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A bouncing droplet on a vibrated bath can couple to the waves it generates, so that it becomes a propagative
walker. Its propulsion at constant velocity means that a balance exists between the permanent input of energy
provided by the vibration and the dissipation. Here we seek a simple theoretical description of the resulting
non-Hamiltonian dynamics with a walker immersed in a harmonic potential well. We demonstrate that the
interaction with the recently emitted waves can be modeled by a Rayleigh-type friction. The Rayleigh oscillator
has well defined attractors. The convergence toward them and their stability is investigated through an energetic
approach and a linear stability analysis. These theoretical results provide a description of the dynamics in excellent
agreement with the experimental data. It is thus a basic framework for further investigations of wave-particle
interactions when memory effects are included.

DOI: 10.1103/PhysRevE.90.022913 PACS number(s): 05.45.−a, 47.55.D−

I. INTRODUCTION

From the simple pendulum to more complex oscillators, the
unavoidable coupling with the environment generates dissipa-
tion. Even if the loss of energy is balanced by a permanent
input, the Hamiltonian structure is lost. The description of
open systems, i.e., when the coupling with the environment
cannot be neglected, has been explored in the framework
of self-sustained oscillators. A theoretical approach was first
developed by van der Pol [1] to describe the spontaneous
regular heartbeats [2]. This oscillator is characterized by an
amplitude-dependent friction term: the oscillation is amplified
for a small amplitude and damped for a larger one. This
equation has been widely studied as a rare example of nonlinear
equations that can be solved analytically.

Self-propelled entities also result from a coupling with
their environment, from the motion of living animals to arti-
ficial self-propelled systems. The efficiency of the propulsive
mechanism depends on the permanent input of energy and
the specificity of the dissipative process. The origin of the
propulsion is diverse [3], from low Reynolds propulsion of
a flagellum [4] to the bird flight, from vertically vibrating
anisotropic disk [5] to motile colloids [6]. However, all these
situations can be described by a speed-dependent friction term,
as initially introduced by Lord Rayleigh [7].

A simple oil drop can be propelled as well. Set on a
vertically oscillating liquid bath, a millimetric drop does not
necessarily coalesce due to the presence of an air film between
it and the liquid surface [8]. The coupling with the environment
arises from the Faraday waves. They appear spontaneously at
the surface of a vibrated liquid bath by a parametric instability
mechanism [9], for an acceleration amplitude larger than the
Faraday threshold γF . Just below this threshold, the drop
impacts excite slowly damped Faraday waves [10]. As a result,
the drop bounces on a surface perturbed by the previously
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generated waves. A horizontal momentum can be transmitted
to the bouncing drop which propels it [8,11,12]. The resulting
entity, called a walker, is thus formed by a localized drop and
an extended accompanying wave packet. This association is a
rare example of a macroscopic dual object formed by a particle
and its associated wave. Walkers display various quantumlike
effects: diffraction through a slit [13], tunneling effect [14],
Zeeman-like splitting [15], Landau level analog [16], and sur-
prising behaviors in cavity [17,18]. Recently, the confinement
of walkers in a two-dimensional harmonic potential leads to a
set of discrete eigenstates for the possible trajectories and their
associated wave field [19]. In spite of the similarity between
walkers and some quantum systems [20,21], the dynamics of
a walker is far from the quantum world in many aspects. By
its periodic interaction with the liquid surface, a walker is
an open system, in which the interaction with the environment
plays a crucial role. In particular, the underlying hydrodynamic
equations governing the bouncing states [22–25] are not con-
servative, and the generation of the capillary waves dissipates
energy. This energy loss is compensated by the propulsion
from the standing Faraday waves at each impact. Therefore
the walking state is the result of an energy balance between
propulsion and dissipation as any self-propelled entity.

In this paper, we identify the consequences of the
self-propulsion mechanism on the horizontal walker
dynamics. We investigate its horizontal dynamics with a model
description of the walker propulsion based on a Rayleigh-type
friction law. We focus on a walker trapped by a harmonic
potential well. The study is also restricted to the short memory
regime, i.e., when the damping time τ of the Faraday waves
is much shorter than the period of rotation of the walker in the
harmonic well. Section II describes the experimental results in
the harmonic well, in the limit of short memory. Section II A
is devoted to the experimental setup. Section II B presents the
general features of the walker motion in this harmonic well.
In Sec. II C, the transients’ behaviors are investigated. Based
on this description, we construct in Sec. III a general structure
for the equation governing the propulsion of the walker at low
memory. The simplified equations of motion are derived in
Sec. III A. Then, the theoretical model is validated with the
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experimental data in Sec. III B. Section III C deals with an
energetic approach for analyzing the convergence towards the
attractors of the dynamics. Finally a linear stability analysis
close to these attractor points is presented in Sec. III D. As
a conclusion, we highlight some general consequences of the
self-propulsion process for the walker dynamics.

II. WALKER TRAPPED IN A HARMONIC WELL:
EXPERIMENTS

A. Experimental setup

As sketched in Fig. 1(a), a bath of silicon oil of viscosity
20 cP is set into an oscillatory motion vertically at a frequency
of 80 Hz and at an acceleration amplitude γm. A stationary
wave pattern called Faraday waves appear spontaneously at
the surface above an acceleration threshold γF = 4.5 ± 0.1g

where g denotes the acceleration of gravity. The appearance of
Faraday waves is triggered by a parametric instability at half
the forcing frequency so the wave pattern oscillates vertically
at a period TF = 0.025 s [9]. The usual dispersion relation
of surface waves prescribes the corresponding wavelength
λF = 4.75 mm.

A submillimetric drop is placed on the vibrating bath
tuned slightly below the Faraday threshold. At a typical bath
acceleration of 4g, the drop bounces at twice the period
of the bath, which corresponds to the Faraday period TF ,
so that the drop becomes a Faraday wave exciter. At each
impact, the drop generates a capillary front which leads to
the formation of a circular standing Faraday wave pattern
centered at the impact point. The complete mechanism of
the wave generation is detailed in [10,22]. The amplitude of
the emitted wave decreases in time as the bath acceleration
amplitude γm is chosen slightly below the instability threshold.
The dimensionless parameter M = τ/TF is a measure of the
persistence time. It compares the damping time τ of the
Faraday waves to the time TF between two successive drop
bounces. For a memory parameter larger than 1, the Faraday
wave emitted by each bounce is still surviving during at least
the next bounce. The liquid surface will be thus perturbed
by the waves generated during the M previous impacts. The
memory parameter M can be tuned through the difference
between the bath acceleration γm and the Faraday threshold
γF . Indeed, close to the Faraday threshold, the damping time
diverges as M ∝ γm/(γF − γm)−1 [10,22].

The propulsion mechanism is a direct consequence of this
memory effect. As soon as the decay time of Faraday waves is
larger than the Faraday period (M > 1), the drop hits a surface
perturbed by the previous impacts. Since the drop bounces on
an inclined surface, there is a transfer of horizontal momentum
to the drop. It has been shown that this situation leads to a
pitchfork bifurcation at M ≈ 3 [8,26]. The vertical bouncing
state becomes unstable and the drop starts moving, propelled
by the waves emitted in its near past.

In the present study, the acceleration amplitude is set at
about 90% of the Faraday threshold γF , corresponding to a
decay time M ≈ 7. For such an acceleration, bouncing drops
of diameter D = 600 ± 50 μm moves at a horizontal velocity
V0 averaged on the vertical period of motion between 5 and

FIG. 1. (Color online) Sketch of the experimental setup. (a) A
bath of silicon oil is set on a vertically oscillatory motion at a
frequency f0 = 80 Hz. A drop deposited on the surface starts
bouncing without coalescence (prevented by the air layer between
the liquid surface and the drop). A small amount of ferrofluid is
then encapsulated inside the drop so that it becomes sensitive to
a magnetic field. A current I0 through two coils in a Helmholtz
position generates a homogeneous magnetic field at the bath surface.
By adding an additional magnet at a distance d above the surface, an
attractive force can be generated on the drop. The resulting potential
can be modeled by a harmonic well: Ep = −κr2/2 (red arrow online).
(b) Details of the walker’s motion. The walker moves at a velocity
V0 due to the propulsion by damped Faraday waves. These waves
(indicated by large open circles in the figure) are generated by the
impact of the drop (indicated by small, solid circles) and are damped
with a characteristic time τ larger than the vertical period of motion.
Their decay time τ can be converted in a memory length L = τV0.
Here, we study the limit in which L is small compared to any curvature
radius of the trajectory.

15 mm/s. The exact velocity value depends on the drop size
and the bath acceleration and is fixed for a given drop [23].

For each drop, the decay time can be converted to a memory
length SM = MV0TF . This length SM , sketched in Fig. 1(b),
corresponds to the typical distance along which the Faraday
wave sources are still active behind the drop. In this article, we
consider the low memory regime, i.e., when the memory length
SM is smaller than the typical curvature radius of any curved
trajectory followed by the walker. One important consequence
is that the wave sources contributing to the propulsion can
be considered as mainly aligned on a straight line behind the
drop. The force exerted by each wave on the drop is thus mainly
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tangential to the trajectory. Consequently the global resulting
force is mainly tangential to the trajectory.

In the absence of other external force, a drop bounces along
a straight line until it reaches the boundary of the container.
A more interesting experimental case is obtained when the
walker is confined. This situation is obtained by trapping the
walker in a harmonic potential well as sketched in Fig. 1(a). For
this purpose, the millimetric drop is loaded with a small amount
of ferrofluid and is exposed to a magnetic field. Two coils in a
Helmholtz configuration provide a uniform magnetic field in
the region of interest and induces a magnetic moment mB to the
drop. An additional nonuniform magnetic field is generated by
a cylindrical magnet with a diameter of 15 mm and a height of
5 mm placed above the liquid bath. The interaction between the
external magnetic field and the drop magnetic dipole generates
an external force on the magnetized drop. When the vertical
distance d between the magnet and the liquid surface is larger
than the magnet diameter, the potential well can be considered
as harmonic [19]. For a drop of mass m, the dynamics is then
reduced to the motion of a bouncing particle propelled by a
wave with an external forcing Fext = −κr. κ is a spring con-
stant which can be tuned by changing the distance d. The vector
r denotes the distance from the drop center to the symmetry
axis of the magnet. Additional experimental details have been
given in the Supplemental Material of a previous work [19].

B. Circular motion

When the walker is released from the edge of the cell, the
magnetic force pulls it towards the center of the harmonic
potential. As the drop is self-propelled, it will never stop at
the center but orbits around it. This trapping mechanism is
represented on a chronophotograph as seen from above [see
Fig. 2(a)]. The position is sampled every 0.05 s, corresponding
to the time interval of two vertical periods TF . In a few
oscillations, the trajectory converges to a circular motion
in which the walker orbits around the center at its free
velocity V0. Such a trajectory can also be computed from
the numerical model developed by Fort [10,16] to mimic the
walker dynamics; see Fig. 2(b). The same quantitative behavior
is recovered with this numerical model in Fig. 2(b) (solid black
line). Finally, balancing the centripetal acceleration −mV 2

0 /R

with the spring force −κR, scales the final orbit radius
R/λF as � = (λF ω/V0)−1 where ω = √

κ/m corresponds
to the natural frequency of the magnetic potential well [see
Fig. 2(c)]. The coefficient of proportionality a = (R/λF )/� �
1.2 ± 0.05 differs slightly from 1 as investigated by Oza et al.
[27] and interpreted as a contribution of the surface waves in
the radial mechanical balance.

For a Hamiltonian system, one would expect a more diverse
set of trajectories in a two dimensional harmonic well. But
among all possible solutions, only the circular motion enables
the particle to move at a constant speed. The selection of
particular trajectories is a consequence of the dissipative nature
of the walker dynamics.

C. Convergence to circular attractors

In dissipative systems, any volume of the phase space
can contract in time and additional measurements have been

FIG. 2. (Color online) (a) Chronophotography of the transient
motion of the walker being trapped by the magnetic field. The time
increment is fixed at 0.05 s which corresponds to one point every two
bounces. After a few oscillations, the walker trajectory converges to
a circular orbit. (b) Transient regimes obtained with Fort’s model
of the walker dynamics (solid black line) and numerical solving of
the Rayleigh equation with � = 25.5 [solid red line (online), light
gray (printed)]. The quantitative agreement between experiments
and numerical simulations shows that the walker propulsion can be
described through a friction term depending on the velocity. (c) Orbit
radius R/λF as a function of the dimensionless frequency λF ω/V ,
where ω is the characteristic frequency of the drop in the harmonic
well. Experiments for two drops of velocity V = 10 mm/s and
8 mm/s (◦). The experimental data (red dots online) are compared
to the simple scaling R/λF = V/ωλF (solid black line downer). The
agreement is good, without use of any fit parameter. The blue (upper)
line (blue online, gray printed) indicates the result of Fort’s numerical
model.

carried out to study the transient regime. One way to proceed
is to study the transition between circular motions of different
radius by abruptly changing the external force. A walker is
then prepared on a circular orbit and the current inside the coils
is switched between two values I1 and I2. The consequence
is an abrupt change of the characteristic frequency value
from ω1 to ω2. A typical experimental signal is shown in
Fig. 3(a). We observe a transition between two different
circular motions of radii R1 and R2 corresponding to the two
values of the spring constant. After each switch, the walker
follows a reproducible transient regime and converges to the
new circular attractor. This transition is repeated ten times
with a duration of 10 s between each switch, larger than
the observed transient duration. For small orbits, the radius
decreases slowly to the final state [see Fig. 3(b)]. For larger
orbits, the radius increases quickly, crosses the final value,
and follows damped oscillations around the final state [see
Fig. 3(c)]. The transient behavior depends only on the final
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FIG. 3. (Color online) Experimental characterization of the tran-
sient behavior. The magnetic force changes abruptly every ten
seconds, giving rise to repeated transients to the asymptotic radius.
For each time interval, the experimental radius (oscillating black
solid line) and the expected asymptotic radius (solid red line online)
are shown. (b) Superposition of ten experimental transients for a final
imposed radius of R1 = 0.4 mm (black thin solid lines) corresponding
to an imposed ω = ω1. The red thick solid line indicates the average
of the experimental transients. The radius converges by oscillating to
the attractor without overshoot. (c) Superposition of ten experimental
transients in the case of a final imposed radius of R2 = 4.8 mm (thin
black solid lines) corresponding to an imposed ω = ω2. The red thick
solid line indicates the average of the experimental transients. The
radius converges to the attractor through damped oscillations.

state which can be reached either from a smaller or a larger
orbit. We thus find for the evolution of the instantaneous radius
R(t) typical transient behavior of a second-order oscillator,
in which the quality factor strongly depends on the orbiting
period TR = 2π/ω of the final orbit. The qualitative change
of the transient behavior shows that at least two time scales
control the transition. Depending on their ratio, the transient
will evolve from oscillations without overshoot (small orbits)
to damped oscillations with overshoot (large orbits). The first
time scale 1/ω is imposed by the external force, and should be
compared to another one. Where does this second time scale
come from? We address this question in the next paragraph
through a theoretical approach.

III. A SIMPLE MODEL OF SELF-PROPELLED DROPS:
THE RAYLEIGH EQUATION

A. Self-propulsion model

The second time scale relies on the dissipative nature of
the motion. In the present case, the energy exchange comes
from the coupling of the drop to the bath in two ways. First,
the drop loses energy at impact by viscous dissipation but
also because a new propagating capillary wave is generated.
Second, when the drop hits a nonhorizontal part of a wave,
its horizontal momentum is changed. Once the walker moves
at its free velocity, i.e., in a permanent regime, these two
terms balance one another. A phenomenological description
of the propulsive force has been introduced by Boudaoud [8],

Fort et al. [16], and extended by Oza et al. [26]. Experiments
show that the fluctuations of speed are typically smaller than
20%. This speed constraint enables us to introduce a simplified
expression to model the net accelerating force Fp. We derive
it through symmetry arguments and show a posteriori that
such an expression fits the experimental results. As we are
in the short memory regime, the force Fp is mainly tangential
to the trajectory, i.e., Fp = FpV/‖V‖. Fp must only depend
on the amplitude of the speed V and not on its direction. An
exchange V → −V should only change the sign of Fp.
Consequently Fp must be an odd function in V , vanishing
for a velocity equal to the equilibrium one, V0. The simplest
expression satisfying these requirements is

Fp = −γ0

[(
V

V0

)2

− 1

]
V + O(V 5), (1)

with γ0 a constant homogeneous to a friction coefficient. For
V < V0 the force is propulsive whereas it acts as a friction
term for V > V0. This force vanishes for V = V0. Such a
term is called a Rayleigh-type friction [7] and is commonly
used to model the motion of active particles. It is the lowest
order expansion of a force which depends on the velocity and
vanishes for an equilibrium velocity.

Alternatively, Eq. (1) can be derived by a direct calculation
detailed in the Appendix. This form may also be derived from
the integrodifferential formulation developed by Oza et al.
[26]. We state that Fp is mainly tangential, but the corrective
radial term could also be added. Bush et al. [28] shows
with a higher order expansion from an integrodifferential
form that this extra term is responsible for the prefactor a

discussed in Sec. II B. Note that the various expressions of
this velocity-dependent term introduced in previous studies
[22,23] are all equivalent to the Rayleigh friction provided
that the fluctuations in speed remain small, i.e., less than 20%
of the free velocity V0. The Rayleigh-type friction retains the
minimal complexity required to describe the walker propulsion
theoretically. However, our expression is not intended to
describe the consequence of an abrupt change of velocity. Such
cases have been encountered for very specific situations, like
highly disordered trajectories [18], where velocity fluctuations
become larger than 50%. In the present article, we do
not observe significant discrepancies between our simplified
model and the experimental data.

The horizontal dynamics can then be rationalized by a
continuous equation as the bouncing period TF = 1/40s is
much smaller than the period of rotation TR > 1 s [26]. Using
the Rayleigh-type friction law and the continuous limit, the
simplified equation of motion for a walker in a harmonic
potential becomes

dV
dt

= −ω2r − 1

TV

V
[(

V
V0

)2

− 1

]
(2)

with TV = m/γ0 a characteristic time. The one-dimensional
case is equivalent to a van der Pol oscillator for the velocity,
signature of the Hamiltonian structure breaking. In spite
of its apparent simplicity, only a few articles deal with
the two-dimensional case. Erdmann et al. [29] studied this
equation in two dimensions including noises, indicating that
circular motions are solutions. However, the two dimensional
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Rayleigh equation has not been solved analytically. This can
be attributed to the friction term, which involves the norm of
the speed. This term provides a coupling between the motions
in the two directions of space.

B. Validation of the theory

One particularity of this equation is the presence of two
different time scales. The external force provides the period of
oscillation while the Rayleigh type friction introduces another
time scale TV , the typical time needed for a walker to recover
its free velocity. It should not depend on the external force
and is thus a physical parameter for a given bouncing drop at
a given memory M . Even if symmetry arguments enable us
to obtain the simplified equation (2), they do not provide the
value of this characteristic time TV . It will be determined by
comparing the model with the experimental data.

At this step, we introduce the dimensionless position r →
rω/V0 = (x,y) and speed v = V/V0 while the time is scaled
by the natural frequency t → ωt . The equation of motion in
Cartesian coordinates yields

ẍ = −x + �ẋ[1 − (ẋ2 + ẏ2)]
(3)

ÿ = −y + �ẏ[1 − (ẋ2 + ẏ2)];

here the upper dots indicate a derivative with respect to the
dimensionless time. � = 1/(ωTV ) is the natural dimensionless
parameter comparing the two relevant time scales.

As the full time-dependent resolution is not of particular
importance for the current study, a numerical implementation
of this system of equations has been performed. The solution of
the Rayleigh equation can be compared to both experiments
and simulations from Fort’s model. The transients for � =
25.5 are compared in Fig. 2(b) and shows a good agreement.
The theoretical final radius can also be compared with the
experimental and numerical results [see Fig. 2(c)] and are also
in good agreement.

The convergence to the final radius, oscillating or not [see
Figs. 3(c) and 3(b)] can be approximated by an exponential
law and we define a converging time Tc corresponding to this
exponential decay time. Thus, this converging time can be
evaluated directly from the time evolution of the radius both
for experimental and numerical data. Figure 4 indicates by
red circles the experimental evolution of the inverse of the
converging time Tc with the orbital frequency ω = V0/R.
We also indicate by dashed black lines the prediction of
Eq. (3) as we increase ω = 1/(�TV ), i.e., by decreasing �.
TV can be seen as a free parameter obtained from the best
matching between the experimental data and the theory. It
enables us to compare the experimental data of convergence
with the theoretical predictions and gives TV = 0.14 ± 0.01
s. The existence of an optimal value of convergence for
1/ωm = 0.25 s rad−1 or equivalently �m = 1.75 can be seen
in Fig. 4. For ω 	 ωm (or � 
 �m), the nonlinear terms
become small and the dissipation averaged on one period is
limited: the time of convergence will naturally increase. In the
opposite case ω 
 ωm (or � 	 �m), the two characteristic
time scales differ strongly so that the nonlinear term is not
efficient to reach the equilibrium speed at v = 1. In both cases,
the consequence is an increase of the convergence time. We
note that the convergence time depends slightly on the initial

0 0.2 0.4 0.6 0.8
0
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0.4

0.6
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1
T

R/V0R/V0 = 1/ω
1/ωm
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FIG. 4. (Color online) Dimensionless characteristic rate TR/Tc

of convergence to the circular motion (TR is the orbiting period) as
a function of R/V0: experimental data (red circle online), numerical
solving of the Rayleigh oscillator (black dashed line). A larger value
means a faster convergence. Numerically, we change ω = 1/(�TV )
by decreasing � with TV = 0.14 ± 0.01 s. A minimum in the
convergence time is observed both in the experiment and in the theory.

conditions as soon as the initial motion is not radial. In this
purely radial case, the drop starts oscillating along a straight
line passing close to the center. But the nonlinear coupling
ẋ2 + ẏ2 makes this regime unstable to transverse perturbations
and the dynamics converges finally to a circular motion.

We have investigated the behavior of the walker in a short
memory limit and have shown that the dynamics is well
approximated by a two-dimensional Rayleigh oscillator. We
have demonstrated that there are two regimes of convergence
depending on the relative magnitude of the two time scales of
the dynamics. By comparing experimental results and model
calculations, we have been able to obtain the value of the
second characteristic time TV . We now turn to the question:
which role does each mechanism play to stabilize onto the
circular attractors?

C. Nonlinear stability

As shown in the previous part, the transient regime of a
walker can present either oscillations of radial position or
oscillations of speed. The time of convergence is minimal
when their relative amplitude of oscillations is comparable. �m

can be seen as the value of � which optimizes the exchange
between potential and kinetic energy. For all other values,
the mismatch of the two time scales increases the time of
convergence.

The oscillations of both position and velocity with variable
amplitudes suggest studying the stability through an energy
approach. For this purpose we denote the dimensionless
mechanical energy E = v2/2 + r2/2. It evolves in time since
the system is not conservative. Equations (3) yields

Ė = �v2(1 − v2). (4)

The energy evolves as a function of the speed only, and its
three fixed points are v = 0 and v = ±1. Only the solution v =
v0 = ±1 and the related condition Ė = d(v2

0/2 + r2/2)/dt =
dr2/dt = 0 defines an attractive limit cycle as sketched in
Fig. 5(a). This equilibrium corresponds to an equipartition of
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FIG. 5. (Color online) Stability of the circular attractor.
(a) Schematics to illustrate the stability of the limit cycle
(r = r0 = 1,v = v0 = ±1). The evolution of Ė with the square of
the dimensionless speed v2 (in black, right y axis). The evolution
of the energy E with v2 for a given dimensionless radius r = 1
(in blue online, light gray printed, left y axis). Two fixed points
Ė = 0 are identified: v = 0 unstable [dĖ/d(v2) > 0] and v = ±1
stable [dĖ/d(v2) < 0]. At the equilibrium (r = 1,v = 1), there is
an equipartition of energy between the kinetic energy E

eq
k and the

potential energy Eeq
p . (b) Time evolution of the total energy as a

function of v2. At large time, the dynamics reaches the fixed point
(E = 1,v = ±1), i.e., (r = 1,v = ±1). The case of large � is in the
solid back line (� = 70) while the blue dashed line indicates the
case of small � = 0.1. (c) Trajectories corresponding to the case in
part (b).

the total energy into kinetic E
eq
k and potential E

eq
p terms. The

equipartition of the energy is not necessarily a property of a
non-Hamiltonian system. In the plane (E,v2), two different
transient regimes are represented in Fig. 5(b) for two different
values of � and the related paths in Fig. 5(c). The case
�/�m 	 1 (solid black line) presents limited oscillations in
speed while the case �/�m 
 1 corresponds to oscillations in
speed and position (dashed blue line).

D. Linear response

The energetic approach proves the existence of only two
stable limit cycles v = ±1, but it does not provide any
information about the time evolution. The latter can be

analyzed in principle by seeking the response to a perturbation
in the neighborhood of the fixed points (x0,y0) = ( cos(t + ψ),
± sin(t + ψ)). As the amplitude of the nonlinear term vanishes
as ∼ (v − v0)/v0 close to the stable limit cycle, its influence
can be probed by a perturbative approach. Introducing a
perturbation as x = cos t + εx1 and y = sin t + εy1 leads to

ẍ1 + �ẋ1 + x1 = �(ẏ1 sin 2t + ẋ1 cos 2t)
(5)

ÿ1 + �ẏ1 + y1 = �(ẋ1 sin 2t − ẏ1 cos 2t).

The left-hand side corresponds to a damped harmonic oscilla-
tor but the meaning of the parameter � = 1/(ωTV ) differs from
a simple damping ratio. Indeed, Fig. 3(b) indicates overdamped
relaxation with �1 = 1/(ω1TV ) < �m while Fig. 3(c) shows
underdamped oscillatory motions with �2 = 1/(ω2TV ) > �m.
The right hand side is the first order expansion of the
nonlinear coupling of the Rayleigh equation and introduces
time-dependent coefficients with a amplitude proportional to
the parameter �. This term provides both a periodical forcing
on the velocity and a coupling with the velocity along the
other directions of space. The solution Z1 = (x1,ẋ1,y1,ẏ1) can
be represented in a four-dimensional phase space with a time
evolution Ż1 = AZ1 prescribed by A

A(t) =

⎡
⎢⎣

0 1 0 0
−1 −�(1 − cos 2t) 0 � sin 2t

0 0 0 1
0 � sin 2t −1 −�(1 + cos 2t)

⎤
⎥⎦.

(6)

The adequate theoretical framework was developed by Floquet
[30] and indicates that the solution must be of the form

Z1 = eμtg, (7)

where g is a function of time and μ the Floquet coefficients.
The π periodicity of the elements of A implies that g satisfies
the condition g(t + π ) = g(t) and that it is also expandable in
Fourier series. Here we are only interested in the values of the
Floquet coefficients μ and not the full solution that would be
given by the Fourier decomposition of g. A way to find the
asymptotic (� = 25.5 	 �m) values of μ, corresponding to
the experimental situation, is to note that the coupling term
in the right hand side of Eq. (5) induces a shift of ±2 in the
frequency of oscillation of x1 and y1. An asymptotic solution
can be sought under the form

x1 = −ieμt (1 − ae2it + · · · )
(8)

y1 = eμt (1 + ae2it + · · · ).

Once inserted in Eq. (5), x1 and y1 are solutions only for four
particular values of μ. The corresponding frequencies are

2πfs = 1 + 2�i

2πf0 = 1
(9)

2πf +
1 = 1 +

√
2

2πf −
1 = 1 −

√
2.

The Floquet coefficients can be found numerically [31] by first
solving U̇ = AU , with U (t = 0) the 4 × 4 identity matrix,
and then finding the eigenvalue of U (π ), {exp μkπ}k=1,...,4.
As observed in Figs. 6(c) and 6(d), fs is found to be always

022913-6



NON-HAMILTONIAN FEATURES OF A CLASSICAL . . . PHYSICAL REVIEW E 90, 022913 (2014)

FIG. 6. (Color online) (a) Spectrum of the position x(t). The fre-
quencies are normalized by the fundamental frequency f0. Amplitude
spectrum |x̂(f )| of the paths obtained, from experiments [blue (upper)
solid line online] from Fort’s model (black solid lines) and from
the numerical resolution of the Rayleigh oscillator (red solid line
online, gray printed, overlapping the black curve) with � = 25.5.
In green (online, for the printed version downer line at f/f0 = 1),
we plot the spectrum of the transient of Eq. (5). In vertical dashed
lines are represented the position of the predicted eigenfrequency
f ±

1 = √
2 ± 1. (b) The phase spectrum � of x(t) of a transient

ruled by the two dimensional Rayleigh equation (in grey), and in the
corresponding smoothed curve (in black). We indicate by the vertical
dashed line the higher order eigenfrequencies f +

n = n + √
n + 1 of

the Rayleigh oscillator. (c),(d) Real and imaginary parts of the Floquet
coefficients ordered according to their asymptotic value � 	 1. Black
circles μs ∼ −2� + i. Green (online, black printed version) points,
μ0 = i. Blue (light gray, printed version) circles and blue (light gray,
printed version) points, μ =∼ ±(

√
2 − 1)i − O(1/�) giving way to

f ±
1 [31].

stable as its related Floquet coefficient has a negative real
part. The Floquet coefficients of asymptotic values μ ∼
±i(

√
2 − 1) giving way to the frequency f ±

1 , are stable and are
asymptotically (� 	 �m) neutrally stable [see Figs. 6(c) and
6(d)]. The fourth Floquet coefficient, signature of the rotational
invariance of the steady state [31], is a pure imaginary
number, and corresponds to a neutrally stable solution. For

this particular case, the linear approach reaches its limit
for analyzing the stability of the Rayleigh oscillator. Let us
mention that we truncated the initial equation of motion with
symmetry arguments; a linear perturbative approach of the
complete dynamical equation could recover a linear stability
at short memory arising from terms of higher symmetry. The
values of these particular frequencies should also appear in
any transient to the circular motion since they represent a
signature of the nonlinear terms when the dynamics spreads
from the limit cycle. This behavior can be observed in the
transient regime. Figure 6(a) shows the spectrum density
of x(t) during a transient as a function of the normalized
frequency f/f0 with f0 the fundamental frequency. They have
been computed from an experimental transient, the numerical
model, the Rayleigh equation and the linearized system of
equations. The four predicted frequencies, Re(fs), f0, f −

1 ,
f +

1 can be well identified. For both the numerical model and
the Rayleigh equation resolution, others frequencies appear
for f +

2 = 3.73 ± 0.02 and f +
3 = 5 ± 0.02. These higher order

frequencies are of small amplitude, almost undetectable look-
ing at the amplitude spectrum, but have a well defined signature
in the phase spectrum � [see Fig. 6(b)]. In the perturbative
development of the Rayleigh equation, i.e., Eq. (5), these
frequencies do not arise. They correspond to higher order
terms, which cannot be revealed by the first order expansion.
A development at higher orders of x = x0 + εx1 + ε2x2 . . .

and y = y0 + εy1 + ε2y2 . . . would give the whole set of
eigenfrequency

f +
n = n + √

n + 1. (10)

IV. CONCLUSION

For the short memory regime, we show that a walker placed
in a two-dimensional harmonic potential well converges to
a circular motion. The mechanism of convergence involves
a dissipation with two features. First, the kinetic energy
converges to the equilibrium kinetic energy. Second, the
oscillations of the velocity close to its mean value relax
with another time scale. The first effect limits the time of
convergence for large orbits, whereas the second one is
dominant for small orbits. The time corresponding to the
transition between these two regimes is typically the time
needed to travel a Faraday wavelength. The fluctuations over a
distance smaller than the Faraday wavelength will then be
guided by this relaxation of speed oscillations. These two
transient regimes can be described by a two dimensional
Rayleigh oscillator. This proves that the complex underlying
hydrodynamic description is here reduced to a standard
nonlinear system. From the theoretical point of view, we
highlight the stability of the circular attractor by an energetic
argument where the linear stability analysis reaches its limit.
Only the nonlinear terms are responsible for this stability.
Nevertheless the linear expansion predicts the correct set of
eigenfrequencies {Re(fs),f0,f

−
1 ,f +

1 }, potentially arising in
any perturbation of the walker trajectory.

This approach isolates the effect of the propulsion of the
walker dynamics from the other contributions, particularly
a complex feedback from the memory effects. In the case
of a harmonic well, we have thus studied the low memory
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dynamics near V = V0. For the long memory regime, the
trajectories would be much more complex. However, the
fluctuations of the norm of the speed are limited so that
the symmetry arguments remain relevant in the tangential
direction. Consequently the dominant terms of the tangential
component of the propulsive force must be of the form of
Eq. (1), even when the memory increases. In this sense, the
Rayleigh equation is a key ingredient for understanding any
fluctuations in velocity as observed in several experiments
[18,19].
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APPENDIX: PROPULSION IN THE SHORT
MEMORY REGIME

The propulsion force can be alternatively derived from
mechanical arguments. In the short memory regime, only
the very last rebounds contribute significantly to the surface
wave field h. For the sake of simplicity, we only retain the
contribution of the last bounce. The surface wave field h can

be expressed as

h � h0J0[kF ‖r(t) − r(t − TF )‖] (A1)

with h0 the amplitude of the field [10,22], kF = 2π/λF the
Faraday wave vector, and Jn the Bessel function of order n.
The associated wave force is related to the local slope of the
field, Fwave = −C∇h, with C a coupling constant calculated
in [22]. The surface force can be expressed as

Fwave � Ch0J1(kF V TF )
V

‖V‖ (A2)

and be expanded as

Fwave � Ch0

2

(
kF V TF − (kF V TF )3

8

)
V

‖V‖ (A3)

and rewritten

Fwave � Ch0kF TF

2
V

(
1 − (kF V TF )2

8

)
. (A4)

The total propulsion force Fp results from the loss of energy
at the surface and the propulsion from the wave and can be
expressed as

Fp = −μ0V + Fwave, (A5)

μ0 being the apparent friction calculated in [22]. This
expression takes the form

Fp = γ0V
(

1 − V 2

V 2
0

)
(A6)

with γ0 = kF TF Ch0/2 − μ0 and V0 =
[16γ0/(Ch0(kF TF )3)]1/2. Beyond the details of the
coefficients, the form of this expression is the same as
Eq. (1). This mathematical expression is relevant if we only
consider one last rebound and remains a good approximation
in the low memory regime.
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