way, if the label of the vertex F in Figure 1(b) is replaced by Cl, the
left and right molecules of this figure also become identical. For those cases, any
permutation in the ordered list of the carbons would lead to an equivalent ordered
graph. We thus define a stereo vertex as a vertex for which any permutation of
two of its neighbors produces a non-equivalent ordered graph:

Definition 1 (Stereo vertex). Let G = (V,E, µ, ν, ord) be an ordered graph. A
vertex v ∈ V is called a stereo vertex iff:

∀(i, j) ∈ {1, . . . , |N(v)|}2, i 6= j, ∄f ∈ IsomEqOrd(G, τvi,j(G)) with f(v) = v.

(1)
where τvi,j(G) corresponds to an ordered graph deduced from G by permuting
nodes of index i and j in ord(v).

3 Minimal Stereo SubGraph

Definition 1 is based on the whole graph G to test if a vertex v is a stereo vertex.
However, given a stereo vertex s, one can observe that on some configurations,
the removal of some vertices far from s should not change its stereo property.
In order to obtain a more local characterization of a stereo vertex, we should
thus determine a vertex induced subgraph H of G, including s, large enough to
characterize the stereo property of s (i.e. ∀(i, j) ∈ {1, . . . , |N(s)|}2, i 6= j, ∄f ∈
IsomEqOrd(H, τ si,j(H)) with f(s) = s), but sufficiently small to encode only the
relevant information characterizing the stereo vertex s. Such a subgraph is called
a minimal stereo subgraph of s.

We now present an heuristic, used to compute a minimal stereo subgraph of
a stereo vertex. We focus our attention on asymmetric carbons. Let H be a sub-
graph of G containing a stereo vertex s corresponding to an asymmetric carbon.
We say that the stereo property of s is not captured by H if (Definition 1):

∃(i, j) ∈ {1, . . . , |N(s)|}2, i 6= j, ∃f ∈ IsomEqOrd(H, τ si,j(H)) with f(s) = s

(2)

To define a minimal stereo subgraph of s, we consider a finite sequence
(Hk

s )
n
k=1 of vertex induced subgraphs of G. The first element of this sequence

H1
s is the smaller vertex induced subgraph for which we can test (2) :

V (H1
s ) = {s} ∪N(s)

where V (H1
s ) and N(s) denote respectively the set of vertices of H1

s and the set
of neighbors of s in G.
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If the current vertex induced subgraph Hk
s does not capture the stereo prop-

erty of s, we know by (2), that it exists some isomorphisms f of equivalent or-
dered graphs between Hk

s and τ si,j(H
k
s ) with i 6= j and f(s) = s. Let us consider

such an isomorphism f . By definition of equivalent ordered isomorphism, it ex-
ists σ ∈ Σ such that f is an ordered isomorphism between Hk

s and σ
(

τ si,j(H
k
s )
)

.
By definition of ordered isomorphisms, and since f(s) = s, we have:

∀l ∈ {1, . . . , |N(s)|}, f(vl) = vσ(s)◦τs
i,j(l)

.

with ord(s) = v1, . . . , vn.
As σ(s) is an even permutation, σ(s) ◦ τ si,j is an odd one. Hence it exists l in

{1, . . . , |N(s)|} such that l 6= σ(s) ◦ τ si,j(l) and we have f(vl) 6= vl and f (2)(vl) 6=
f(vl). In other words, any equivalent ordered isomorphism corresponding to
equation (2) maps at least two vertices in the neighborhood of s in Hk

s onto
a different vertex in the same neighborhood. Let us denote by Ek

f the set of

vertices of Hk
s connected to s by a path whose all vertices are mapped onto

other vertices by f :

Ek
f = {v ∈ V (Hk

s ) | ∃c = (v0, . . . , vq) ∈ Hk
s with v0 = s and vq = v s.t.

∀r ∈ {1, . . . , q}, f(vr) 6= vr} (3)

For any equivalent ordered isomorphism f satisfying (2), the set Ek
f is not

empty since it contains at least 2 vertices. A vertex v belongs to Ek
f if neither

its label nor its neighborhood in Hk
s allows to differentiate it from f(v). The

basic idea of our algorithm consists in enforcing constraints on each v ∈ Ek
f at

iteration k+ 1 by adding to Hk
s the neighborhood in G of all vertices belonging

to Ek
f . This last set is denoted by N(Ek

f ). The set of vertices of the vertex induced

subgraph Hk+1
s is thus defined by:

V (Hk+1
s ) = V (Hk

s ) ∪
⋃

f∈Fk
s

N(Ek
f ) (4)

where Fk
s denotes all equivalent ordered isomorphisms satisfying (2).

Since f ∈ Fk
s implies that Ek

f is not empty, adding iteratively constraints on

the existence of vertices in Ek
f removes f from Fk

s . The algorithm stops when

the set Fk
s becomes empty. Note that such a condition must be satisfied since s

is a stereocenter and hence the whole molecule does not satisfy (2).
The intermediate vertex induced subgraphs found by our algorithm are il-

lustrated in Fig. 2. Note that at iteration 2, it exists an equivalent ordered
isomorphism f ∈ F2

C mapping the path CCO (bottom right of the figure) onto
the same path located on the top right part of Fig 2. In this case E2

f contains
the three carbons of these two paths and both oxygen atoms. The oxygen atoms
belong to E2

f since their neighborhoods in H2
C does not allow to differentiate

them (Fig. 2). At iteration 3, the neighborhood in G of these oxygen atoms are
added to H3

C , hence adding N and Br which allow to differentiate both paths
and thus removes the equivalent ordered isomorphism f from F3

C .
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Fig. 2. An asymmetric carbon and its associated sequence (Hk

C)
3

k=1

4 Stereo Kernel and Extensions

4.1 Stereo Kernel

Given an ordered graph G, we can associate a minimal stereo subgraph to each
of its stereocenter. A same stereo subgraph may be present more than once in a
given molecule, we thus need to associate a unique code to each such subgraph in
order to enumerate efficiently the eventual multiple occurences of a stereo sub-
graph within a molecule. To do so, we use [13], which associates to each molecule
a unique code which allows to test the existence of an equivalent ordered isomor-
phism between two stereo subgraphs, unlike [1] which allows to find efficiently
all isomorphisms between two graphs. We can thus compute the set of minimal
stereo subgraphs H(G) together with the spectrum spec(G) = (fH(G))H∈H(G)

which encodes the frequency fH(G) of each H ∈ H(G). The set H(G) and the
spectrum spec provide a characterisation of each stereo center of G and hence
describe the stereoisomerism of G.

The comparison of the spectrum of two ordered graphs, is then used to define
a kernel between two molecules taking into account the stereoisomerism:

k(G,G′) =
∑

H∈H(G)∩H(G′)

K(fH(G), fH(G′)). (5)

where K denotes a kernel between real values (e.g. Gaussian, intersection or
polynomial). The choice of a particular kernel, together with its parameters is
performed through cross-validation.

4.2 Augmented labels

Cycles are important sub-parts of molecules, and thus two atoms with identical
label could have different influence if one of them is included in a cycle. Thus it
can be useful, during the computation of a minimal stereo subgraph, to consider
two atoms with a same label, but not included in a same number of cycles, as
different.
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To do so, we first compute the set of relevant cycles of each ordered graph.
Relevant cycles are defined as cycles of a graph which can not be deduced from
shorter cycles [12]. We can associate to each vertex v, the number nv of relevant
cycles to which it belongs. Then, for an ordered graph G, this information is
added to the label of each of its vertex v (µA(v) = µ(v).nv) to obtain a new
ordered graph GA. The method described in Section 3 is then applied on the
ordered graph GA. We thus obtain a different set of minimal stereo subgraphs
H(GA), composed of smaller stereo subgraphs where nodes encode a more global
information. As in Section 4.1 we define from this set of subgraphs a spectrum
encoding the frequency of each subgraph, and define a kernel between graphs by
comparing those spectrum:

k(G,G′) =
∑

H∈H(GA)∩H(G′

A
)

K(fH(G), fH(G′)). (6)

4.3 Expanded Subgraphs

Equations 5 and 6 allow to compare two molecules through the distribution of
their stereo subgraphs. However those kernels are based on a binary similar-
ity measure between configurations: either two stereo subgraphs are different,
and thus the configurations encoded by those subgraphs are dissimilar, or the
subgraphs are identical and thus the configurations are similar. By adding infor-
mation about the adjacency relationships between these stereo subgraphs and
the remaining part of the molecule, we can obtain a finer measure of similarity
between configurations around stereocenters.

To take into account the adjacency relationships between a stereo subgraph
Hs and its surrounding, we consider larger vertex induced subgraphs than Hs.
Let H be a subgraphs of G, the neighborhood N(H) of H is the set of vertices
of G−H which are neighbors of a vertex of H:

N(H) = {v ∈ V (G)− V (H) | ∃(u, v) ∈ E s.t u ∈ V (H)}

The set of vertex induced subgraphs obtained by adding k of its neighbors to
Hs can be used to construct a kernel between graphs. We can also consider
subgraphs where vertex located farther from the stereo subgraph than its direct
neighborhood are added. However we have to limit the number of vertices we
add, in order to keep a local information. Moreover the number of subgraphs in-
creases quickly with the number of added vertices. Indeed, Ck

N subgraphs can be
constructed by adding k vertices of N(Hs) to Hs, with N = |N(Hs)|. We thus,
have to determine a number of vertex to add, which is large enough to charac-
terize the adjacency relationships between a stereo subgraph and the remaining
part of a molecule, but also sufficiently small to keep a local information. In
our experiment, we have considered subgraphs obtained by adding up to three
different neighbors of Hs and those obtained by adding one neighbor v of Hs,
and one neighbor of v not included in the neighborhood of Hs.

For each minimal stereo subgraph, we have a set of subgraphs which encodes
its adjacency relationships with other parts of the molecule. As in section 4.1, we
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associate to those subgraphs a unique code. By adding those subgraphs to the set
of minimal stereo subgraphs, we obtain a new set of subgraphs HE(G), for which
we can associate a spectrum which encodes the frequency of each subgraphs H ∈
HE(G). We thus define a kernel between ordered graphs, which takes into account
stereoisomerism, and the adjacency relationships of each stereo subgraphs with
its surrounding:

k(G,G′) =
∑

H∈HE(G)∩HE(G′)

K(fH(G), fH(G′)). (7)

5 Experiments

Our first experiment is based on a dataset composed of all the stereoisomers
of the perindoprilate [3]. As this molecule has 5 stereocenters, the dataset is
composed of 25 = 32 molecules. In this dataset, we try to predict if a molecule
inhibit the angiotensin-converting enzyme (ACE). The dataset is split into a
training set of 23 molecules, and a test set of 9 molecules, as in [3].

Table 1 shows the results obtained by our kernels and the adaptation of the
tree pattern kernel to stereoisomerism [2]. All these kernels are combined with the
standard SVM method [4] to classify molecules. As all molecules in the dataset
are stereoisomers of each other, methods which do not include stereoisomerism
information [10, 6] are unable to differentiate any molecule of this dataset and are
consequently unable to predict the considered property. Moreover, information
not related to stereoisomerism included in kernel [2] consists of the same patterns
for all molecules. This leads to add a constant shift to all values of the kernel and
hence does not deteriorate the prediction for this dataset. Two stereocenters of
the molecules of the dataset have a same minimal stereo subgraph, however one
of them contains vertices belonging to a cycle. The stereo kernel (Section 4.1)
is not able to distinguish these stereocenters, and hence misclassified molecules
containing these stereocenters. By using augmented labels (Section 4.2), these
two stereocenters are distinguished, and this distinction allows us to reach a
prediction accuracy of 100%. The expanded subgraph (Section 4.3) may also
help to differentiate the two stereocenters, but for this dataset, one molecule of
the testset remains misclassified due to the same stereocenters which are not
sufficiently discriminated by this kernel.

Table 1. Classification of the ACE inhibitory activity of perindopirilates stereoisomers

Accuracy Accuracy
Method Trainset % Testset %

Stereo Kernel (Section 4.1) 91.3 88.9
Stereo Kernel + Augmented Labels (Section 4.2) 100 100
Stereo Kernel + Expanded subgraph (Section 4.3) 100 88.9
Tree patterns Kernel with stereo information [2] 100 100
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The second dataset is a dataset of synthetic vitamin D derivatives, used in [2].
This dataset is composed of 69 molecules containing cycles, with an average of
9 stereocenters per molecule. This dataset is associated to a regression problem,
which consists in predicting the biological activities of each molecules. Each
kernel is test by using it with the standard SVM regression method [5].

After normalizing the values of the dataset, the standard deviation of the
biological activities is equal to 0.258. To choose the different parameters and
estimate the performance of each kernel on this dataset we use a nested cross-
validation. The outer cross-validation is a leave-one-out procedure, used to com-
pute an error for each molecule of the dataset. For each fold, we use another
leave-one-out procedure on the remaining molecules, to compute a validation
error. Parameters which provide the lowest root mean squared error on the vali-
dation are selected. We obtain for each molecule an error, and report in Table 2,
the mean of this distribution of errors together with the confidence interval at
95% of this distribution.

Greatest errors in Table 2 are obtained by methods [10, 6] which do not in-
clude stereo information. The adaptation of the tree pattern kernel to stereoiso-
merism [2] improves the results over the two previous methods hence showing
the insight of adding stereoisomerism information. Our kernel with no exten-
sions obtain results not as good as [2]. For this experiment the modification of
label to incorporate information about cycles, decrease our results. However, the
addition of information about relationships between minimal stereo subgraphs,
and remaining part of the molecules, allow us to obtain better results than [2]. In
this case the best results are obtained by considering only subgraphs including
one neighbor of Hs. Our methods use a subgraph isomorphism algorithm, but
the minimal stereo subgraph are small and thus we have small execution times
as we can see in Table 2.

6 Conclusion

The study of stereoisomers constitutes an important subfield of chemistry and
thus a major challenge in chemoinformatics. We have proposed in this paper, a
graph kernel based on an explicit enumeration of all the stereo subgraphs of a
molecule. Each stereo subgraph is associated to a stereo vertex and encodes the

Table 2. Prediction of the biological activity of synthetic vitamin D derivatives.

Mean Confidence Gram’s matrices
Method Error interval computation (s)

Tree patterns kernel [10] 0.193 ± 0.060 230
Treelet kernel [6] 0.207 ± 0.064 7
Tree patterns kernel with stereo information [2] 0.138 ± 0.043 230
Stereo kernel 0.141 ± 0.047 1
Stereo kernel + Augmented Labels (Sec. 4.2) 0.192 ± 0.061 3
Stereo kernel + Expanded subgraph (Sec. 4.3) 0.122 ± 0.041 8
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part of the graph which provides the stereo property to this vertex. Based on
the notion of stereo subgraphs we propose to describe a molecule by its bag of
stereo subgraphs. The similarity between two molecules is then encoded through
a graph kernel based on the similarity of both bags. Moreover we propose two
extensions of this kernel. One extension consists in adding to the labels of the
graphs information about cycles of molecules. The second one consists in con-
sidering larger subgraphs encoding relationships between each stereo subgraph
and the remaining part of the molecule. Experiments related to stereoisomerism
properties demonstrate the relevance of our approach and of its extensions.
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