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Abstract

We study the regularity properties for solutions of a class of Schrödinger

equations (∆ + V )u = 0 on a stratified space M endowed with an iterated

edge metric. The focus is on obtaining optimal Hölder regularity of these

solutions assuming fairly minimal conditions on the underlying metric and

potential.

1 Introduction

Let (M,g) be a smoothly stratified space with an iterated edge metric, and sup-

pose that V ∈ Lp(M ; dvolg). We prove in this paper that any W 1,2 solution of

the Schrödinger equation (∆g + V )u = 0 satisfies a Hölder condition of order

µ, where µ is determined by p and the geometry of (M,g). When g and V are

polyhomogeneous, i.e., admit asymptotic expansions around each singular stratum

in powers of the distance function to that stratum (this is the appropriate notion

of smoothness in the category of stratified spaces), then it is known that the solu-

tion u is also polyhomogeneous. This is proved using the machinery of geometric

microlocal analysis, see [1]. The exponents which appear in the expansions for u
are determined by global spectral data on the links of the corresponding strata, and
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are typically not integers. The appearance of a term rµ with µ ∈ (0, 1) in such an

expansion shows that from a certain perspective, Hölder regularity is the best that

could be expected. Our goal here is to show that such Hölder regularity results can

be obtained more directly and with more classical methods, also allowing metrics

which are themselves only of limited regularity. This is quite useful in many sit-

uations, for example certain nonlinear problems in geometry, where one may not

know the optimal regularity of the metric g beforehand.

We begin by recalling briefly the definition of smoothly stratified spaces; de-

tails are deferred until §2.1 below. A topological space M is called smoothly strat-

ified if it decomposes into the union of open manifolds Yk of varying dimensions

(dimYk = k, k = 0, . . . , n) which fit together in a precise manner. We assume that

the top-dimensional stratum Ω := Yn is open and dense in M , and that Yn−1 = ∅,

i.e., M has no codimension 1 boundary. The union of strata Yk, k < n, is called

the singular set Σ, sometimes also denoted M sing, while Ω is called the regular

set M reg. The crucial property is that each stratum has a tubular neighborhood Uk
which is identified with a bundle of truncated cones over Yk, with fibre CR(Zk),
where the link Zk of each conic fibre is a stratified space of ‘lower complexity’ and

the radial variable of the cone lies in [0, R). To elaborate on this local identifica-

tion, for each x ∈ Yk, there exists a radius δx > 0, a neighborhood Wx of x in M ,

and a homeomorphism

ϕx : B
k(δx)× Cδx(Zk) → Wx, (1.1)

which restricts to a diffeomorphism between (Bk(δx)×Cδx(Zreg))\(Bk(δx)×{0})
and Wx ∩M reg.

An iterated edge metric g on M is a smooth (or just Hölder continuous) Rie-

mannian metric on M reg which is a perturbation of the model product metric

g0 = geucl + dr2 + r2kZ near each stratum, where kZ is an iterated edge met-

ric on the stratified space Z . More specifically, for some γ > 0, g is locally Hölder

of order γ on M reg with respect to g0 and satisfies

∣∣ϕ∗g − g0
∣∣
g0

≤ Crγ , on B
k(r)× Cr(Z

reg) (1.2)

for all r < δx.

The simplest nontrivial stratified space is one with simple edges. Such a space

has only one nontrivial stratum Yk, and the link Zk of the corresponding cone-

bundle is a smooth compact manifold of dimension n− k − 1. The best known of

these are the spaces with isolated conic singularities, i.e., where k = 0 here.

Let ∆ be the Laplace operator on M reg associated to a given iterated edge met-

ric g. There is an unbounded self-adjoint operator −∆ on L2(M,dvolg) obtained

by the Friedrichs extension method and associated to the semi-bounded quadratic
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form C1
0(M

reg) ∋ u 7→
∫
M |du|2g dvolg. When g is only Hölder continuous, it

is necessary to regard −∆ as the abstract self-adjoint operator associated to this

quadratic form, which makes good sense, even though the coefficients of this dif-

ferential operator are distributional. We proceed with this understanding, but rarely

mention it again. It is proved in [1, 2] that in this setting, the Riemannian volume

form dvolg is a doubling measure, and there are Poincaré and Sobolev inequalities.

Consequently, adapting Moser’s classical method, we showed that if V ∈ Lp for

some p > n/2, then a solution u of the equation (∆ + V )u = 0 lies in a Hölder

space of order µ for some µ ∈ (0, 1), see [1, Theorem 4.8]. Our goal in this paper

is to understand the optimal Hölder exponent µ; as we shall show that this optimal

exponent has a geometric interpretation.

To state our results, first recall that if (W,h) is a compact stratified space with

iterated edge metric, and dimW = ℓ, then it is shown in [1] that −∆h has discrete

spectrum. Let λ1(W ) denote its first nonzero eigenvalue, and also define

ν1(W ) =





1 if λ1(W ) ≥ ℓ,

the unique value in (0, 1) such that

λ1(W ) = ν1(W ) (ℓ− 1 + ν1(W )) if λ1(W ) < ℓ.

(1.3)

Theorem A. Let (Mn, g) be a smoothly stratified space with an iterated edge

metric. For each x ∈M , denote by Zx the link of the cone bundle over the stratum

containing x, as in (1.1), and define

ν(M) = inf
x∈M

ν1(Zx). (1.4)

Now let u ∈W 1,2 be a solution to ∆u+ V u = 0, where V ∈ Lp.

i) If V ∈ L∞ and ν = 1, then there is a constant C > 0 such that for all

x, y ∈M with dg(x, y) ≤ 1/2,

|u(x)− u(y)| ≤ C
√

| log dg(x, y)| dg(x, y).

ii) If V ∈ L∞ and ν ∈ (0, 1), then u ∈ C0,ν(M).

iii) if V ∈ Lp for some p ∈ (n/2,∞) and ν ∈ (0, 1], then u ∈ C0,µ(M), where

µ = min

{
ν, 1− n

2p

}
.

As explained above, the novelty of this result is that it requires very little reg-

ularity on the metric g. It is known, see [1, section 3], that when g and V are
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polyhomogeneous, and the operator ∆ has constant indicial roots in some range,

then the solution u has a partial polyhomogeneous expansion. This stronger result

requires quite a lot of machinery to prove, whereas the Theorem above is obtained

using more general arguments using only (1.2).

In the course of the proof we shall use a description of neighborhoods in M
slightly different than the product decomposition (1.1). Namely, it follows easily

from (1.1) and (1.2) that at each point x ∈M there is a unique tangent cone; this is

the Gromov-Hausdorff limit of the family of pointed metric spaces (M,λdistg, x)
as λ ր ∞. This limit is unique and is an exact metric cone (C(Sx), dt

2 + t2hx)
over a compact smoothly stratified space Sx, called the tangent sphere at x, where

hx is an iterated edge metric on Sx. Comparing with (1.1), we see that

C(Sx) = R
k × C(Zx).

Thus Sx is the k-fold spherical suspension of Zx, i.e., the product [0, π/2]×S
k−1×

Zx with metric

hx = dψ2 + sin2 ψ gSk−1 + cos2 ψ kZx . (1.5)

Note that Sx is “as complicated” of a stratified space as M itself. For example, if

M has a simple edge of dimension k, then Sx has a simple edge of dimension k−1
(in particular, if M has an isolate conic singularity at x, then Sx = Zx is a smooth

compact manifold).

The reason we bring this up now is that much of the analysis below is done on

cones C(S), either with respect to an exact conic metric g0 or one which is a small

perturbation of it. The result of this analysis is that a solution u of (∆+V )u = 0 on

C(S) lies in the Hölder class of order µwhere µ is determined the Hölder exponent

p for V and the constant ν(S) from (1.4). To obtain the result above, we must then

show that

if C(S) = R
k ×C(Z), then ν(S) = ν(Z). (1.6)

This is proved in §3.6 below.

The main step in proving Theorem A is to show that under the hypothesis of

case iii), u satisfies the Morrey condition

1

volB(x, r)

∫

B(x,r)
|du|2 ≤ Cr2−2µ

for all x ∈ M and r ∈ (0, 1). It is well known that for Dirichlet spaces which

are measure doubling and have a Poincaré inequality, such an estimate yields the

Hölder continuity of u. We recall the proof of this in the appendix.

One difficulty in the analysis is that the comparison between the geometry of

M near a point x and of the tangent cone C(Sx) can only be made below a certain
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length scale δx. In the next section, we describe some facts from the geometry of

balls which allow us to circumvent this difficulty. In §3, we develop some familiar

analytical tools on stratified spaces, namely the Green formula and the Dirichlet-

to-Neumann operator, which are used in the later analysis. This is followed by a

monotonicity formula for the quadratic form associated to ∆ + V . Theorem A is

proved in §5.

2 On the geometry of stratified space

We recall some further aspects of the definition of smoothly stratified spaces, all

taken from [3, §2], and then state some facts about the structure of balls and tangent

cones for these spaces. We refer to [3] for further details.

2.1 Stratifications and iterated edge metrics

Let M be a smoothly stratified space. As described in the introduction, this means

that M = ⊔j≤nYj , where Yj is a (typically open) smooth manifold of dimension

j. We assume that M is compact and Yn−1 = ∅. Any x ∈ Yj has a neighborhood

homeomorphic to B
j(η)× Cη(Z), where Z is a stratified space of dimension n−

j − 1, Cη(Z) is the metric cone over Z truncated at radius η and B
j(η) ⊂ R

j is a

Euclidean ball of radius η.

The depth of a stratum Y is the largest integer k such that there is a chain of

strata Yj1 , . . . , Yjk with Yji−1 ⊂ Yji and Yj1 = Y . A stratum of maximal depth is

necessarily a closed manifold.

The stratified space M can be covered by a finite number of open set Wα, each

homeomorphic to Uα ×Cδα(Zα), where, for some γ ∈ (0, 1],

• Uα is an open set in R
dα endowed with a smooth Riemannian metric hα;

• Zα is a compact stratified space of dimension n − dα − 1 endowed with a

uniform γ-Hölder family of iterated edge metric

{kα(y), y ∈ Uα } ;

• Cδα(Zα) is the cone over Zα truncated at radius δα; this cone is also a strat-

ified space.

• |ϕ∗g − (hα + dr2 + r2kα)| ≤ Crγ.

5



We assume that the family of quadratic forms



hα(y) =

∑

i,j

hα,i,j(y)dyidyj , y ∈ Uα





is uniformly γ-Hölder and precompact, so in particular there are positive constants

c, C such that for all y, y0 ∈ Uα,

c hα(y0) ≤ hα(y) ≤ C hα(y0).

2.2 The geometry of geodesic balls

We now describe the geometry of balls B(m, τ) in (M,g). The main conclusion is

that these balls look like truncated cones Cτ (S) with a uniformly controlled error.

Choose η > 0 sufficiently small so that any geodesic ball of radius η lies in one

of the open sets Wα. Let δ ∈ (0, 1) be a parameter whose value will be specified

below. We study geodesics ballsB(m, τ), where τ ∈ (0, δη/4). For each such ball,

choose an open set Wα which contains it, and write ϕα : Wα → Uα × Cδα(Zα)
for the homeomorphism Wα → Uα × Cδα(Zα). Thus m ∈ Wα has coordinates

ϕα(m) = (y, ρ, z).

Case 1: ρ ≤ τ/δ: Setting m = ϕ−1
α (y, 0, z), then by the triangle inequality

B(m, 2τ) ⊂ B (m, (1 + 1/δ) 2τ) .

We wish to compare the metric g on this latter ball to the model product

metric

g0 = hα(y) + dr2 + r2kα(y) .

Clearly, if ε < η/2, then

|g − g0| ≤ Cεγ on B (m, ε) .

There is a constant κ such that the B0(κr), which is the same as the cone

Cκr(Sm) satisfies

B(m, τ) ⊂ B0(κτ) ⊂ B(m, 2κτ).

Furthermore, on B(m, τ), we have

|g − g0| ≤ Cτγ .

6



Case 2: ρ ≥ τ/δ: On B(m, 2τ) we have

g = hα(y) + dr2 + ρ2kα(y) +O
(
τγ

ργ

)
.

Furthermore, if δ is small enough,

ϕα(B(m, 2τ)) ⊂ B(x, 3τ)× (ρ− 3τ, ρ+ 3τ)×BZα (z, 3τ/ρ) ,

where BZα (z, 3τ/ρ) is the ball of radius 3τ/ρ in (Zα, kα(y)).

Using the relationships and estimates in these two cases, we can then prove the

following, via an induction on the depth of the stratified space.

Proposition 2.1. There are positive constants Λ, δ0, κ, with Λδ0 < 1, such that

for any δ ∈ (0, δ0) and m ∈ M , if B(m, δ) ⊂ Wα, then there is a sequence of

numbers ρ1 > ρ2 > · · · > ρdα > ρdα+1 = 0 so that if we set τj = δ
∏j
i=1 ρj

and choose any τ ∈ [ρj , ρj−1), then there is an open set Ωm,j,α homeomorphic to

a cone Cκτ (Sm,j,α) over a connected stratified space Sm,j,α such that

B(m, τ) ⊂ Ωm,j,α ⊂ B(m, 2κτ).

Moreover there is an iterated edge metric hm,j,α on Sm,j,α so that on Ω,

∣∣g −
(
dt2 + t2hm,j,α

)∣∣ ≤ Λ

(
τ

ρ1ρ2 . . . ρj−1

)γ
.

The set of metric spaces (Sm,j,α, hm,j,α), where m, j and α vary, for a fixed

(M,g), is precompact in the biLipschitz topology on the space of all compact met-

ric spaces. In particular there is a finite set of compact metric spaces (Yj , dj),
j = 1, . . . , N , and a constant K > 1 so that each (Sm,j,α, hm,j,α) isK-biLipschitz

to at least one of the (Yβ, dβ).

3 Some analytical tools

3.1 The Poincaré and Sobolev inequalities

We first recall briefly the proof that any compact stratified space with iterated edge

metric satisfies a scale-invariant Poincaré inequality, and hence also a Sobolev in-

equality, and hence the Laplace operator has discrete spectrum. We prove this first

under a topological condition, but then explain in a remark how this condition may

be removed.
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Proposition 3.1. Let (M,g) be a compact stratified space with an iterated edge

metric. Assume that for each x ∈ M , the tangent sphere Sx is connected. Then

there are constants a > 1 and C, η > 0 such that if B is any ball of radius

r(B) < η, then for every f ∈ W 1,2(aB), there is a scale-invariant Poincaré

inequality

∫

B
|f − fB |2 dvolg ≤ CPoinr(B)2

∫

aB
|df |2 dvolg .

Remark 3.1. If the connectedness condition fails for the tangent spheres Sx along

certain of the strata, then we can define a new stratified space M̃ for which this

condition does hold as follows: cut M along each stratum where the corresponding

link is disconnected. The connectedness condition holds for this new space, and

the Poincaré inequality on M̃ implies one on M as well.

Remark 3.2. It is known, cf. [9], [10], [6, Theorem 5.1], that if (M,g) is a space

with a scale-invariant Poincaré inequality, and is such that the measure dVg is

Ahlfors n-regular, i.e., crn ≤ volB(x, r) ≤ Crn for all x ∈ M and all 0 <
r < 1

2 diamgM , then there is a Sobolev inequality

CSob‖ψ‖2
L

2n
n−2

≤ ‖dψ‖2L2 + ‖ψ‖2L2 , (3.1)

for every ψ ∈ W 1,2(M). This Sobolev inequality implies, in turn, that the spec-

trum of the Friedrichs realization of the Laplace operator −∆g is discrete, i.e. there

exist λj ր ∞ and ϕj , such that −∆gϕj = λjϕj and so that the closed linear span

of the ϕj equals L2(M).

The proof of the Proposition is inductive. We assume that the result has been

proved for all compact stratified spaces (with iterated edge metrics) of depth less

than d and then prove that it holds for spaces of depth d. By an obvious localization

argument, it suffices to show that if there is a scale-invariant Poincaré inequality

on a connected stratified space S, then there is also one on the truncated cone

CR := CR(S),
‖f − fCR

‖2L2(CR) ≤ CPoinR
2‖df‖2L2(CR)

for all f ∈ W 1,2(CR). Once we have established this inequality on CR, it then

follows that it holds on any compact stratified space (M,g) of depth d, and we

then also obtain the Sobolev inequality and discreteness of the spectrum of −∆g

on all such spaces. This completes the next step of the induction.

Thus it remains to prove that the scale-invariant Poincaré inequality holds on

CR, which we do by noting that it suffices to take CPoin = max{A−1, B−1},

where
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• A is the first nonzero eigenvalue of the operator − d2

dr2
− n−1

r
d
dr on L2([0, 1])

with Neumann conditions at r = 1. Equivalently,
√
A is the first positive

zero of (r1−
n
2 Jn

2
(r))′ where Jζ is the Bessel function of order ζ , and

• B is the lowest eigenvalue of the − d2

dr2 − n−1
r

d
dr + λ1

r2 on L2([0, 1]) again

with Neumann conditions at r = 1, i.e.,
√
B is the first positive zero of

(r1−
n
2 Jν(r))

′, where

ν =

√

λ1 +

(
n− 2

2

)2

,

where λ1 is the first nonzero eigenvalue of −∆h (recalling that since S is

connected, λ0 = 0 < λ1).

3.2 Restriction to the link

Let (S, h) be a compact, connected smoothly stratified space of dimension n − 1
with iterated edge metric, and consider the cone (C(S), g0 = dr2 + r2h). The ball

B0(ρ) centered at 0 is simply the truncated cone Cρ(S).
Write the eigenvalues of −∆h as λj = νj(n− 2+ νj), which gives the nonde-

creasing sequence {νj}. Since S is connected, ν0 = 0 < ν1 ≤ ν2 ≤ . . . .
There is a restriction map R from the standard Sobolev space W 1,2(B0(ρ)) ={

ϕ ∈ L2(B0(ρ)), dϕ ∈ L2
}

to ∂B0((ρ)). It is easy to check, using the eigenfunc-

tion expansion on S, that

R : W 1,2(B0(ρ)) → H1/2(∂B0(ρ))),

where

H1/2(∂B0(ρ))) =




∑

j

cjϕj ,
∑

j

νj |cj |2 <∞



 .

3.3 Green’s formula

Let (M,g) be a stratified space with iterated edge metric, and suppose that X is a

vector field defined on M reg. The function divgX is defined in the usual way on

this regular part, and we say that divgX ∈ L1 if there is a function ϕ ∈ L1(M)
such that ∫

M
Xu dvolg =

∫

M
ϕu dvolg .
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for all u ∈ C1
0(M

reg). Note that divgX only depends on dvolg, hence if g̃ is

another Riemannian metric such that dvolg̃ = J dvolg for some Lipschitz function

J , then

divg̃X = divgX +X · ∇ log J.

Our goal in this subjection is to establish Green’s formula on M under low

regularity assumptions on X. We do this first when M has no codimension 1
boundary, and then when M is a truncated cone.

Proposition 3.2. Let X be an L2 vector field on M such that divgX ∈ L1. Then

∫

M
divgX dvolg = 0.

Proof. It is standard that this formula holds if X has compact support in M reg.

Thus if u is Lipschitz with compact support in M reg, then

0 =

∫

M
divg(uX) dvolg =

∫

M
Xu dvolg +

∫

M
udivgX dvolg . (3.2)

Because the volume of the tubular neighborhood of radius R around M sing is

O(R2), we can choose a sequence ψℓ ∈ C∞
0 (M reg) such that 0 ≤ ψℓ ≤ 1,

limℓ ψℓ(x) = 1 for a.e. x, and limℓ ‖dψℓ‖L2 = 0. Using the inequality

∣∣∣∣
∫

M
Xψℓ dvolg

∣∣∣∣ ≤ ‖X‖L2‖dψℓ‖L2 ,

the result follows immediately from (3.2).

Let us now turn to the analog of this result on B0(ρ), the truncated metric

cone C[0,ρ)(S), with exact conic metric g0, and with n ≥ 2. Since dvol0 =
rn−1dr dvolh, the volume form on ∂B0(ρ) is dσ0 = ρn−1 dvolh.

Proposition 3.3. Let X be an L2 vector field on B0(ρ) with divgX ∈ L2; then

Xr =
〈
X, ∂∂r

〉
= dr(X) ∈ H−1/2(∂B0(ρ)) and for all u ∈W 1,2(B0(ρ)) we have

∫

B0(ρ)
udivg0X dvol0+

∫

B0(ρ)
Xu dvol0 =

∫

∂B0(ρ)
Xru dσ0. (3.3)

Proof. Let Y = uX where u is Lipschitz. For f ∈ C1
0(0, ρ), set v(r, θ) = f(r),

θ ∈ S. By the preceding proposition,

0 =

∫

B0(ρ)
divg0(vY ) dvol0 =

∫

B0(ρ)
vdivg0(Y ) dvol0+

∫

B0(ρ)
Y v dvol0 .
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However, Y v = f ′(r)Yr, where Yr =
〈
Y, ∂∂r

〉
= uXr. The function K(r) :=∫

∂B0(r)
Yr dσ0 is thus in L1, so if we write I(r) =

∫
B0(r)

div0Y dvol0, then

∫ ρ

0
f ′(r)I(r) dr = −

∫ ρ

0
f(r)I ′(r) dr =

∫ ρ

0
f ′(r)K(r) dr.

Since this holds for every f ∈ C1
0(0, ρ), the function K is equal almost everywhere

to a continuous function andK(r) = I(r)+c for some constant c and all r ∈ (0, ρ).
Since X and div0X ∈ L2, we obtain

|I(r)| ≤ o
(
rn/2

)
and

∣∣∣∣
∫ r

0
K(r)dr

∣∣∣∣ ≤ o
(
rn/2

)
,

and since n ≥ 2 we see that c = 0.

Now, for ρ ≥ t > s > 0,

∫

B0(t)\B0(s)
udivg0X dvol0 +

∫

B0(t)\B0(s)
Xu dvol0

=

∫

∂B0(t)
Xru dσ0 −

∫

∂B0(s)
Xru dσ0.

which gives

∣∣∣∣∣

∫

∂B0(t)
Xru dσ0 −

∫

∂B0(s)
Xru dσ0

∣∣∣∣∣ ≤ ε(t, s) ‖u‖W 1,2 ,

where ε(t, s) = ||X||2L2 + ||div0X||2, these norms being taken over the annular

region B(0, t) \ B(0, s).
This holds for all Lipschitz functions u, and hence, by a density argument, also

when u ∈ W 1,2 and for almost every ρ ≥ t > s > 0. Let ft(θ) = Xr(t, θ).
If ϕ ∈ H1/2(S), then let u be the harmonic function on B0(t) \ B0(s) such that

u = ϕ/sn−1 on ∂B0(s) and u = ϕ/tn−1 on ∂B0(t). This gives

∣∣∣∣
∫

S
(ft − fs)ϕdσ

∣∣∣∣ ≤ ǫ(t, s)‖ϕ‖H1/2 .

In other words, the function t 7→ ft is continuous as a map (0, ρ] −→ H−1/2(S).
The asserted formula follows easily from this.

Comparing with [4, §5], we obtain
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Proposition 3.4. Let g be an iterated edge metric on B0(ρ) such that dvolg =
J dvol0, where J is Lipschitz and J ≥ ǫ > 0. Suppose that u ∈ W 1,2(B0(ρ)) and

∆gu ∈ L2 i.e., there exists a constant C > 0 such that

∣∣∣∣∣

∫

B0(ρ))
〈du, dϕ〉g dvolg

∣∣∣∣∣ ≤ C‖ϕ‖L2

for every ϕ ∈ W 1,2
0 (B0(ρ)). Then, letting ng denote the outward unit normal with

respect to g, ngu ∈ H−1/2(S), and if v ∈W 1,2(B0(ρ)), then

∫

B0(ρ)
v∆gu dvolg +

∫

B0(ρ)
〈dv, du〉g dvolg =

∫

∂B0(ρ)
v ngu dσg. (3.4)

Proof. This follows from Proposition 3.3 with X = J∇gu. Indeed, ∆gu dvolg =
div0(X) dvol0, 〈dv, du〉g dvolg = Xv dvol0, and ngu = ∂u

∂r
1

|dr|g
and dr

|dr|g
dσg =

Jdrdσ0.

3.4 The Dirichlet to Neumann operator

We now develop properties of the Dirichlet to Neumann operator on the truncated

cone Cρ(S), first with respect to an exact conic metric and then with respect to a

more general iterated edge metric on this space.

3.4.1 The model case

Any v ∈ H1/2(∂B0(ρ))) has a unique harmonic extension E0,ρ(v) ∈W 1,2(B0(ρ)).
On eigenfunctions ϕj on S, there is an explicit formula

E0,ρ(ϕj)(r, θ) =
(
r

ρ

)νj
ϕj(θ) . (3.5)

More generally, E0,ρ(v) minimizes the Dirichlet energy

∫

B0(ρ)
|dE0,ρ(v)|20 dvol0 ≤

∫

B0(ρ)
|du|20 dvol0 .

amongst all functions u ∈ W 1,2(B0(ρ)) for which the restriction R(u) to the

boundary equals v,

12



Definition The Dirichlet to Neumann operator N0,ρ is the bounded operator :

N0,ρ : W
1,2(S) → L2(S)

v 7→ d

dr

∣∣∣∣
r=ρ

E0,ρ(v)(r, ·),

so in particular

N0,ρϕj =
νj
ρ
ϕj .

The operator N0,ρ is selfadjoint with compact resolvent. From the variational char-

acterization of the harmonic extension, there is a min-max formula for its eigen-

values:

νj
ρ

= max
V ⊂W1,2(B0(ρ))

dimV =j

inf
u∈V ⊥\{0}

∫
B0(ρ)

|du|20 dvol0∫
∂B0(ρ)

|u|20dσ0
. (3.6)

3.4.2 The general case

Let g be another iterated edge metric on B0(ρ) satisfying

|g − g0| ≤ Λργ ≪ 1.

Suppose that V ∈ Lp(B0(ρ)) for some p > n/2, with the bound

∫

B0(ρ)
|V |p dvol0 ≤ Ap .

We shall study properties of the operator ∆g + V .

The spaces L2(B0(ρ)) and W 1,2(B0(ρ)) are the same relative to either of the

two metrics g0 and g, and similarly for W 1,2(∂B0(ρ)). We write W 1,2
0 (B0(ρ)) for

the set of functions in u ∈ W 1,2 such that R(u) = 0. Recall too that the space of

Lipschitz function with compact support in (0, ρ) × Sreg = (B0(ρ))
reg

is dense in

W 1,2
0 (B0(ρ)). As in (3.1), see also [1], there is a Sobolev inequality for both g0

and g, i.e., there exists CSob > 0 so that

CSob‖ψ‖2
L

2n
n−2

≤ ‖dψ‖2L2 ∀ψ ∈W 1,2
0 (B0(ρ))

relative to either metric. For ρ sufficiently small, the quadratic form

ψ 7→ Qg,V,ρ(ψ);=

∫

B0(ρ))
|dψ|2g dvolg −

∫

B0(ρ))
V ψ2 dvolg

13



is coercive in W 1,2
0 (B0(ρ)). Indeed, applying the Hölder inequality twice gives

∫

B0(ρ)
V ψ2 dvolg ≤ ‖V ‖2

L
n
2
‖ψ‖2

L
2n
n−2

≤ 1

µ
A

(
volh(S)

n
ρn
) 2

n
− 1

p

‖dψ‖2L2 ,

which implies that Qg,V,ρ(ψ) ≥ cQ0(ψ) (where Q0 is the quadratic form when

g = g0 and V = 0) provided

C−1
SobA volh(S)

2
n
− 1

pρ
2−n

p < 1.

Assuming this condition, then for each v ∈ H1/2(∂B0(ρ))) the functional

R−1(v) ∋ ψ 7→
∫

B0(ρ))

(
|dψ|2g − V ψ2

)
dvolg

reaches its infimum at a unique function

EV,ρ(v) ∈W 1,2(B0(ρ)).

The Euler-Lagrange condition implies that EV,ρ(v) satisfies the equations:

{
(∆g + V ) EV,ρ(v) = 0
EV,ρ(v)|∂B0(ρ)

= v.
(3.7)

According to the discussion in §3.3, there is a Green formula for functions in

the domain

D(∆g) = {ψ ∈W 1,2(B0(ρ)),∆gψ ∈ L2}.
Decompose the g unit normal to ∂B0(ρ) as ~ng = α ∂

∂r + ~β, where ~β ⊥g0
∂
∂r .

Clearly,

|α− 1|+
∣∣∣~β
∣∣∣
g0

≤ CΛργ . (3.8)

If ψ ∈ D(∆g), then its normal derivative at the boundary, which we denote by ∂ψ
∂~ng

,

lies in H−1/2(∂B0(ρ)) and for any ϕ ∈W 1,2(B0(ρ))
∫

B0(ρ))
∆gψ ϕdvolg +

∫

B0(ρ))
〈dψ, dϕ〉g dvolg =

∫

∂B0(ρ))

∂ψ

∂~ng
ϕdσg. (3.9)

Hence for ψ,ϕ ∈ D(∆g),

∫

B0(ρ))
(ψ∆gϕ−∆gψ ϕ ) dvolg =

∫

∂B0(ρ))

(
ψ
∂ϕ

∂~ng
− ∂ψ

∂~ng
ϕ

)
dσg. (3.10)

14



We can now define the Dirichlet to Neumann operator associated to the quadratic

form

H1/2(∂B0(ρ)) ∋ v 7→
∫

B0(ρ)

(
|dEV,ρu|2g − V |EV,ρu|2

)
dvolg .

NV,ρv :=
∂

∂~ng
EV,ρ(v).

The operator Ng,V,ρ is self-adjoint. We indicate below that it has compact resol-

vent. It is then not hard to see that its spectrum has a min-max interpretation:

µj = max
V ⊂W1,2(B0(ρ))

dimV =j

inf
u∈V ⊥\{0}

∫
B0(ρ)

[
|du|2g − V u2

]
dvolg∫

∂B0(ρ)
|u|2dσg

. (3.11)

3.5 Comparison of the spectra

Our next goal is to compare the spectra of the operators N0,ρ and NV,ρ.

The first step involves finding an Lp estimate for the harmonic extension oper-

ator E0,ρ. If

v =
∑

j

cjϕj ∈ H1/2(∂B0(ρ))

so that

E0,ρv(r, θ) =
∑

j

(
r

ρ

)νj
cjϕj(θ) = e−tLv(θ),

where r = e−tρ and L =

√
−∆h +

(
n−2
2

)2 − n−2
2 . Assume first that c0 = 0, i.e.,∫

∂B0(ρ)
v dσ0 = 0. The Sobolev inequality on the product

(
(1/2, 1) × S, (dr)2 + h

)

implies an estimate on the heat kernel of ∆h. The subordination identity

e−tL =

∫ ∞

0

t

2
√
π
e

n−2
2
t− t2

4τ
−τ

(
−∆h+(n−2

2 )
2
)
dτ

τ3/2

then shows that if q ≥ 2 then using c0 = 0,

∥∥e−tLLv
∥∥
Lq ≤ C

t
(n−1)

(
1
2
− 1

q

)
∥∥∥
√
Lv
∥∥∥
L2
.

However, if q < 2(n− 1), there is also a Sobolev inequality

∥∥e−tLv
∥∥
Lℓ ≤ C

∥∥∥e−tL
√
Lv
∥∥∥
Lq

15



provided
1

ℓ
+

1

2(n − 1)
=

1

q
.

Hence if ℓ < 2n
n−2 , then E0,ρ(v) ∈ Lℓ(B(ρ)) and

‖E0,ρ(v)‖2Lℓ(B0(ρ))
≤ Cρ

2n
ℓ

∥∥∥
√
Lv
∥∥∥
2

L2(S,dvolh)
= Cρ

2n
ℓ
−n+2 〈N0,ρv, v〉L2(∂B0(ρ),dσ0) .

It is straightforward to deduce from all of this the more general result when

c0 6= 0:

Proposition 3.5. If v ∈ H1/2(∂B0(ρ)) and ℓ < 2n
n−2 , then

‖E0,ρ(v)‖2Lℓ(B0(ρ))
≤

Cρ
2n
ℓ
−n+2 〈N0,ρv, v〉L2(∂B0(ρ),dσ0) + Cρ

2n
ℓ
−2n+2

(∫

∂B0(ρ)
vdσ0

)2

.

This estimate and the one in the next Proposition allow us to compare the spec-

tra of N0,ρ and NV,ρ.

Proposition 3.6. If u ∈W 1,2(B0(ρ)), then

(
1− cργ

) ∫

B0(ρ)
|du|20 dvol0 −Cρδ+1−n

(∫

∂B0(ρ)
udσ0

)2

≤
∫

B0(ρ)

[
|du|2g − V u2

]
dvolg

≤
(
1 + cργ

) ∫

B0(ρ)
|du|20 dvol0 +Cρδ+1−n

(∫

∂B0(ρ)
udσ0

)2

,

where γ = min
{
γ, 2 − n

p

}
and δ = 1− n

p .

Proof. By hypothesis
∣∣∣∣∣

∫

B0(ρ)
|du|2g dvolg −

∫

B0(ρ)
|du|20

∣∣∣∣∣ ≤ CΛργ
∫

B0(ρ)
|du|20 dvol0 .

Moreover, if h = E0,ρR(u), then
∣∣∣∣∣

∫

B0(ρ)
V u2 dvolg

∣∣∣∣∣ ≤ 2

∫

B0(ρ)
|V |(u− h)2 dvolg +2

∫

B0(ρ)
|V |h2 dvolg

≤ C‖V ‖Ln/2‖u− h‖2
L

2n
n−2

+ C‖V ‖Lp‖h‖2
L

2p
p−1

.
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But u−h ∈W 1,2
0 (B0(ρ)), so the Sobolev inequality and the variational character-

ization of h yield

‖u− h‖2
L

2n
n−2

≤ C‖d(u− h)‖2L2 = C
(
‖du‖2L2 − ‖dh‖2L2

)
≤ C‖du‖2L2 .

Moreover, from the Hölder inequality,

‖V ‖Ln/2 ≤ Cρ
2−n

p ‖V ‖Lp ,

and the previous proposition shows that

‖h‖2
L

2p
p−1

≤ Cρ
2−n

p 〈N0,ρv, v〉L2(∂B0(ρ),dσ0) + Cρ
1−n

p
1

ρn−1

(∫

∂B0(ρ)
udσ0

)2

.

Green’s formula and the variational characterization of h lead finally to

〈N0,ρv, v〉L2(∂B0(ρ),dσ0) =

∫

B0(ρ)
|dh|20 dvol0 ≤

∫

B0(ρ)
|du|20 dvol0 .

One consequence of this proposition is that if ρ is small enough, then NV,ρ has

discrete spectrum

µ0 < µ1 ≤ . . .

Moreover we obtain an estimate for the first two eigenvalues:

Proposition 3.7.

|µ0| ≤ Cρ
1−n

p ,

∣∣∣∣µ1 −
ν1
ρ

∣∣∣∣ ≤ Cργ−1.

3.6 A computation of eigenvalues

We now prove (1.6). We begin with the identification C(S) = R
k × C(Z) and

recall the form (1.5) of the metric h on S.

First note that

−∆h =
⊕

µ∈spec∆Z
λ∈spec(∆

Sk−1)

Lµ,λ

acting on L2
((
0, π2

)
, sink−1 ψ cosn−k−1ψ

)
, where

Lµ,λ = − ∂2

∂ψ2
− ((k − 1) cotψ − (n− k − 1) tanψ)

∂

∂ψ
+

µ

cos2 ψ
+

λ

sin2 ψ

The first nonzero eigenvalue −∆h is the minimum of

17



• the first non zero eigenvalue of L0,0;

• the lowest eigenvalue of Lµ1,0, where µ1 is the first non zero eigenvalue of

−∆Z ;

• the lowest eigenvalue of L0,λ1 , where λ1 = k− 1 is the first non zero eigen-

value of −∆Sk−1 .

Now observe the following:

i) L0,0

(
sin2 ψ − k

n

)
= 2n

(
sin2 ψ − k

n

)
;

ii) Writing µ1 = γ(γ+n−k−2), then Lµ1,0 (cos
γ ψ) = γ(n−2+γ) cosγ ψ;

iii) L0,k−1 (sinψ) = (n− 1) sinψ.

These show that the first non zero eigenvalue of −∆h is

{
n− 1 if µ1 ≥ n− k − 1 = dimZ

γ(n− 2 + γ) if µ1 = γ(γ + n− k − 2) ≤ n− k − 1 = dimZ.

4 Monotonicity formula

Consider the truncated cone CR(S) with metric g0 = dr2 + r2h, where the link S
is a connected stratified space of dimension n − 1 with an iterated edge metric h.

Consider another iterated edge metric g which is Lipschitz with respect to g0 and

satisfies for all ρ ∈ [r,R] :

|g − g0| ≤ Λργ ≪ 1 on B0(ρ)

Since S is connected, the spectrum of −∆h is a nondecreasing sequence

ν0(n− 2 + ν0) = 0 < ν1(n− 2 + ν1) ≤ . . . ,

where

ν0 = 0 < ν1 ≤ ν2 ≤ . . . .

Proposition 4.1. Suppose that V ∈ Lp for some p > n/2 and let u ∈ W 1,2(CR)
satisfy

∆gu+ V u = 0.

18



Set γ = min
{
γ, 2− n

p

}
and for any ρ− ≤ ρ+ ≤ R define

Ψ(ρ+, ρ−) =





∣∣∣ρ2−n/p−2ν1
+ − ρ

2−n/p−2ν1
−

∣∣∣ if 1− n
2p − ν1 6= 0

log
(
ρ+
ρ−

)
if 1− n

2p − ν1 = 0.

Then there exists a constant C depending only on n,Λ, ν1, ‖u‖L∞ and h such that

e−Cρ
γ
−

ρn−2+2ν1
−

∫

B0(ρ−)
|du|2g dvolg ≤

e−Cρ
γ
+

ρn−2+2ν1
+

∫

B0(ρ+)
|du|2g dvolg +C Ψ(ρ+, ρ−).

Moreover, there is a constant κ such that if 1
2 h̃ ≤ h ≤ 2h̃ then C(n, ν1,Λ, h) ≤

κC(n, ν1,Λ, h̃).

Proof. We shall derive a differential inequality for the function

ρ 7→ E0(ρ) =

∫

B0(ρ)
|du|20 dvol0 .

First note that

E′
0(ρ) =

∫

∂B0(ρ)
|du|20dσ0 =

∫

∂B0(ρ)
|dTu|2ρ2hdσ0 +

∫

∂B0(ρ)

∣∣∣∣
∂u

∂r

∣∣∣∣
2

dσ0.

where dT is the differential along ∂B0(ρ). Next,

E(ρ) =

∫

B0(ρ)
|du|2g dvolg =

∫

B0(ρ)
V u2 dvolg +

∫

∂B0(ρ)
uNV,ρudσg

satisfies

(1− cnΛρ
γ)E(ρ) ≤ E0(ρ) ≤ (1 + cnΛρ

γ)E(ρ).

By (3.8), there is a constant η such that

(1 + ηΛργ)E′
0(ρ)−

n− 2 + 2ν1
ρ

E(ρ)

≥
∫

∂B0(ρ)
|dTu|2ρ2hdσ0 +

∫

∂B0(ρ)
|NV,ρu|2 dσg

− n− 2 + 2ν1
ρ

∫

∂B0(ρ)
uNV,ρudσg −

n− 2 + 2ν1
ρ

∫

B0(ρ)
V u2 dvolg .
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We now compare
∫
∂B0(ρ)

uNV,ρudσg and
∫
∂B0(ρ)

uN0,ρudσ0. Introducing the

harmonic h := E0,ρ
(
u|∂B0(ρ)

)
, then we have

∫

∂B0(ρ)
uNV,ρudσg −

∫

∂B0(ρ)
uN0,ρudσ0

=

∫

B0(ρ)
|du|2g dvolg −

∫

B0(ρ)
V u2 dvolg −

∫

B0(ρ)
|dh|20 dvol0 .

Since u ∈ L∞,

∣∣∣∣∣

∫

B0(ρ)
V u2 dvolg

∣∣∣∣∣ ≤ C

∫

B0(ρ)
|V | ≤ Cρ

n
(
1− 1

p

)

,

and moreover, by the variational characterization of h,

∫

B0(ρ)
|dh|20 dvol0 ≤

∫

B0(ρ)
|du|20 dvol0 ≤ (1 + cΛργ)

∫

B0(ρ)
|du|2g dvolg .

Using the same argument for u and the fact that ‖h‖L∞ ≤ ‖u‖L∞ , we get

∫

B0(ρ)
|du|2g dvolg −

∫

B0(ρ)
V u2 dvolg ≤

∫

B0(ρ)
|dh|2g dvolg −

∫

B0(ρ)
V h2 dvolg

≤ (1 + cΛργ)

∫

B0(ρ)
|dh|20 dvol0+Cρ

n
(
1− 1

p

)

.

Hence there is a constant depending only on V , n and ‖u‖L∞ such that

∣∣∣∣∣

∫

∂B0(ρ)
uNV,ρu dσg −

∫

∂B0(ρ)
uN0,ρu dσ0

∣∣∣∣∣ ≤ CΛργE0(ρ) + Cρ
n
(
1− 1

p

)

. (4.1)

But

∫

∂B0(ρ)
|dTu|2ρ2hdσ0 =

1

ρ2

∫

∂B0(ρ)
u∆hudσ0

=

∫

∂B0(ρ)
N0,ρu

(
N0,ρu+

n− 2

ρ
u

)
dσ0

≥ n− 2 + ν1
ρ

∫

∂B0(ρ)
uN0,ρu dσ0
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so that
∫

∂B0(ρ)
|dTu|2ρ2hdσ0 +

∫

∂B0(ρ)
|NV,ρu|2 dσg −

n− 2 + 2ν1
ρ

∫

∂B0(ρ)
uNV,ρudσg

≥ n− 2 + ν1
ρ

[∫

∂B0(ρ)
uN0,ρu dσ0 −

∫

∂B0(ρ)
uNV,ρu dσg

]

+

∫

∂B0(ρ)
|NV,ρu|2 dσg − µ1

∫

∂B0(ρ)
uNV,ρu dσg

+

(
µ1 −

ν1
ρ

)∫

∂B0(ρ)
uNV,ρu dσg.

By our comparison result above, the first term on the left is bounded from

below by

−C
(
ργ−1

)
E0(ρ)−Cρ

n
(
1− 1

p

)
−1
.

Using the spectral theorem and the estimate on the eigenvalues of the Dirichlet to

Neumann operator NV,ρ, the second term in the LHS is bounded from below by

|µ0µ1|
∫

∂B0(ρ)
u2 ≥ −Cρn−2+δ = Cρ

n
(
1− 1

p

)
−1

Similarly, the last term in the LHS is bounded from below by

−C
(
ργ−1

)
E0(ρ)−Cρ

n
(
1− 1

p

)
−1
.

Eventually, we get a constant κ such that we have the differential inequality

(
1 + κργ

)
E′

0(ρ)−
n− 2 + 2ν1

ρ
E0(ρ) ≥ −Cρn

(
1− 1

p

)
−1
.

The result follows now easily.

5 Proof of Theorem A

We now turn to a proof of our first main theorem. LetM be an n-dimensional strat-

ified space with an iterated edge metric g. Assume that each unit tangent sphere

Sm, m ∈ M is connected and that for some ν ∈ (0, 1], for all m ∈ M the first

nonzero eigenvalue of the Laplace operator on Sm is larger than ν(n−2+ν). Sup-

pose that V ∈ Lp for some p > n/2 and u ∈ W 1,2(M) a solution of the equation

∆u+ V u = 0. We know already that u ∈ L∞, and our goal is to show that u has

a certain Hölder regularity.
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First case: ν = 1 and V ∈ L∞: By Proposition 4.1 and Theorem 2.1, we see

that for all p ∈M and r ∈ (0, η),

e−Cr
γ

rn

∫

B0(r)
|du|2g ≤ C + C| log(r)|.

The second remark in the appendix shows that there is a constant C such that for

all x, y ∈M :

|u(x)− u(y)| ≤ C
√

| log(d(x, y))|d(x, y) .

Second case: ν < 1 and V ∈ L∞: According to Proposition 4.1 and Theorem 2.1,

if p ∈M and r ∈ (0, η), then

e−Cr
γ

rn−2+2ν

∫

B0(r)
|du|2g ≤ C.

Applying the Hölder result Proposition A.1 in this setting proves the result.

Third case: V ∈ Lp where p ∈ (n/2,∞): In this case, by Proposition 4.1 and

Theorem 2.1, we obtain that for all p ∈M and r ∈ (0, η) :

e−Cr
γ

rn−2+2ν

∫

B0(r)
|du|2g ≤ C + Cr2−

n
p
−2ν

so that ∫

B0(r)
|du|2g ≤ Crn−2+2ν + Crn−

n
p .

Hence if we set µ = min
{
ν, 1− n

2p

}
then

∫

B0(r)
|du|2g ≤ Crn−2+2µ, so by Propo-

sition A.1 again, u is Hölder continuous of order µ.

Some remarks:

i) Suppose that g̃ is another iterated edge metric on M such that g̃ − g = σγh,

where h is an iterated edge symmetric two tensor, σ is the distance to M sing

and γ > 0. Then solutions of the equation ∆g̃u + V u = 0 have the same

Hölder regularity as for the corresponding equation relative to the metric g.

ii) We have seen that if u ∈ W 1,2 satisfies ∆u ∈ Lp for some p > n/2, then

u ∈ L∞. So if we define v = u+ 2‖u‖L∞ , then v is a solution of

∆v + V v = 0,

where

V = −∆u

v
∈ Lp.

This means that v, and hence u, are also Hölder continuous of order µ.
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iii) A point has capacity zero, so the equation ∆u ∈ Lp also holds when we

remove a finite number of points from M . By Remark 3.1, if the condition on

the connectedness of the spheres is not satisfied then u is Hölder continuous

of order α on M .

iv) There are general results for the regularity of solution of the equation ∆u ∈ Lp

on Metric Measure space; for instance [7, 8] contains a result about Lipschitz

continuity of solutions under the condition that the underlying measure is Al-

fors regular, and that there is a uniform Poincaré inequality and a kind of heat

kernel-curvature lower bound. In our setting, even harmonic function may not

Lipschitz, and our result are optimal with respect to the exponent of regularity.

A Appendix: Morrey implies Hölder

In this appendix, we recall the proof that a Morrey-type regularity Hölder regularity

result based on Morrey’s idea.

Suppose that (M,d, µ) is a compact almost smooth metric-measure space which

satisfies the following properties:

i) dµ is a doubling measure, i.e. there is some V > 0 such that

µ(B(p, 2r)) ≤ V µ(B(p, r))

for every point p ∈M and r < diam(M)/2.

ii) The uniform Poincaré inequality holds: there exist A ≥ 1 and C > 0 such

that

‖f − fB‖2L2(B(p,r)) ≤ Cr2
∫

B(p,Ar)
|df |2 dµ (A.1)

for all f ∈ W 1,2(B(p,Ar); dµ), p ∈ M and r < diam(M)/(2A). (Here

fB := 1
µ(B(p,r))

∫
B(p,r) f dµ.)

Proposition A.1. Assume that v ∈W 1,2(M ; dµ) satisfies

1

µ(B(p, r))

∫

B(p,r)
|dv|2 dµ ≤ Λr2α−2

for some Λ > 0, α ∈ (0, 1] and η > 0, and for every p ∈ M and r ∈ (0, η). Then

v is α-Hölder continuous. (In the special case α = 1, we mean that v is Lipschitz.)
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Proof. The proof is classical, see for instance [5, Lemme 3.4] for other applications

of these ideas.

First note that if ℓ ∈ N is chosen so that A ≤ 2ℓ, then

µ(B(p, 2Ar)) ≤ V ℓ+1µ(B(p, r) .

For p ∈M , suppose that 2Ar < η, and write B := B(p, r), 2B := B(p, 2r), and

vB =
1

µ(B)

∫

B
vdµ, v2B =

1

µ(2B)

∫

2B
v dµ .

Then

|vB − v2B | =
1

µ(B)µ(2B)

∣∣∣∣
∫

B×2B
(v(x)− v(y)) dµ(x)dµ(y)

∣∣∣∣

≤ 1√
µ(B)µ(2B)

(∫

B×2B
(v(x) − v(y))2 dµ(x)dµ(y)

) 1
2

≤ 1√
µ(B)µ(2B)

(∫

2B×2B
(v(x)− v(y))2 dµ(x)dµ(y)

) 1
2

≤
√
2√

µ(B)

(∫

2B
(v − v2B)

2 dµ

) 1
2

≤
√
2C√
µ(B)

2r

(∫

B(p,2Ar)
|dv|2dµ

) 1
2

≤
√
2CΛ√
µ(B)

2r
√
µ(B(p, 2Ar))(2A)α−1rα−1

≤
√
8V ℓ+1CΛ (2A)α−1rα.

For any ρ ∈ (0, η/(2A)), apply this inequality to r = ρ/2k, k = 1, 2, . . . and

sum the inequalities over all k. We obtain in this way a constant κ > 0 such that

for any ρ ∈ (0, η/(2A)) and any p ∈M ,

∣∣v(p)− vB(p,ρ)

∣∣ ≤ κΛρα

Hence if 4Ad(x, y) ≤ η, then

|v(x)− v(y)|
≤
∣∣v(x)− vB(x,d(x,y))

∣∣+
∣∣v(y)− vB(y,d(x,y))

∣∣+
∣∣vB(x,d(x,y)) − vB(y,d(x,y))

∣∣
≤ 2κd(x, y)α +

∣∣vB(x,d(x,y)) − vB(y,d(x,y))

∣∣ .
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The same argument gives that for d := d(x, y),

∣∣vB(x,d) − vB(y,d)

∣∣

≤ 1√
µ(B(x, d))µ(B(y, d))

(∫

B(x,2d)×B(x,2d)
(v(t)− v(z))2 dµ(t)dµ(z)

) 1
2

≤
√

2µ(B(x, 2d))√
µ(B(x, d))µ(B(y, d))

(∫

B(x,2d)

(
v − vB(x,2d)

)2
dµ

) 1
2

≤ κ′Λdα

√
µ(B(x, 2Ad))

µ(B(y, d))

≤ κ′Λdα

√
µ(B(y, (2A + 1)d))

µ(B(y, d))

≤ κ′ΛdαV ℓ+2.

This proves the result.

Remarks A.2. This argument is local. Hence if v ∈W 1,2(Ω; dµ) satisfies

1

µ(B)

∫

B
|dv|2 dµ ≤ Λr(B)2−2α

for all balls B ⊂ Ω of radius r(B) ∈ (0, η), then v is α-Hölder continuous on Ω.

In fact, for any δ > 0 there is a constant κ such that if x, y ∈ Ω and d(x, ∂Ω) ≥ δ,
d(y, ∂Ω) ≥ δ, then

|v(x)− v(y)| ≤ κd(x, y)α.

It is also easy to check that if u satisfies

1

µ(B(p, r))

∫

B(p,r)
|dv|2 dµ ≤ Λ |log(r)|2γ ,

for all p ∈M , r ∈ (0, η) and for some γ > 0, then there is a constant C such that

|u(x)− u(y)| ≤ C |log(d(x, y)|γ d(x, y) ∀x, y ∈M.
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