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H∞-based fault diagnosis for diesel engines

Bouläıd Boulkroune1, Olivier Pagès1, Abdel Aitouche2, Ali Zemouche3 and Ahmed El Hajjaji1

Abstract—The problem of fault detection for diesel
engines is addressed in this work. The proposed ap-
proach allows to detect and estimate actuator and
sensor faults. The residual design procedure is pro-
posed for nonlinear parameter-varying systems. In-
spired by some works in literature, the maximization
problem of fault effect and the minimization problem
of disturbances effect on the residuals is transformed
to one problem of L2-norm minimization. Sufficient
conditions for the existence of residual generator
are formulated in terms of linear matrix inequality
(LMI) sets. Performances of the proposed approach
are shown through the application to a diesel engine
model.

I. Introduction

In order to avoid process performance degradation,
faults must be detected and located as quickly as
possible in order to be able to take appropriate
decisions before they turn into failure. This is why
the early detection and isolation of faults is crucial for
ensuring process safety and efficiency. Different fault
detection and isolation (FDI) techniques are proposed
in literature. The diversity of the proposed solutions was
enriched by the growing interest of the industry. Among
these solutions, model-based FDI systems have found
extensive use due to its fast response to abrupt failure
and to its implementation in real-time algorithms.
This type of diagnosis method can be performed over
a larger operating range. It allows also to isolate the
faulty components since that a single fault in a process
can propagate to several outputs. Furthermore, high
diagnosis performance can be obtained despite the
presence of disturbances.

Observer-based robust fault detection has received
great attention in the last decades. For linear systems,
various approaches have been proposed ([1],[2] and
[3]). However, few methods are proposed for nonlinear
systems and most of them are dedicated to a specific
class of nonlinear systems. Besides, the extension of
the existing results of linear case to nonlinear case is
still a challenging task. The problem of model-based

1 Modeling, Information and Systems (MIS) Laboratory, UFR
sciences, University of Picardie Jules Verne, 33 Rue st Leu 80000,
Amiens, France, e-mail : boulaid.boulkroune@u-picardie.fr,
opages@u-picardie.fr, ahmed.hajjaji@u-picardie.fr

2 Hautes Etudes d’Ingénieur, 13 rue de Toul, 59046, Lille, France
and Automatic Control Laboratory : LAGIS, UMR CNRS 8219, e-
mail : abdel.aitouche@hei.fr

3 Research Center for Automatic Contol of Nancy, CNRS-UMR
7039, University of Lorraine, 54400 Cosnes et Romain, France, e-
mail : Ali.Zemouche@iut-longwy.uhp-nancy.fr

fault detection for the class of Lipschitz systems has
been covered by ([4], [5], [6] and [7]). Generally, a fault
detection filter is designed in order to minimize the effect
of external disturbances and to maximize its sensitivity
to faults on the residuals ([8]). In order to achieve these
objectives, many design criteria such as H∞ norm, H2

norm, and H index have been proposed to evaluate
the effectiveness of fault detection filter design ([9],
[10], [11], [12], [14] and [8]). These criteria are used
for constructing optimal filters : H2/H∞, H∞/H∞ and
H /H∞. The latter criterion is used to design robust
fault detection filters for LPV systems (for instance [15]
and [16]). H /H∞ is also used in fault diagnosis for
Takagi-Sugeno nonlinear systems in [17]. The authors
are extended the method of fault diagnosis based on H∞

control framework, developed for linear systems in [12]
and [13] including a reference model shaping the residual
signals in order to improve fault detection, isolation and
estimation. Therefore, in this paper, this method will
be extended to design residual generators for nonlinear
parameter varying-systems with application to diesel
engines.

On-board diagnosis of automotive engines has become
increasingly important because of environmentally
based legislative regulations such as OBDII (On-Board
Diagnostics-II)[18]. On-board diagnosis is also needed to
guarantee high-performance engine behavior. Today, due
to the legislations, the majority of the code in modern
engine management system is dedicated to diagnosis.
Model-based diagnosis of automotive engines has been
considered in earlier papers (see e.g. [19] and [?]), to
name only a few. However, the engines investigated
in these previous works were all gasoline-fueled and
did not include Exhaust Gas Recirculation (EGR) and
Variable Nozzle Turbine (VNT). Both these components
make the diagnosis problem significantly more difficult
since the air flow through the EGR-valve, and also the
exhaust side of the engine have to be taken into account.
An interesting approach to model-based air-path faults
detection for an engine which includes EGR and VNT
can be found in [20] and [21]. By using several models
in parallel, where each one is sensitive to one kind of
fault, predicted outputs are compared and a diagnosis is
provided. In particular, the hypothesis test methodology
proposed in [20] deals with the multi-fault detection in
air-path system. In [21] the authors propose an extended
adaptive Kalman filter to find which faulty model
best matches with measured data, then a structured
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hypothesis allows going back to the faults. A structural
analysis for air path of an automotive diesel engine has
been developed in order to study the monitorability
of the system [22]. Other approaches to detect intake
leakages in diesel engines based on adaptive observers
are proposed in [23] and [24] and recently in [25].
Another approach based on a nonlinear unknown input
observer (NIUO) for intake leakage detection is proposed
in [26]. For sensor fault diagnosis, few results have been
proposed in the literature although the use of healthy
measurements is strongly required in such systems.
In [27], on-line sensor fault detection, isolation, and
accommodation in automotive engines was proposed. In
[28], fault detection for diesel engines using signal and
process model-based methods was proposed. An expert
system for fault diagnosis system in internal combustion
engines using wavelet packet transform (WPT) and
artificial neural networks (ANNs) techniques has been
proposed by [29]. Recently, a sensor fault detection
approach for diesel engines is proposed in [30]. This
approach is based on nonlinear unknown input observers
which are used to estimate jointly the original states
and the sensor fault.

This work deals with the problem of fault detection for
diesel engines. The proposed approach can be used for
detecting, isolating and estimating actuator and sensor
faults in nonlinear parameter-varying systems. First, the
nonlinear structure of the system is used in the residual
generation to keep the system dynamics. Based on the
the modified mean value theorem (MMVT) presented
in [31], the nonlinear term in the error dynamics is
expressed as a convex combination of known matrices
with time varying coefficients. Then, the problem
of disturbance effect minimization and fault effect
maximization on residuals is reduced to a problem of
L2-norm minimization. This was possible by building the
residual generators as a difference between real residuals,
i. e. difference between real output and its estimate, and
a reference model virtually fed by the fault signal. The
reference model is chosen as first order low-pass filter.
Finally, the L2-norm minimization problem is solved
by applying the bounded real lemma (BRL). The main
advantage of this method is its applicability to a wide
large operating points and the residual generator gains
are determined off-line which making its real online
application very easy.

II. Preliminaries and definitions

We introduce some notation and definitions that
will be used throughout this paper. ℜ denotes the set
of real numbers. The set of p by q real matrices is
denoted as ℜp×q. AT and A−1 represent the transpose
of A and its left inverse (assuming A has full column
rank), respectively. Ir represents the identity matrix
of dimension r. (⋆) is used for the blocks induced by

symmetry. ‖.‖ represents the usual Euclidean norm.

Let us consider the following class of nonlinear systems

ẋ = A(ρ j)x+Bgg(υ ,y,u)+B f f (x,u)+Bdd+Bww (1a)

y = Cx+Ddd +Dww (1b)

with A(ρ j) = ∑
nρ

j=1
ρ jA j, where x ∈ ℜnx is the state vector,

u ∈ ℜnu is the control input vector, y ∈ ℜny is the output
vector, υ ∈ ℜnυ is the vector of measurable signals, d ∈
ℜnd represents the actuator and sensor fault vector and
w ∈ ℜnw is the disturbances vector. A j, with j = 1, · · · ,nρ ,
Bg, B f , Bd , Bw, Dd , Dw and C are constant matrices with
appropriate dimensions. All the pairs (Ai, C), with i =
1, · · · ,nρ , are assumed detectable. Functions g(υ ,y,u) and
f (x,u) are nonlinear. Besides, function f (x,u) is assumed
to be once differentiable. The weighting functions ρ j are
assumed known and depend on measurable variables, and
verify nρ

∑
j=1

ρ j = 1,ρ j ≥ 0, ∀ j ∈ {1, · · · ,nρ} (2)

It is important to note that the structure of system
(1) is different from Takagi-Sugeno (TS) models. In
fact, sometimes it is not important to write nonlinear
models in a TS form especially when the number of
nonlinearities is large as the case of diesel engine models
(see section IV). Consequently, rewrite nonlinear models
as in (1) becomes an interesting solution to overcome
these difficulties. Besides, most of nonlinear systems can
be easily written as in (1) without any transformation.

For manipulating the nonlinear function f , the
MMVT theorem presented for a general vector function
f in [31] is applied in this work. It is used to express the
nonlinear error dynamics as a convex combination of
known matrices with time varying coefficients. The main
principle of MMVT is presented in the following Lemma.

Lemma 1: [[31]] Let the canonical basis of the vectorial
spase ℜs for all s ≥ 1 be defined by

Es = {es(i) | es(i) =
(

0, ...,0,

i th
︷︸︸︷

1 ,0, ...,0
︸ ︷︷ ︸

s components

)T
, i = 1 · · ·s}

Let f (x) : ℜn → ℜn be a vector function continuous on
[a, b] ∈ ℜn and differentiable on convex hull of the set
(a, b). For s1, s2 ∈ [a, b], there exist δ max

i j and δ min
i j for

i = 1 · · ·n and j = 1 · · ·n such that

f (s2)− f (s1)=

[(
n,n

∑
i, j=1

Hmax
i j δ max

i j

)

+

(
n,n

∑
i, j=1

Hmin
i j δ min

i j

)]

(s2−s1)

δ max
i j , δ min

i j ≥ 0,δ max
i j +δ min

i j = 1 (3)

• hmax
i j ≥ max( ∂ fi

∂x j
) and hmin

i j ≤ min( ∂ fi

∂x j
)

• Hmax
i j = en(i)e

T
n ( j)hmax

i j and Hmin
i j = en(i)e

T
n ( j)hmin

i j .

III. Observer-based residual generation design

The aim of this work is to design a residual generator
for nonlinear parameter-varying systems described by
(1). Indeed, the system (1) represents a large class of
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nonlinear systems. Let’s consider the following residual
filter :

˙̂x = A(ρ)x̂+BGg(υ ,y,u)+B f f (x̂,u)+L(ρ)(y−ŷ) (4a)

ŷ = Cx̂ (4b)

r = K(y−ŷ) (4c)

with L(ρ) = ∑
nρ

j=1
ρ jL j. x̂ ∈ ℜnx and r(t) ∈ ℜnr are

respectively the estimated state vector and the residual
vector. The residual generator gains are matrices L and
K. These matrices should be determined such that the
asymptotic stability of residuals is guaranteed. Notice
that the index ρ is omitted where it is not necessary in
order to simplify the notations.

First, let define the state estimation error e as e(t) =
x(t)− x̂(t). Then, the error dynamics and residual expres-
sion can be expressed as:

ė = (A−LC)e+B f f̃+(Bd−LDd)d+(Bw−LDw)w (5a)

r = KCe+KDdd+KDww (5b)

with f̃ = f (x̂,u)− f (x,u).

Now, by using Lemma 1, the nonlinear term f̃ (x̂,x) can
be written as

f̃ (x̂,x) =

[(
n,n

∑
i, j=1

Hmax
i j δ max

i j

)

+

(
n,n

∑
i, j=1

Hmin
i j δ min

i j

)]

e (6a)

δ max
i j , δ min

i j ≥ 0,δ max
i j +δ min

i j = 1 (6b)

To simplify the form of the final result as in [31], the

terms
n,n

∑
i, j=1

(δ max
i j +δ min

i j ) must be scaled to one. If all the

terms in ∂ fi
∂x j

are not zero, then the scaling factor β can

be computed by
n,n

∑
i, j=1

(

δ max
i j +δ min

i j

)

= n2 = β .

Then, (6a) are rewritten as f̃ = αe, where α =
[(

n,n

∑
i, j=1

H̄max
i j δ̄ max

i j

)

+

(
n,n

∑
i, j=1

H̄min
i j δ̄ min

i j

)]

, with

δ̄ max
i j , δ̄ min

i j ≥ 0, δ̄ max
i j + δ̄ min

i j =
1

β
,

n,n

∑
i, j=1

(

δ̄ max
i j + δ̄ min

i j

)

= 1

where H̄max
i j = βHmax

i j , δ̄ max
i j = δ max

i j /β and δ̄ min
i j = δ min

i j /β .

Then, (5) becomes :

ė = Aee+Bedd +Beww (7a)

r = Cee+Drdd +Drww (7b)

with Ae = A−LC+B f α, Bed = Bd −LDd , Bew = Bw−LDw,
Ce = KC, Drd = KDd and Drw = KDw.

As seen in equation (7), the error dynamics and the
residual r depend only on the fault d and the disturbances
w. Now, the fault detection problem is reduced to mini-
mize the effect of disturbances and to maximize the effect
of the fault on the residual simultaneously. Indeed, one
solution is to use the well known H /H∞ approach. Thus,
the effect of disturbances on the residuals is minimized
using the H∞ norm while the effect of the fault on the
residual is maximized using the H index. However, using
the two performances simultaneously increases the prob-
lem complexity. In this work, the H /H∞ optimization

problem is reduced to one H∞ optimization problem by
introducing the following variable re expressed as :

re = r−W f d (8)

where Wf is a transfer function representing the desired
transfer from the fault d to residual r and is called
reference model. The idea of a reference model has
successfully used in controller design, adaptive control
and diagnosis. Therefore, the maximization of the
effect of the fault on the residual r is equivalent to
minimization of the effect of the fault on the residual
error re.

As explained in [12], structure of Wf can be chosen
depending on the fault diagnosis purpose. Thus, the fault
estimation problem can be obtained by choosingWf equal
to the identity matrix, Wf = I and the fault detection
problem can be obtained when Wf is a 1× nd matrix.
Also, Wf is not required to be a static matrix. In this
work, Wf is chosen as

W f =

[
A f B f

C f D f

]

(9)

Now, from (7) and (8), the following augmented system
is obtained : ξ̇ = Aξ ξ +Bξ ν (10a)

re = C̃ξ ξ + D̃ξ ν (10b)

where
ξ =

[
e

x f

]

, ν =

[
d
w

]

, (11a)

Aξ =

[
Ae 0

0 A f

]

, Bξ =

[
Bed Bew

B f 0

]

(11b)

C̃ξ =
[

Ce −C f

]
, D̃ξ =

[
Drd −D f Drw

]
(11c)

The problem now is reduced to determine the gains L

and K that provides convergence of ξ and minimizes the
influence of the fault and disturbances on the residual
error (re) using the standard L2-control problem. In this
case, re represents the controlled output. It is worth to
note that in the fault estimation problem, the transfer
function from the vector ν to the residual re includes
a direct term Dξ which is not null. Consequently, the
lower bound (γmin) of H∞ norm of the closed loop transfer
function from internal input to external output will be
greater than or equal to ‖Dξ‖∞. When Dξ = I, γmin will
be greater than or equal to 1 which leads to an over
estimation of the fault estimation error. To overcome this
difficulty, two solutions are proposed in [12]. The first
solution is to filter the estimation error using a low-pass
filter by taking :

re f =Wrere (12)

where Wre is a low pass weighting matrix. The second
solution is to model the fault signal as the output signal
from a low pass dynamic system by taking

d =Wd d̃ (13)

where Wd is a diagonal weighting matrix with first-order
low pass transfer functions in the diagonal. The first
approach is used in this work with a constant matrix Wre.
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Based on (13), the augmented system (10) is rewritten
as follows ξ̇ = Aξ ξ +Bξ ν (14a)

re f = Cξ ξ +Dξ ν (14b)

where Cξ = Wre

[
Ce −C f

]
, (15a)

Dξ = Wre

[
Drd −D f Drw

]
(15b)

The sufficient condition of the existence of the residual
generator r is given in theorem 1.
Theorem 1: System (14a)-(14b) is asymptotically sta-

ble if there exist a symmetric positive definite matrix
P > 0 and a positive scalar γ > 0 such that





Λmax

i jk PB̄−RkD̄ (K̄C̄+C̄ f )
T

(∗) −γI (K̄D̄+ D̄ f )
(∗) (∗) −γI



 < 0 (16a)





Λmin

i jk PB̄−RkD̄ (K̄C̄+C̄ f )
T

(∗) −γI (K̄D̄+ D̄ f )
(∗) (∗) −γI



 < 0 (16b)

∀i = 1, · · · ,n, j = 1, · · · ,n and k = 1, · · · ,nρ , with
• Λmax

i jk = (Ak +B f H̄max
i j )T P+P(Ak +B f H̄max

i j )−C̄T RT
k −RkC̄;

• Λmin

i jk = (Ak +B f H̄min
i j )T P+P(Ak +B f H̄min

i j )−C̄T RT
k −RkC̄;

where H̄max
i j =ZHHmax

i j , H̄min
i j =ZHHmin

i j , with ZH = n×n.

Matrices B̄, C̄, D̄, C̄ f , D̄ f and K̄ are given as

B̄ =

[
Bd Bw

B f 0

]

,C̄ =
[

C 0
]
, (17a)

D̄ =
[

D f Dw

]
, C̄ f =Wre

[
0 −C f

]
, (17b)

D̄ f = Wre

[
−D f 0

]
, K̄ =WreK (17c)

Matrices P, Rk and K are obtained by solving LMIs
(16a)-(16b). The matrices Lk can be obtained from Lk =[

I 0
]

P−1Rk.
Proof 1: Based on linear bounded lemma [32], the

transfer from ξ to re is minimized using H∞ criterion if
a matrix P and a positive constant γ exist such that the
following condition holds:

Ξ =





AT
ξ

P+PAξ PBξ CT
ξ

(∗) −γI Dξ
(∗) (∗) −γI



< 0 (18)

where P is positive symmetric matrix.
From (11b), (15a) and (15b), (18) can be expressed as

Ξ =





ĀT P+PĀ−C̄T RT −RC̄ PB̄−RD̄ (K̄C̄+C̄ f )
T

(∗) −γI (K̄D̄+ D̄ f )
(∗) (∗) −γI





where Ā = A+B f α, R = P

[
L

0

]

. Matrices B̄, C̄, D̄, C̄ f ,

D̄ f and K̄ are given in (17).

By substituting α by its expression, we obtain :

Ξ =
n,n

∑
i, j=1

δ̄ max

i j





Λmax
i j PB̄−RD̄ (K̄C̄+C̄ f )

T

(∗) −γI (K̄D̄+ D̄ f )
(∗) (∗) −γI





︸ ︷︷ ︸

M
max
i j

+
n,n

∑
i, j=1

δ̄ max

i j





Λmin
i j PB̄−RD̄ (K̄C̄+C̄ f )

T

(∗) −γI (K̄D̄+ D̄ f )
(∗) (∗) −γI





︸ ︷︷ ︸

M
min
i j

with Λmax
i j = (A + B f H̄max

i j )T P + P(A + B f H̄max
i j )− C̄T RT − RC̄, Λmin

i j =

(A + B f H̄min
i j )T P + P(A + B f H̄min

i j ) − C̄T RT − RC̄. Since we have
δ̄ max

i j , δ̄ min
i j ≥ 0, the negativity of Ξ is ensured if

M
max

i j < 0 and M
min

i j < 0 (19)

By substituting A(ρ) and L(ρ) by their expressions, (19)
can be written as follows:

nρ

∑
k=1

ρkM
max

i jk < 0,
nρ

∑
k=1

ρkM
min

i jk < 0 for all k = 1, . . . ,nρ (20)

where

M
max

i jk =





Λmax

i jk PB̄−RkD̄ (K̄C̄+C̄ f )
T

(∗) −γI (K̄D̄+ D̄ f )
(∗) (∗) −γI





M
min

i jk =





Λmin

i jk PB̄−RkD̄ (K̄C̄+C̄ f )
T

(∗) −γI (K̄D̄+ D̄ f )
(∗) (∗) −γI





with
• Λmax

i jk = (Ak +B f H̄max
i j )T P+P(Ak +B f H̄max

i j )−C̄T RT
k −RkC̄;

• Λmin

i jk = (Ak +B f H̄min
i j )T P+P(Ak +B f H̄min

i j )−C̄T RT
k −RkC̄;

Since ρk > 0, ∀k = 1, · · · ,nρ , the condition (20) holds
if Mmax

i jk < 0 and Mmin

i jk < 0,∀i = 1, · · · ,n, j = 1, · · · ,n and
k = 1, · · · ,nρ . This ends the proof.

IV. Engine model

The diesel engine considered in this paper is a
four-cylinder engine with a EGR and a VNT. Due to
space limitation, we present directly the air-path model
writing in state space form as (1). For more details we
refer the reader to [30]. The engine is equipped with
sensors measuring in-flowing air WHFM, the temperature
after CAC TCAC, inlet-manifold pressure PInlet , exhaust-
pressure PExh and exhaust-temperature TExh. The control
inputs are the injected fuel WFuel , the turbine vane
position XV NT , and the EGR-valve position determining
the valve opening-area AEGR. Notice that the following
variables : TCAC, WHFM, and NEng are considered as
measurable signals.

The considered air path model is expressed as follows
(1), where the state, known input and output vectors and
the variables ρ and υ are defined as

x =
[

PInlet mAir mEGR mExh

]T
(21)

u =
[

AEGR XV NT WFuel

]T
(22)

y =
[

PInlet PExh

]T
(23)

ρ = NEng (24)

υ =
[

TCAC WHFM

]T
(25)

where mAir and mEGR are respectively the mass of air and
EGR−gaz in intake manifold. mExh represents the mass
of exhaust gas in exhaust manifold. The matrices A1 and
A2 are given by :

A1=






−a1 0 0 0

0 −a1 0 0

0 0 −a1 0

0 a1 a1 0




 , A2=






−a2 0 0 0

0 −a2 0 0

0 0 −a2 0

0 a2 a2 0






4



with a1 =
fvolNEngVEng

120VInlet
and a2 =

fvolNEngVEng

120VInlet
, where NEng and

NEng are, respectively, the minimum and maximum value
of the measurable variable NEng. ρ1 and ρ2 are defined as

ρ1 =
NEng −NEng

NEng −NEng

and ρ2 =
NEng −NEng

NEng −NEng

(26)

Matrices Bg, B f , Bd , Bw, Dw, C and Dd are expressed
as :

Bg=







RAircp,Air

cv,AirVInlet
0

0 1

0 0

0 0






,B f =









− fvolVEngNEng

120VInlet

R2

ExhTEGRcp,Exh

VInlet cv,ExhVExh
0

0 0 0

0
RExh
VExh

0

0
−RExh
VExh

1









, (27)

Bd=






0 0 0

0 0 0

0 0 0

0 0 13×10
−4




 , Bw=






0 0

0 0

0 0

0 0




 , Dw=

[
1 0

0 1

]

(28)

C=

[
1 0 0 0

0 0 0
RExhTExh

VExh

]

, Dd=

[
2×10

4
0 0

0 2.5×10
4

0

]

(29)

Functions g and f are given by :

g =

[
WHFMTCAC

WHFM

]

, f =








RInlet PInlet
cv,Inlet

AEGRmExhΨκExh
TExh√

RExhTExh

WFuel −
RExhTExhmExhτ

(
PExh
PAtm

,XV NT

)

VExh

√
TExh








All the parameters and variables used in this model
are listed in Table in appendix ??. The temperature
TEGR and TExh are assumed to be constant. The static
functions : fvol , h and τ are represented as interpolation
in lookup tables.

V. Simulation results

The proposed approach has been tested on a four-
cylinder diesel engine model running on Mathworks
Matlabr/Simulink. The aim is to detect two types
of faults : actuator and sensor faults. The two first
components of the vector d are, respectively, the inlet
and exhaust manifold sensor faults. Two step-like faults
with a magnitude equal to 10% of the mean values of
inlet and exhaust pressures are considered. The last
component on the fault vector is an actuator fault
represented by a step-like fault with a magnitude equal
to 40% of the mass-flow of the injected fuel. This fault
is due either to a drop in the pressure in the common
rail or a dysfunction of one or more injectors.

Due to space limitations, the numerical values of
vectors and matrices, in Theorem 1, are omitted. Notice
that the LMIs (16a)-(16b) are solved using YALMIP,
a toolbox for modeling and optimization in Matlabr.
In this work, a dedicated residual for each fault is
constructed. Besides, this structure helps us to isolate
easily each fault. In addition, in each case Wf is chosen
as a stable first order low-pass filter. By solving the
LMIs (16a)-(16b), the following optimal values of γ are
obtained: γ∗

1
= 0.8665, γ∗

2
= 0.9083 and γ∗

2
= 0.7141.

The simulation is performed with engine average
speed NEng = 3000rpm (see Fig. 1). In this experience,
the minimum and maximum value of Neng (Neng and

Neng) are chosen as : 2000 and 4000rpm respectively. For
simulation purpose, we consider that the measurements
are perturbed by a gaussian white noise with a standard
deviation equal to 5×10

3.

N
en

g

times (s)

Fig. 1. Engine speed behavior

The obtained residuals are illustrated in figure 5. In
this figure, each fault effect is well shown in the equiv-
alent residual. Besides, all residuals are not affected by
regime change.

VI. Conclusion

The design of residual generators for nonlinear
parameter-varying systems is treated in this paper. The
proposed approach aims to detect actuator and sensor
faults in diesel engines. The disturbance effect mini-
mization and fault effect maximization problem is trans-
formed to a problem of L2-norm minimization. The
residual generator gains are obtained by solving a set
of LMIs. The efficiency of the proposed method is shown
through the application to a diesel engine model where
the effect of each fault is well shown on the equivalent
residual.

Fig. 2. Inlet manifold pressure sensor fault

Fig. 3. Exhaust manifold pressure sensor fault

Fig. 4. Actuator fault

Fig. 5. Real fault (continuous line) and its equivalent residual
(dashed line)
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Appendix

Nomenclature

Symb. Quantity Value/Unit
Pim Pressure in intake manifold Pa

Pem Pressure in exhaust manifold Pa

pa Atmospheric pressure 1.013
5Pa

Ra Gas constant of air 287J/(Kg.K)
cp Specific heat at const. pres. 1014.4J/(Kg.K)
cv Specific heat at const. vol. 727.4J/(Kg.K)
κ Ratio of specific heats cp/cv

τ Time constant 0.11s
Wc Compressor mass flow rate kg.s−1

Wegr EGR mass-flow into int. mani. kg.s−1

Wei Total mass flow rate into cylinders kg.s−1

Wt Turbine mass flow rate kg.s−1

Wf Fuel mass flow rate kg.s−1

Tim Intake manifold temperature 313K
Tem Exhaust manifold temperature 509K
Ta Ambient temperature 298K
N Engine speed tr/min

Vd Displacement volume 0.002m3

ncyl Number of cylinders 4
Vim Intake manifold volume 0.006m3

Vem Exhaust manifold volume 0.001m3

ηvol Volumetric efficiency 0.87
ηt Turbine efficiency 0.76
ηc Compressor efficiency 0.61
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