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NUMERICAL MODELING OF NON-NEWTONIAN
VISCOPLASTIC FLOWS:

PART II. VISCOPLASTIC FLUIDS AND GENERAL
TRIDIMENSIONAL TOPOGRAPHIES

NOÉ BERNABEU1,2, PIERRE SARAMITO1, AND CLAUDE SMUTEK2

(Communicated by Yanping Lin)

Abstract. A new reduced model for the shallow tridimensional viscoplastic fluid is presented
in this paper, allowing for the first time an arbitrarily topography. A new numerical approach
is also proposed in order to catch efficiently the long-time behavior of the flow and the arrested
state. In order to support varying and large time steps, a fully implicit and second order method
(BDF2) is proposed. It is combined with an auto-adaptive mesh feature for catching accurately
the evolution of front position. This approach was tested on two flows experiments and compared
to experimental measurements. The first study shows the efficiency of this approach when the
shallow flow conditions are fully satisfied while the second one points out the limitations of the
reduced model when these conditions are not fulfilled.

Key words. fluid mechanics ; non-Newtonian fluid ; Bingham model ; asymptotic analysis ;
shallow water theory

1. Introduction

The study of shallow flows is motivated by numerous environmental and in-
dustrial applications. For Newtonian fluids, this problem was first motivated by
hydraulic engineering applications. In 1887, Barré de Saint-Venant [30] introduced
for fast Newtonian flows the shallow water approximation, driven by inertia terms
while viscous effects are neglected. The original technique, based on an averaged
flow-depth, has been extended to the more general asymptotic expansion method.
It leads to the same governing equation at zeroth expansion order, but provides
a more general theoretical framework for the derivation of reduced models. More
recently, slower Newtonian flows [19] and the effect of viscous terms [13] were inves-
tigated. But only the more complex non-Newtonian case approaches the complexity
of both the manufacturing processes (concretes, foods) and the environmental ap-
plications (e.g. mud flows [12, 21], volcanic lava [14, 36], dense snow avalanches [2]
or submarine landslides [15]). Concerning non-Newtonian rheologies, shallow ap-
proximations of the dam break problem were first studied for a viscoplastic fluid by
Lui and Mei [22] and revisited by Balmforth and Craster [6]. See [8, 3] for recent
reviews on this subject and [1] for some recent theoretical avances. One may also
note the recent interest for the Bostwick consistometer used in food industry [28, 7].
The 2D horizontal dam break problem was used as a benchmark test: the nonlinear
reduced equation obtained by the asymptotic method in the shallow limit does not
admit an explicit solution and composite [18] or autosimilar solutions [17, 5] were
proposed instead (see also [4]).

Thus, a direct numerical resolution without any simplification is of the utmost
interest to fully solve such a nonlinear problem. Let us mention the computation
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of the arrested state [24] by a specific finite difference scheme. Nevertheless, the
proposed numerical procedure is based on some specific features of the solution
of the horizontal 1D dam break problem and does not extend to a more general
situation, such as non-constant slopes or 3D topographies. Some authors explored
specific 3D topographies by using specific axisymmetric coordinate systems such
as a curved channel [25] or a conical surface [37]. These authors used a finite
difference discretization scheme and then, an alternating direction algorithm for
solving the resulting algebraic nonlinear set of equations. This numerical approach
was next reused in [8] for similar 3D computations on a flat inclined topography.
It is important to note that all previous reduced models was developed for some
specific topography and not reusable for another one.

The aim of this paper is to bring a new robust and efficient numerical method
for the resolution of the shallow approximation of 3D viscoplastic flow problem on
a general topography. Numerical results obtained with the present model are val-
idated by comparisons with previous computations on specific topographies. The
proposed numerical algorithm for solving the problem extends a previous numer-
ical work preformed on the horizontal 2D dam break problem [35]. The present
numerical scheme provides a fully automatic space-adaptive feature which enables
an accurate capture of the evolution of front position and which is also able to
predict accurately the long-time behavior and the arrested state of the model.

This manuscript has been divided as follow: Section 2 introduces the problem
statement and the reduced problem obtained after the asymptotic analysis under
the shallow flow approximation. Section 3 develops details of the numerical reso-
lution of this nonlinear problem. Section 4 presents the numerical results and two
comparisons between the present theory and experiment measurements available in
the literature.

2. The reduced problem for a general 3d topography

2.1. Problem statement. The Herschel-Bulkley [16] constitutive equation ex-
presses the deviatoric part τ of the stress tensor versus the rate of deformation
tensor γ̇ as:

(1)

{
τ = K|γ̇|n−1γ̇ + τy

γ̇
|γ̇| when γ̇ 6= 0,

|τ | ≤ τy otherwise.

where K > 0 is the consistency, n > 0 is the power-law index and τy is the yield
stress. Here |τ | = ((1/2)

∑3
i,j=1 τ

2
ij)

1/2 denotes the conventional norm of a sym-
metric tensor in mechanics. The total Cauchy stress tensor is σ = −p.I + τ where
p is the pressure and I the identity tensor. When n = 1 and τy = 0, the fluid is
Newtonian and K is the viscosity. For a general n > 1 and when τy = 0, the model
describes a power-law fluid. When n = 1 and τy ≥ 0, this model reduces to the
Bingham one [9]. The constitutive equation (1) is completed by the conservations
of momentum and mass:

ρ (∂tu + u · ∇u)− div(−p.I + τ) = ρg,(2)
divu = 0,(3)

where ρ > 0 is the constant density and g is the gravity vector. There are three
equations (1)-(3) and three unknowns τ , u and p. The corresponding problem is
closed by defining the boundary and initial conditions.

The flow over a variable topography is considered (see Fig. 1). For any time
t > 0, the flow domain is denoted as Q(t). We suppose that Q(t) can be described
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Figure 1. Schematic view of a flow on a variable topography.

as:
Q(t) = {(x, y, z) ∈ Ω× R; f(x, y) < z < f(x, y) + h(t, x, y)}

where Ω is an open and bounded subset of R2. Here, f denotes the topography and
h the flow height. The boundary ∂Q(t) splits in three parts: the bottom relief Γs,
the top free surface Γf (t), and the lateral part Γw(t), defined by:

Γs = {(x, y, z) ∈ Ω× R; z = f(x, y)}
Γf (t) = {(x, y, z) ∈ Ω× R; z = f(x, y) + h(t, x, y)}
Γw(t) = {(x, y, z) ∈ ∂Ω× R; f(x, y) < z < f(x, y) + h(t, x, y)}

For any t > 0, the boundary conditions expresses the non-slip condition on the
bottom and lateral boundaries and the null stress on the free surface:

u = 0 on Γs ∪ Γw(t)(4)
σ · ν = 0 on Γf (t)(5)

where ν is the unit outward normal on ∂Q(t). It remains to describe the evolution of
the free surface. It is convenient to introduce the level set function ϕ that expresses
as:

ϕ(t, x, y, z) = z − f(x, y)− h(t, x, y).

Note that the zero level set, where ϕ(t, x, y, z) = 0, is exactly the free surface. The
level set function is transported by the flow: ∂tϕ+ u · ∇ϕ = 0,. On Γs(t), where
z = f + h, this writes:

(6) ∂th+ ux∂x(f + h) + uy∂y(f + h)− uz = 0, ∀t > 0 and (x, y) ∈ Ω.

This transport equation for the height h is completed by an initial condition:

(7) h(t = 0, x, y) = hinit(x, y), ∀(x, y) ∈ Ω.

where hinit is given. The set of equation is finally completed by an initial condition
for the velocity u:

(8) u(t = 0) = uinit in Q(0)

The problem expresses as: find h, τ , u and p satisfying (1)-(8).

2.2. Dimensional analysis.
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2.2.1. The dimensionless procedure. In this paragraph, the asymptotic anal-
ysis, introduced by Lui and Mei [22] and revisited by Balmforth and Craster [6] for
a bidimensional flow on a constant slope, is here extended to the case of tridimen-
sional flow on a arbitrarilly topography. Let H be a characteristic length of the
bidimensional domain Ω and H a characteristic height of the flow. We introduce
the dimensionless parameter ε = H/L. Let U = ρgH3/(ηL) be a characteristic flow
velocity in the (x, y) plane, where η = K (U/H)

n−1 is a representative viscosity and
g = |g| is the gravity constant. Replacing this expression of η, we obtain:

U =

(
ρgH2

KL

) 1
n

H

LetW = εU be a characteristic velocity in the z direction, T = L/U a characteristic
time, and P = ρgH a characteristic pressure. The problem is reformulated with
dimensionless quantities and unknowns, denoted with tildes:

x = Lx̃, y = Lỹ, z = Hz̃, t = T t̃, p = P p̃, h = Hh̃,

ux = Uũx, uy = Uũy, uz = εUũz.

Notice the non-isotropic scaling procedure for the z coordinate and the z vector
component of the velocity vector u. The dimensionless rate of deformation tensor
˜̇γ is also related to its dimensional counterpart γ̇ = ∇u + ∇uT by the following
non-isotropic relations:

γ̇αβ = (U/L) ˜̇γαβ , α, β ∈ {x, y}
γ̇αz = (U/H) ˜̇γαz, α ∈ {x, y}
γ̇zz = (U/L) ˜̇γzz.

The scalling procedure for the deviatoric part of stress τ is similar:

ταβ = η (U/L) τ̃αβ , α, β ∈ {x, y},
ταz = η (U/H) τ̃αz, α ∈ {x, y},
τzz = η (U/L) τ̃zz.

2.2.2. The constitutive equation. The dimensionless rate of deformation tensor
can be expressed versus the dimensionless velocity as:

˜̇γαβ = ∂β̃ ũα + ∂α̃ũβ , α, β ∈ {x, y},
˜̇γαz = ∂z̃ũα + ε2∂α̃ũz, α ∈ {x, y},
˜̇γzz = 2∂z̃ũz.

The tensor norm scales as: |γ̇| = (U/L) |˜̇γ|. Using (3), we get: |˜̇γ| = ε−1E where

E =
{
ε2(∂x̃ũy + ∂ỹũx)2 + 2ε2(∂x̃ũx)2 + 2ε2(∂ỹũy)2

+2ε2(∂x̃ũx + ∂ỹũy)2 + (∂z̃ũx + ε2∂x̃ũz)
2 + (∂z̃ũy + ε2∂ỹũz)

2
} 1

2

Let us introduce the Bingham dimensionless number Bi that compares the yield
stress τy to a characteristic viscous stress ηU/H:

Bi =
τyH

ηU
= ε−1

τy
ρgH

.

We suppose that Bi = O(1) in ε. This hypothesis interprets as τy/(ρgH) = O(ε)
or equivalently that the yield stress τy is supposed to be small when compared to
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the gravity effets ρgH. When |τ | ≥ τy we obtain a dimensionless version of the
constitutive equation (1):

τ̃ij =

(
Bi

E
+ En−1

)
˜̇γij

Then |τ | = η(U/L)|τ̃ | where |τ̃ | = ε−1T and

T =

{
τ̃2xz + τ̃2yz +

1

2
ε2τ̃2xx +

1

2
ε2τ̃2yy +

1

2
ε2τ̃2zz + ε2τ̃2xy

} 1
2

.

Remark that the von Mises condition |τ | ≥ τy then becomes T ≥ Bi. The consti-
tutive equation (1) writes:

(9)
{
τ̃ =

[
Bi
E + En−1

]
˜̇γij when E 6= 0,

T < Bi otherwise.

2.2.3. The conservation laws. Let us introduce the Reynolds number:

Re =
ρUL

η
=
ρ2gH3

η2
.

We suppose that Re = O(1) in ε. It means that the flow is supposed to be suffi-
ciently slow for the inertia effects to be neglected at the zeroth order of development
in ε. The conservation of momentum and mass (2)-(3) become:

ε2Re(∂t̃ũx + ũx∂x̃ũx + ũy∂ỹũx + ũz∂z̃ũx) = −∂x̃p̃+ ε2(∂x̃τ̃xx + ∂ỹ τ̃xy) + ∂z̃ τ̃xz,(10a)
ε2Re(∂t̃ũy + ũx∂x̃ũy + ũy∂ỹũy + ũz∂z̃ũy) = −∂ỹp̃+ ε2(∂x̃τ̃xy + ∂ỹ τ̃yy) + ∂z̃ τ̃yz,(10b)
ε4Re(∂t̃ũz + ũx∂x̃ũz̃ + ũy∂ỹũz̃ + ũz∂z̃ũz) = −∂z̃ p̃+ ε2(∂x̃τ̃xz + ∂ỹ τ̃yz + ∂z̃ τ̃zz)− 1,(10c)

∂x̃ũx + ∂ỹũy + ∂z̃ũz = 0.(10d)

2.2.4. Boundary and initial conditions. The non-slip boundary condition (4)
on Γs ∪ Γw writes:

ũ = 0

The unit outward normal ν on the free surface Γs(t) expresses as:

ν =
∇ϕ
||∇ϕ||

=
1√

1 + |∇(f + h)|2

 −∂x(f + h)
−∂y(f + h)

1

 .

Then (5) writes:τxx − p τxy τxz
τxy τyy − p τyz
τxz τyz τzz − p

−∂x(f + h)
−∂y(f + h)

1

 =

0
0
0

 .

and becomes in dimensionless form:

−(ε2τ̃xx − p̃)∂x̃(f̃ + h̃)− ε2τ̃xy∂ỹ(f̃ + h̃) + τ̃xz = 0(11a)

−ε2τ̃xy∂x̃(f̃ + h̃)− (ε2τ̃yy − p̃)∂ỹ(f̃ + h̃) + τ̃yz = 0(11b)

−ε2τ̃xz∂x̃(f̃ + h̃)− ε2τ̃yz∂ỹ(f̃ + h̃) + ε2τ̃zz − p̃ = 0(11c)

where f̃ = f/H denotes the dimensionless topography and is known. The transport
equation (6) for the flow height h becomes:

(12) ∂t̃h̃+ ũx∂x̃(f̃ + h̃) + ũy∂ỹ(f̃ + h̃)− ũz = 0.

The dimensionless problem is completed by the initial conditions for the dimension-
less height and velocity. The initial (1)-(7) problem and its dimensionless version
are equivalent, since the change of unknowns is simply linear.
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2.3. The reduced problem.

2.3.1. The zeroth order problem. In this paragraph, we only consider the di-
mensionless problem: since there is no ambiguity, we omit the tilde on the dimen-
sionless variables. We assume that the unknown admit the following development
in ε when ε� 1:

τ = τ0 + ετ1 + ε2τ2 + . . .

u = u0 + εu1 + ε2u2 + . . .

p = p0 + εp1 + ε2p2 + . . .

h = h0 + εh1 + ε2h2 + . . .

In this paragraph, we aim at obtaining the problem at the zero order for τ0,
u, p0 and h0. Since we only consider the zeroth order, we also omit the
zero subscript in this paragraph. Let us denote ∇|| = (∂x, ∂y) the gradient vec-
tor in the 0xy plane, u|| = (ux, uy) the projected velocity in this plane and
τ || = (τxz, τyz) the shear stress vector in the same plane. For any v|| = (vx, vy)
we also denote as div||v|| = ∂xvx + ∂yvy the corresponding plane divergence and∣∣v||∣∣ = (v2x + v2y)1/2 the usual Euclidean norm in R2. For convenience, we also de-
note as dir(v||) = v||/

∣∣v||∣∣ the direction of any nonzero plane vector. With these
notations, we have E =

∣∣∂zu||∣∣ and T =
∣∣τ ||∣∣ at the zeroth order. The constitutive

equation (9) then reduces to:

ταz =

[
Bi∣∣∂zu||∣∣ +

∣∣∂zu||∣∣n−1
]
∂zuα, ∀α ∈ {x, y},(13a)

ταβ =

[
Bi∣∣∂zu||∣∣ +

∣∣∂zu||∣∣n−1
]

(∂βuα + ∂αuβ), ∀α, β ∈ {x, y},(13b)

τzz = 2

[
Bi∣∣∂zu||∣∣ +

∣∣∂zu||∣∣n−1
]
∂zuz,(13c)

when ∇u +∇uT 6= 0 and ∣∣τ ||∣∣ ≤ Bi, otherwise.(13d)

From the conservation laws (10) we get at the zeroth order:

∂zτxz − ∂xp = 0,(14a)
∂zτyz − ∂yp = 0,(14b)

−∂zp = −1,(14c)
∂xux + ∂yuy + ∂zuz = 0.(14d)

The free surface boundary condition (11) at z = f(x, y) + h(t, x, y) reduces at the
zeroth order to:

τxz + p∂x(f + h) = 0,(15a)
τyz + p∂y(f + h) = 0,(15b)

p = 0.(15c)

The others equations, i.e. the transport equation (12), the non-slip boundary con-
dition and the initial conditions for u and h, are unchanged at the zeroth order.
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2.3.2. Reducing the problem. In this paragraph, we show that the zeroth order
problem reduces to a nonlinear parabolic problem with h as the only unknown: all
the others quantities τ , u and p at the zeroth order can be computed from h by an
explicit expression.

From (15) we get at the free surface z = f + h:

p(z=f + h) = 0,(16a)
τ ||(z=f + h) = 0.(16b)

Integrating (14c) in z from z = 0 to z = f + h and using (16a), we have:

(17) p(t, x, y, z) = f(x, y) + h(t, x, y)− z.

As f is known, the quantity p depends only of the unknown h. From (15a)-(15b),
we then obtain an explicit expression for the shear stress:

(18) τ || = −(f + h− z)∇||(f + h).

Remark that τ || is linear in z: since there exists a z ∈ [f, f + h] where
∣∣τ ||∣∣ ≥

Bi and, from (16b),
∣∣τ ||∣∣ = 0 at z = f + h, there exists an intermediate height

hc(t, x, y) ∈ [0, h(t, x, y)] for which |τ ||(z=f + hc)| = Bi and we have:

(19) hc(t, x, y) = max

(
0, h− Bi

|∇||(f + h)|

)
.

The von Mises criteria at the zeroth order writes equivalently as:∣∣τ ||∣∣ > Bi ⇐⇒ (f + h− z)|∇||(f + h)| > Bi ⇐⇒ z ∈ [f, f + hc[

Taking the Euclidean norm of (13a) leads to

(20) |τ ||| = Bi+ |∂zu|||n.

Then from (18) and (20), we get:

∣∣∂zu||∣∣ =

{∣∣∇||(f + h)
∣∣ 1n (f + hc − z)

1
n when z ∈ [f, f + hc]

0 when z ∈ ]f + hc, f + h]

Taking the direction of (13a) leads to dir(τ ||) = dir(∂zu||) = −dir(∇||(f + h)) and
then:

∂zu|| =

{
−
∣∣∇||(f + h)

∣∣ 1n (f + hc − z)
1
n dir(∇||(f + h)) when z ∈ [f, f + hc]

0 when z ∈ ]f + hc, f + h]

In the zeroth order problem, the z = f(x, y) + hc(t, x, y) surface splits the flow in
two zones: the z ≤ f +hc zone is sheared while the z ≥ f +hc one is rigid. Remark
that when hc = 0, i.e. when

∣∣h∇||(f + h)
∣∣ < Bi, there is only a rigid zone. Thanks

to the non-slip boundary condition at z = f , the fluid is locally arrested. After
summation from z = f to z = f + hc, and using the non-slip boundary condition
u|| = 0 at z = f and the continuity of u|| at z = f + hc, we get:

(21) u|| =


n
n+1

∣∣∇||(f + h)
∣∣ 1n dir(∇||(f + h))

[
(f + hc − z)

n+1
n − hc

n+1
n

]
when z ∈ [f, f + hc]

− n
n+1

∣∣∇||(f + h)
∣∣ 1n dir(∇||(f + h)) hc

n+1
n

when z ∈ ]f + hc, f + h]
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The last component of the velocity is obtained by integrating the mass conservation
(10d) in [f, z]:

(22)
∫ z

f

∂xuxdz +

∫ z

f

∂yuydz +

∫ z

f

∂zuzdz = 0

From the non-slip boundary condition, uz = 0 at z=f , we get:

(23) uz(t, x, y, z) = −
∫ z

f(x,y)

div||(u||) dz

Thus, velocity u admits an explicit expression depending only upon h. Then, the
complete stress τ follows explicitly from (13).

It remains to obtain a characterization of h alone. Let us consider (23) at z =
f+h: by swapping the derivation ∂x and ∂y with the integral over [f(x, y), f(x, y)+
h(t, x, y)], and using the non-slip boundary condition at z = f , we get:∫ f+h

f

∂αuαdz = ∂α

(∫ f+h

f

uαdz

)
− uα(t, x, y, f + h)∂α(f + h), ∀α ∈ {x, y}

Combining the previous relation with the transport equation (12) at the zeroth
order, and replacing in (23) at z = f + h, leads to:

∂th+ div||

(∫ f+h

f

u||dz

)
= 0

By replacing in the previous equation u|| by its expression (21), depending only
upon h, we obtain, after rearrangements, the following conservative equation for h:

(24) ∂th− div||
{
µn
(
Bi, h,

∣∣∇||(f + h)
∣∣) ∇||(f + h)

}
= 0 in ]0,+∞[×Ω

Here, µn denotes a diffusion coefficient, defined for all n > 1 and all Bi, h, ξ ∈ R+

by:

(25) µn(Bi, h, ξ) =

 n ((n+ 1)hξ + nBi) (hξ −Bi)1+ 1
n

(n+ 1) (2n+ 1) ξ3
when hξ > Bi,

0 otherwise.

This expression contains the two parameters n and Bi of the Herschel-Bulkley
viscoplastic fluid. The non-slip velocity condition at the lateral boundaries leads to
an homogeneous Neumann boundary condition:

(26)
∂(f + h)

∂n
= 0 on ]0,+∞[×∂Ω

where ∂/∂n = n.∇|| and n denotes the outward unit normal on ∂Ω in the Oxy
plane. Recall the initial condition:

(27) h(t=0) = hinit in Ω

The reduced problem writes: find h(t, x, y), defined for all t > 0 and (x, y) ∈ Ω and
satisfying (24), (26) and (27).

Notice that, for a Newtonian flow (n = 1 and Bi = 0), expression (25) simplifies
as:

µ1(0, h, ξ) =
h3

3
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For a power-law fluid (n > 0 and Bi = 0):

µn(0, h, ξ) =


n h2+

1
n

(2n+ 1) ξ1−
1
n

when ξ 6= 0,

0 otherwise.

For the Bingham model (n = 1 and Bi ≥ 0):

µ1(Bi, h, ξ) =


(2hξ +Bi) (hξ −Bi)2

6 ξ3
when hξ > Bi,

0 otherwise.

2.3.3. A new dimensionless formulation. Going back to dimensional variable,
the zeroth order equation (26) writes:

∂th−
(ρg
K

) 1
n

div||

{
µn

(
τy
ρg
, h,

∣∣∇||(f + h)
∣∣) ∇||(f + h)

}
= 0

From a computational point of view, it is convenient to consider a new dimensionless
formulation. This second dimensionless procedure differs from the previous one as ε
does no more appears in the zeroth order problem: the new dimensionless quantities
are denoted with an hat. Let H be a characteristic length of the problem and let:

ĥ =
h

H
, x̂ =

x

H
, ŷ =

y

H
, t̂ =

t

T
, f̂ =

f

H
,

where T =
(

K
ρgH

) 1
n

represents a characteristic time. After variable substitution,
we obtain the following zeroth order dimensionless equation:

∂t̂ĥ− d̂iv||
{
µn

(
B̂i, ĥ,

∣∣∣∇̂||(f̂ + ĥ)
∣∣∣) ∇̂||(f̂ + ĥ)

}
= 0

where B̂i = τy/(ρgH) is the Bingham number related to this new dimensionless
procedure. As we now only consider this dimensionless problem, and since there
is no ambiguity, we omit the hat for all the quantities and also for the Bingham
number.

3. Numerical method

The nonlinear parabolic problem is first discretized in time by a full implicit
second order variable step scheme (BFD2) and then, the resulting subproblems are
discretized in space by an adaptive quadratic finite element method.

3.1. Second order implicit scheme. Let (tm)m≥0 the discrete times and ∆tm =
tm+1− tm, m ≥ 0 the corresponding time steps. As the observed solutions decrease
exponentially to an arrested state, we choose a geometric progression for the time
step ∆tm+1 = θ∆tm where θ > 1 and ∆t0 are given.

The time derivative is approximated by the following backward second order
variable step finite difference scheme (BFD2), defined for all ϕ ∈ C0 by:

∂ϕ

∂t
(tm+1) =

2∆tm + ∆tm−1
∆tm(∆tm + ∆tm−1)

ϕ(tm+1)− ∆tm + ∆tm−1
∆tm∆tm−1

ϕ(tm)

+
∆tm

(∆tm + ∆tm−1)∆tm−1
ϕ(tm−1) +O(∆t2m + ∆t2m−1).

The approximate solution sequence (hm)m≥0, hm ≈ h(m∆t), is defined recursively,
for all m ≥ 1 by:
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(P )m: hm−1 and hm being known, find hm+1 such that:

αmh
m+1 − div||

{
µn
(
Bi, hm+1,

∣∣∇||(f + hm+1)
∣∣)∇||(f + hm+1)

}
= gm in Ω(28a)

∂(f + hm+1)

∂n
= 0 on ∂Ω(28b)

where

αm =
2∆tm + ∆tm−1

∆tm(∆tm + ∆tm−1)

gm =
∆tm + ∆tm−1

∆tm∆tm−1
hm − ∆tm

(∆tm + ∆tm−1)∆tm−1
hm−1

The sequence is initiated by h−1 = h0 = hinit for m = −1 and 0, respectively. The
initial time-dependent nonlinear parabolic problem is transformed as a sequence of
nonlinear subproblem (28) in hm+1. An under-relaxed fixed point algorithm is used
for solving these subproblems. The sequence (ϕk)k≥0 of the fixed point iteration is
initiated with ϕ0 = hm for k = 0. Then, for k ≥ 0, ϕk being known, a prediction
ϕ∗ is computed as the solution of the following linear subproblem:

αmϕ
∗ − div||

{
µn
(
Bi, ϕk,

∣∣∇(f + ϕk)
∣∣)∇||ϕ∗}

= gm + div(µn{ϕk, |∇(f + ϕk)|}∇f) in Ω

∂(f + ϕ∗)

∂n
= 0 on ∂Ω

Finally, ϕk+1 is defined by the following under-relaxed scheme:

ϕk+1 = ωϕ∗ + (1− ω)ϕk

The relaxation parameter 0 < ω ≤ 1 aims at improving the convergence properties
of the sequence, while the unrelaxed case is obtained with ω = 1. The stop-
ping criteria of the fixed point algorithm is defined by the residue of the nonlinear
subproblem that should be less than a given tolerance. At convergence, we set
hm+1 ← ϕk+1. The choice of ω depends upon n, the power-law index of the fluid
rheology (see also [33] for a similar analysis on the p-Laplacian nonlinear problem).
We observe that when n < 1 and decreases, then ω should be chosen smaller for the
algorithm to converge efficiently. The linear subproblem (29) is completely stan-
dard and is efficiently solved by a quadratic finite element method, as provided by
the [33] library.

3.2. Auto-adaptive mesh procedure. In order to improve both the accuracy
and the computing time of the previous algorithm, we use an anisotropic auto-
adaptive mesh procedure. Such a procedure was first introduced in [34] for vis-
coplastic Bingham flows and then extended in [29], and we refer to these articles
for implementation details. The procedure bases on a mesh adaptation loop at
each time step: the goal is to catch accurately the evolution of the front of the free
surface, were h = 0 and the associated gradient is sharp (see Fig. 2). As the time
approximation is a second order one, the adaptation criterion c takes into account
the also solution at two previous time steps: c = hm+1 + hm + hm−1.
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Figure 2. Uniform (left) and dynamic auto-adaptive meshes (cen-
ter). Zoom near the front (right).
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4. Comparison with experiments

Figure 3. The kaolin experiment with α = 9.6◦ : (a) initial state
and (b) final one. Comparison of the final front position between
experiments from [8] in black and present computations in red.
Successive computed front position from [8] are in blue.

4.1. Comparison with the Balmforth et al. experiment. The experiment
is described in Balmforth et al [8]. It bases on kaolin suspension initially at the
rest on an horizontal plane, as a dome (see Fig. 3.a). The initial dome diameter
is L = 0.32 m and its height is H = 0.016 m. At t = 0, the plane is inclined to
a predefined angle α. A first experiment is performed with α = 9.6◦ and a second
one with α = 3.4◦. The kaolin is characterized by a density ρ = 1600 kg.m−3, a
power-law index n = 0.5, a consistence K = 40 Pa.s−n, and a yield stress τy = 13.4
Pa. The dimensionless numbers are ε = H/L = 5 10−2, Bi = τy/(ρgH) ≈ 5.3 10−2,
and Re ≈ 6.3 10−3. Thus, the hypothesis made on these dimensionless numbers
during the asymptotic analysis are here fully validated.

Figure 4. The kaolin experiment with α = 3.4◦ : (a) initial state
and (b) final one. Comparison of the arrested front position be-
tween experiments from [8] in black and present computations in
red. Successive computed front position from [8] are in blue.
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Fig. 3.b shows the final state: the red line draws the front position of the final
solution, as computed by the present method while blue lines are the successive
front positions, as computed by Balmforth et al [8]. Observe the good correspon-
dence between the two computations and the experiment. Fig. 4 shows a similar
comparison for the smaller slope α = 3.4◦. Also these numerical results were in
good concordance with those obtained by [8] and following a numerical algorithm
proposed in [25].
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Figure 5. Schematic view of the Cochard and Ancey 3D dam
break experiment [11].

4.2. Comparison with the Cochard and Ancey experiment. The 3D dam
break experiments of Cochard and Ancey [11] is simulated here by the present
numerical method. The fluid is initially in a reservoir: at t = 0 the dam is opened
and the fluid flows on a α = 12◦ slope. The reservoir has L = 0.51 m length
and 0.30 m width, and the initial flow height varies from H = 0.30 m to 0.36
m in the inclined reservoir (see Fig. 5). The experiment was performed with a
0.30% Carbopol Ultrez 10 solution which is mainly a viscoplastic fluid. The fluid
density is ρ = 811 kg.m−3, the power-law index n = 0.415± 0.021, the consistency
K = 47.7 ± 1.7 Pa.s−n and the yield stress τy = 89 ± 1 Pa. The dimensionless
numbers are ε = 0.59, Bi =

τy
ρgH

≈ 0.037 and Re = 1.2 106. Observe that ε is not

so small and that Re is not negligible. This experimental set is expected to test
the limitations of the present method.

Fig. 6 plots in the left column the experimental visualization performed by [11]
for various times and the corresponding numerical simulations, as obtained by the
present method, are represented in the right column. Observe first that, in the ex-
perimental apparatus, the door does not disappear instantaneously: its takes about
0.19 s for the door to be completely open. In the numerical simulations of the dam-
break problem, the whole bulk of fluid was assumed to be released instantaneously,
i.e. the time needed for the gate to open was neglected. Nevertheless, observe the
good qualitative correspondence of the flow until the complete arrested state. A
more quantitative comparison is shown on Fig. 7: the successive front positions are
compared with experimental observations. The agreement is now less favorable:
the numerical prediction of the front is characterized by a longer spreading and a
smaller advance. There are several possible explanations for these discrepancies.
First, the hypothesis made by the asymptotic expansion are not valid in this case,
as ε = 0.59 is not so small. Second, the Reynolds number is not negligible, at least
during the first seconds, when the inertia effects are no more negligible and that 3D
effects develops at the vicinity of the dam. In that case, our asymptotic analysis is
no more valid. Third, the experimental delay to open the dam induces some dis-
crepancies. Finally the carbopol is not strictly a viscoplastic fluid: it also develops
viscoelastic properties [27, 23] that are not taken into account in the present compu-
tations. A more complete model, that extends Herschel-Bulkley one to viscoelastic
effects [31, 32] should be considered, and then a new reduced model derived. Let
us mention that Nikitin et al. [26] recently performed a numerical simulation of the
same experiment by another approach, based on a tridimensional approximation
of the viscoplastic Herschel-Bulkley by a regularized model. While tridimensional



SHALLOW VISCOPLASTIC FLUIDS ON GENERAL TOPOGRAPHIES 15

experiment simulation

Figure 6. The carbopol experiment: left: experimental visual-
ization [11]; right: present numerical simulation. (a) t = 0 s, (b)
t = 0.3 s, (c) t = 0.6 s, (d) t = 1.4 s et (e) t = 52 min.

effects are taken into account for the first time in such simulations, the comparisons
are not validated by comparisons with the experimental data of the front position
and a possible arrested state is not treated. For shallow models, the arrested state is
asymptotically reached [24] For the full model, without free surface and also without
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Figure 7. The carbopol experiment: comparison of the successive
front position. Experiments from [11] are in black and present
computations with colors.

the shallow flow approximation, Chatzimina et al. [10] showed that, for the particu-
lar Poiseuille or Couette flows, the ideal viscoplastic flow reaches complete cessation
at a finite time, while the regularized flow reaches a flow regime corresponding to a
small but nonzero flow rate. Thus, the regularization procedure could be a trouble
in such viscoplastic time-dependent computations. Also without free surfaces [20,
p. 183] showed that the stationary solution of the 3D general viscoplastic models
is zero (or a solid motion) under some general conditions. This blocking property
is closely related to the limit load analysis, i.e. when the yield stress is sufficiently
large or the load forces sufficiently small. While there is nothing to your knowledge
about the existence of an arrested state for free surface tridimensional model, it is
a reasonable assumption that corresponds to experimental observations.

5. Conclusion

A new reduced model for the shallow tridimensional viscoplastic fluid flowing
on a general topography was presented in this paper. In order to catch efficiently
both the front position and the long time behavior, an implicit second order time-
dependent numerical algorithm was proposed, combined with an auto-adaptive
mesh. This approach was tested on two flows experiments and compared to ex-
perimental measurements. The first study shows the efficiency of this approach
when the shallow flow conditions are fully satisfied: the prediction of the model are
in agreement with experimental results. Numerical simulation was also in agree-
ment with a previous computation [8] available for this first test. Computations
in [8] are based on a semi-implicit alternating direction method. As the method is
only semi-implicit, arbitrarily large time steps are not allowed and the algorithm
proposed in [8] is expected to require more computations than the present one for
capturing the long time behavior. The second test case points out the limitations of
the reduced model when shallow flow conditions are not fully satisfied: the predicted
arrested state slightly differs with the experimental observation. A fully 3D simula-
tion, based on a regularized Bingham model was also available for this second test.
Nevertheless, this fully 3D computation was not able to reach the arrested state: it
could be due to the use of a regularized version of the Bingham model, while the re-
duced model presented in this paper bases on a sharp (un-regularized) one. Future
works will focus on applications to volcanic lava flows and temperature-dependent
problems.
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