
HAL Id: hal-01059330
https://hal.science/hal-01059330v1

Submitted on 29 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improtek: integrating harmonic controls into
improvisation in the filiation of OMax

Jérôme Nika, Marc Chemillier

To cite this version:
Jérôme Nika, Marc Chemillier. Improtek: integrating harmonic controls into improvisation in the
filiation of OMax. International Computer Music Conference (ICMC), Sep 2012, Ljubljana, Slovenia.
pp.180-187. �hal-01059330�

https://hal.science/hal-01059330v1
https://hal.archives-ouvertes.fr

_180 _181

IMPROTEK, INTEGRATING HARMONIC CONTROLS INTO
IMPROVISATION IN THE FILIATION OF OMAX

Jérôme Nika

Ircam - Paris, then Télécom ParisTech
46 rue Barrault - 75013 Paris

jerome.nika@telecom-paristech.fr

Marc Chemillier

Centre d’analyse et de mathématique sociales
EHESS, 190 avenue de France - 75013 Paris

chemilli@ehess.fr

ABSTRACT

We introduce ImproteK, a system integrating a rhythmic
framework and an underlying harmonic structure in a con-
text of musical improvisation. In the filiation of the impro-
visation software OMax [4, 3, 13], it is built on the factor
oracle structure to take advantage of the particularly rele-
vant and rich characteristics of this automaton in a musi-
cal environment [5]. Moreover, it can adapt to a regular
beat and produce improvisations following a given chord
progression. ImproteK is conceived as an interactive in-
strument dedicated to performance: its improvisations are
based on the style modeling performed on live playing or
on an offline corpus. Combined with pattern reuse tech-
niques, this modeling expands on harmonization and ar-
rangement in a harmonic interaction module.

1. INTRODUCTION

The aim of ImproteK is to combine style modeling and in-
teraction to install an original dialogue between musicians
and a virtual improviser feeding its inspiration on their
playing. Both these paradigms and the automaton struc-
ture at the heart of its implementation (section 2) make
this system a cousin of the improvisation software OMax
[4, 3, 13] conceived and developed at Ircam.

Following previous works on musical style modeling
by G. Assayag et. al [6], OMax is capable of learning
the style of a human improviser thanks to a representation
based on the oracle structure introduced by C. Allauzen
et. al [1] extended to a musical context [5]. The soft-
ware builds a model of a musician’s playing in real-time,
and is then able to navigate through this representation by
following different paths from that taken by the musician.
This leads to generate original improvisations with a com-
mon aesthetics.

With the same intention, ImproteK focuses on mea-
sured music supported by an underlying harmonic struc-
ture. It provides an enriched interaction by taking the beat
into account in the framework of a given chord progres-
sion (section 3). This conception of improvisation is made
concrete by an architecture enabling its integration in a
musical band whose tempo can be extracted and followed
(section 4). Finally, it introduces harmonic interaction by
extending style modeling to the scope of harmonization
and arrangement (section 5).

The purpose of this paper is first to recall some gen-
eral principles underlying both ImproteK and OMax ap-
proaches, and then to describe the specific developments
of the ImproteK software.

2. MUSICAL STYLE MODELING AND ORACLE
STRUCTURE

2.1. Style modeling in improvisation and harmoniza-
tion

Since M&Jam Factory [22], R. Rowe’s Cypher [19], or
G. Lewis’ Voyager [14], often considered as the first real-
time interactive systems, many ”virtual improvisation part-
ners” have been conceived. Most of them benefited from
the development of machine learning techniques with the
growing idea to get always closer to the interacting human
performer’s discourse.

Among them, the Continuator [16] conceived by F. Pa-
chet models the musical input using an extended Marko-
vian model to create new phrases from this learning. As
in OMax free mode, there is no rhythmic perception to
enable a synchronization with the musician. On the other
hand, GenJam [7] developed by J. Biles is closer to the
previous experiments of OMax with a beat mode: the
software provides an accompaniment with a given tempo
to support a musician’s improvisation. After listening, it
repeats some sequences modified through a genetic algo-
rithm. B. Thom’s Band Out of a Box [21] also involves a
non-interactive computer accompanist with a fixed tempo
in a trading fours interaction scheme where a human im-
proviser and a virtual partner repeatedly call and respond
in four-bar chunks. Each bar of the human improvisation
is assigned to a cluster called playing mode, and the com-
puter response is constituted by 4 bars belonging to the
same sequence of modes.

This last example introduces the recurring issue of seg-
menting and representing the musical inputs. This point
is particularly crucial in the corpus-based systems dealing
with harmonization, arrangement or accompaniment such
as ImproteK. Whether they are interactive and dedicated
to performance or conceived to be used offline, these sys-
tems can basically be classified according to two charac-
teristics: the exclusive use of formalized musical rules and
the use of a musical corpus (see [15] for the positioning of
ImproteK within a more exhaustive classification system).

In this last category, the corpus can be considered as a
training environment to create generative models (among
them C. Chuan and E. Chew [11], Microsoft Mysong-
Songsmith software [20]) and/or as a musical memory in
which fragments are retrieved and combined to create the
new material (G. Ramalho’s jazz bass player ImPact [18]).

The definition of the segmentation unit in the corpus
processing is one of the key differences: the grain can
be key notes of a reduced melody in C. Chuan and E.
Chew’s system, a single chord in Songsmith and the soft-
ware Band in a Box (PG Music), or particular chord chunks
in G. Ramalho’s ImPact. The idea is to find the right bal-
ance between long enough slices to provide plausibility
and coherence in the returned accompaniment, and fine
enough slices to avoid recopying too long and identifi-
able segments from the corpus. In the case of Improtek,
the chosen unit is the beat. Indeed, the oracle structure
prevents from choosing between musical smoothness and
innovation by providing continuity by construction, and
enables to work with such a fine grain.

2.2. Oracle and pattern recognition

The oracle was initially conceived for optimal string match-
ing, and was extended for computing repeated factors in
a word and for data compression. This acyclic automaton
represents at least all the factors in a word, and the incre-
mental construction algorithm is time and space linear in
its length (for the details of the construction algorithm, see
[1]).

The formal properties of the oracle structure are de-
tailed in the founding articles, and fully applied to the is-
sue of stylistic reinjection [4] in several OMax papers. We
briefly summarize here the tools providing the continuity
and coherence of the sequences generated through an or-
acle: the forward transitions and the suffix links.

The forward transitions (forward links, plain lines)
enable to reach every sub-pattern in the original sequence
starting from the initial state. In this way, every progres-
sion between consecutive states of the original sequence
can be generated.

0 1 2 3 4 5
a b c a d

b

d

d

6 7 8
c db

c

d

Figure 1. Oracle for the sequence abcadbcd: generation
of a sub-pattern starting from the initial state.

Fig. 1 shows the oracle for the sequence abcadbcd and
illustrates this point by displaying a path using forward
transitions to generate the sub-sequence bcd (0, 2, 3, 8),
originally occurring between the states 5 and 8.

The oracle also locates the repeated sub-pattern in the
original sequence with the suffix links (backward links,

dashed lines). They point at the final state of the previ-
ously encountered occurrences of a pattern.

0 1 2 3 4 5
a b c a d

b

d

d

6 7 8
c db

c

d

Figure 2. Oracle for the sequence abcadbcd: repeated
sub-pattern.

In the example of fig. 2, a suffix link connects the
states 7 and 3. 3 is indeed the leftmost position where a
longest repeated suffix of the sequence ending in 7 (ab-
cadbc) is recognized: bc.

The oracle structure can be used as a tool to create
new sequences by a non-linear navigation following the
previously introduced links thanks to its understanding of
the logic in the progressions present in the strings. In a
musical application, its ability to preserve the discourse
of the original material enables to develop an aesthetics
close to that of the musicians in interaction.

3. IMPROVISING WITHIN A METRIC AND
HARMONIC FRAMEWORK

3.1. The beat hypothesis

The philosophy of the current version of OMax is to turn
every single musical event into a state in an oracle object.
The free real-time navigation [2] through a thus structured
memory makes it an interactive instrument dedicated to
improvisation in a free musical context. The approach
of the ImproteK project differs by the integration of two
paradigms. First, its improvisations take place in an un-
derlying harmonic structure represented by a chord pro-
gression we will refer to as grid. In this way, it makes
the system able to expand its modeling on harmonization
and arrangement. Then, it takes a metric framework into
account by setting the beat as the elementary unit in its
acquisitions, restitutions, and generations.

The only musical hypothesis is therefore the existence
of a regular beat in the material listened and produced by
ImproteK. The tendancy to the synchronization with a pe-
riodic beat being a deep universal of the human music per-
ception [17], this sole assumption does not make the sys-
tem oriented towards a restricted musical field. Starting
from this point, we add a notion of labels making some
musical slices separated by beats, making them equiva-
lent (see section 5.1.2). This process enriches the set of
possible combinations, but does not carry any harmonic
hypothesis. Indeed, as discussed in the last section, the
references to the jazz idiom through this article come from
the context in which ImproteK has been used so far.

_180 _181

IMPROTEK, INTEGRATING HARMONIC CONTROLS INTO
IMPROVISATION IN THE FILIATION OF OMAX

Jérôme Nika

Ircam - Paris, then Télécom ParisTech
46 rue Barrault - 75013 Paris

jerome.nika@telecom-paristech.fr

Marc Chemillier

Centre d’analyse et de mathématique sociales
EHESS, 190 avenue de France - 75013 Paris

chemilli@ehess.fr

ABSTRACT

We introduce ImproteK, a system integrating a rhythmic
framework and an underlying harmonic structure in a con-
text of musical improvisation. In the filiation of the impro-
visation software OMax [4, 3, 13], it is built on the factor
oracle structure to take advantage of the particularly rele-
vant and rich characteristics of this automaton in a musi-
cal environment [5]. Moreover, it can adapt to a regular
beat and produce improvisations following a given chord
progression. ImproteK is conceived as an interactive in-
strument dedicated to performance: its improvisations are
based on the style modeling performed on live playing or
on an offline corpus. Combined with pattern reuse tech-
niques, this modeling expands on harmonization and ar-
rangement in a harmonic interaction module.

1. INTRODUCTION

The aim of ImproteK is to combine style modeling and in-
teraction to install an original dialogue between musicians
and a virtual improviser feeding its inspiration on their
playing. Both these paradigms and the automaton struc-
ture at the heart of its implementation (section 2) make
this system a cousin of the improvisation software OMax
[4, 3, 13] conceived and developed at Ircam.

Following previous works on musical style modeling
by G. Assayag et. al [6], OMax is capable of learning
the style of a human improviser thanks to a representation
based on the oracle structure introduced by C. Allauzen
et. al [1] extended to a musical context [5]. The soft-
ware builds a model of a musician’s playing in real-time,
and is then able to navigate through this representation by
following different paths from that taken by the musician.
This leads to generate original improvisations with a com-
mon aesthetics.

With the same intention, ImproteK focuses on mea-
sured music supported by an underlying harmonic struc-
ture. It provides an enriched interaction by taking the beat
into account in the framework of a given chord progres-
sion (section 3). This conception of improvisation is made
concrete by an architecture enabling its integration in a
musical band whose tempo can be extracted and followed
(section 4). Finally, it introduces harmonic interaction by
extending style modeling to the scope of harmonization
and arrangement (section 5).

The purpose of this paper is first to recall some gen-
eral principles underlying both ImproteK and OMax ap-
proaches, and then to describe the specific developments
of the ImproteK software.

2. MUSICAL STYLE MODELING AND ORACLE
STRUCTURE

2.1. Style modeling in improvisation and harmoniza-
tion

Since M&Jam Factory [22], R. Rowe’s Cypher [19], or
G. Lewis’ Voyager [14], often considered as the first real-
time interactive systems, many ”virtual improvisation part-
ners” have been conceived. Most of them benefited from
the development of machine learning techniques with the
growing idea to get always closer to the interacting human
performer’s discourse.

Among them, the Continuator [16] conceived by F. Pa-
chet models the musical input using an extended Marko-
vian model to create new phrases from this learning. As
in OMax free mode, there is no rhythmic perception to
enable a synchronization with the musician. On the other
hand, GenJam [7] developed by J. Biles is closer to the
previous experiments of OMax with a beat mode: the
software provides an accompaniment with a given tempo
to support a musician’s improvisation. After listening, it
repeats some sequences modified through a genetic algo-
rithm. B. Thom’s Band Out of a Box [21] also involves a
non-interactive computer accompanist with a fixed tempo
in a trading fours interaction scheme where a human im-
proviser and a virtual partner repeatedly call and respond
in four-bar chunks. Each bar of the human improvisation
is assigned to a cluster called playing mode, and the com-
puter response is constituted by 4 bars belonging to the
same sequence of modes.

This last example introduces the recurring issue of seg-
menting and representing the musical inputs. This point
is particularly crucial in the corpus-based systems dealing
with harmonization, arrangement or accompaniment such
as ImproteK. Whether they are interactive and dedicated
to performance or conceived to be used offline, these sys-
tems can basically be classified according to two charac-
teristics: the exclusive use of formalized musical rules and
the use of a musical corpus (see [15] for the positioning of
ImproteK within a more exhaustive classification system).

In this last category, the corpus can be considered as a
training environment to create generative models (among
them C. Chuan and E. Chew [11], Microsoft Mysong-
Songsmith software [20]) and/or as a musical memory in
which fragments are retrieved and combined to create the
new material (G. Ramalho’s jazz bass player ImPact [18]).

The definition of the segmentation unit in the corpus
processing is one of the key differences: the grain can
be key notes of a reduced melody in C. Chuan and E.
Chew’s system, a single chord in Songsmith and the soft-
ware Band in a Box (PG Music), or particular chord chunks
in G. Ramalho’s ImPact. The idea is to find the right bal-
ance between long enough slices to provide plausibility
and coherence in the returned accompaniment, and fine
enough slices to avoid recopying too long and identifi-
able segments from the corpus. In the case of Improtek,
the chosen unit is the beat. Indeed, the oracle structure
prevents from choosing between musical smoothness and
innovation by providing continuity by construction, and
enables to work with such a fine grain.

2.2. Oracle and pattern recognition

The oracle was initially conceived for optimal string match-
ing, and was extended for computing repeated factors in
a word and for data compression. This acyclic automaton
represents at least all the factors in a word, and the incre-
mental construction algorithm is time and space linear in
its length (for the details of the construction algorithm, see
[1]).

The formal properties of the oracle structure are de-
tailed in the founding articles, and fully applied to the is-
sue of stylistic reinjection [4] in several OMax papers. We
briefly summarize here the tools providing the continuity
and coherence of the sequences generated through an or-
acle: the forward transitions and the suffix links.

The forward transitions (forward links, plain lines)
enable to reach every sub-pattern in the original sequence
starting from the initial state. In this way, every progres-
sion between consecutive states of the original sequence
can be generated.

0 1 2 3 4 5
a b c a d

b

d

d

6 7 8
c db

c

d

Figure 1. Oracle for the sequence abcadbcd: generation
of a sub-pattern starting from the initial state.

Fig. 1 shows the oracle for the sequence abcadbcd and
illustrates this point by displaying a path using forward
transitions to generate the sub-sequence bcd (0, 2, 3, 8),
originally occurring between the states 5 and 8.

The oracle also locates the repeated sub-pattern in the
original sequence with the suffix links (backward links,

dashed lines). They point at the final state of the previ-
ously encountered occurrences of a pattern.

0 1 2 3 4 5
a b c a d

b

d

d

6 7 8
c db

c

d

Figure 2. Oracle for the sequence abcadbcd: repeated
sub-pattern.

In the example of fig. 2, a suffix link connects the
states 7 and 3. 3 is indeed the leftmost position where a
longest repeated suffix of the sequence ending in 7 (ab-
cadbc) is recognized: bc.

The oracle structure can be used as a tool to create
new sequences by a non-linear navigation following the
previously introduced links thanks to its understanding of
the logic in the progressions present in the strings. In a
musical application, its ability to preserve the discourse
of the original material enables to develop an aesthetics
close to that of the musicians in interaction.

3. IMPROVISING WITHIN A METRIC AND
HARMONIC FRAMEWORK

3.1. The beat hypothesis

The philosophy of the current version of OMax is to turn
every single musical event into a state in an oracle object.
The free real-time navigation [2] through a thus structured
memory makes it an interactive instrument dedicated to
improvisation in a free musical context. The approach
of the ImproteK project differs by the integration of two
paradigms. First, its improvisations take place in an un-
derlying harmonic structure represented by a chord pro-
gression we will refer to as grid. In this way, it makes
the system able to expand its modeling on harmonization
and arrangement. Then, it takes a metric framework into
account by setting the beat as the elementary unit in its
acquisitions, restitutions, and generations.

The only musical hypothesis is therefore the existence
of a regular beat in the material listened and produced by
ImproteK. The tendancy to the synchronization with a pe-
riodic beat being a deep universal of the human music per-
ception [17], this sole assumption does not make the sys-
tem oriented towards a restricted musical field. Starting
from this point, we add a notion of labels making some
musical slices separated by beats, making them equiva-
lent (see section 5.1.2). This process enriches the set of
possible combinations, but does not carry any harmonic
hypothesis. Indeed, as discussed in the last section, the
references to the jazz idiom through this article come from
the context in which ImproteK has been used so far.

_182 _183

3.2. Mode beat oracles

The improvisation module is built on a previous version
of OMax (OMax 2.0, 2004) conceived as a Lisp library
under the OpenMusic environment [9]. This version im-
plemented the oracle structure both in a free improvisation
context (mode free, direction adopted by the current ver-
sion of OMax) and with a regular beat (mode beat, starting
point of ImproteK).

In this view, each state of the oracles represents a mu-
sical slice whose duration is given by the current tempo
and which contains differents types of events happening
between two beats. These events can be musical MIDI se-
quences - melody or accompaniment fragments - or sym-
bolic information such as chord labels. During the gener-
ation steps, these different features constituting the states
will sometimes be considered as elementary outputs con-
catenated in a fragment reuse process, and sometimes seen
as labels to compare with the given path to follow in the
navigation through the oracle.

3.3. Learning and improvising with the live oracle

ImproteK improvises by retrieving and combining pre-
existant elementary units: the new phrases are built by
concatenating ”beat slices” coming from its musical mem-
ory. These fragments are not independently and randomly
drawn but continuously collected by following the chosen
harmonic grid supporting the musical session as a guide-
line.

This process involves a first instance of the oracle struc-
ture: the live oracle, which carries its learning process out
on the phrases played by the musicians (fig. 3). These
MIDI inputs are indeed indexed beat by beat in real-time
by the chord labels of the current harmonic grid (see sec-
tion 4.2) and are therefore formated for the building of this
object.

Live Oracle

Figure 3. Learning the live oracle

What we call ”improvise” is the generation of new
musical phrases using the memory stored in this live or-
acle. To do so, the chord labels in the oracle are con-
sidered as indexes in the context of a constrained navi-
gation, a heuristic designed by G. Assayag. This mech-
anism amounts to searching sub-patterns of an input se-

quence (here the harmonic grid) in a different sequence
(here the oracle’s harmonic labels). When a label matches,
the melodic beat slice present in the state is returned to be
added to the the sequence constituted by the results of the
previous steps.

3.4. Constrained Navigation and continuity

To ”improvize following a grid” means here to follow a
path in the automaton using transitions indexed by labels
coming from that grid. At each step, if no matching la-
bel is found from the current state, the navigation tries to
follow a suffix link pointing on an other state where the re-
quired label could be read. The suffix links provide the ex-
istence of a common context between both concatenated
fragments in the orignal sequence used to build the ora-
cle. In this way, the navigation first looks for continuity
by trying to stick to the previously learned progressions.
Then, it searches for the labels independently of the local
context if they do not appear, even after transposition, in
the chosen oracle.

A continuity parameter is tested at each step of the
calculation. It counts the number of successive forward
transitions followed during the navigation, and then gives
the length of the duplicated segments from the sequence
in the oracle. By imposing a maximum continuity param-
eter, one can therefore quantify the wished balance be-
tween fidelity to the original sequence and originality in
the generated improvisation: a high value will lead to a
high ressemblance whereas a low value will bring more
surprises.

The constrained navigation process consists in read-
ing the successive labels of the input grid to look for beats
indexed by these same labels in the oracle. If the current
continuity parameter does not exceed the imposed maxi-
mum continuity, the search is operated following graded
modes:

• Continuity mode: If its label matches, follow a for-
ward transition, update the current beat position in
the oracle, and output the associated melody frag-
ment. If not, switch to Suffix mode if operating
suffix links are found, otherwise switch to Nothing
mode.

• Suffix mode: Follow the suffix link pointing on the
longest repeated suffix to reach a matching label
(see fig. 4) , update the current beat position in the
oracle, and output the associated melody fragment.
Otherwise switch to Nothing mode.

• Nothing mode: The pattern matching is performed
independently of the context and the label is searched
in the whole oracle. A transposition can be used if
necessary.

Fig. 4 shows an example of generation step. At the
current stage, the chord labels d, b and c have been searched
and found in the live oracle, and the concatenation of
the associated musical fragments D, B´ and C´ forms the

a b a d d

A B C A' D B' C' D'

d b c a

D B' C' A'

Input : Chord labels sequence (grid)

Output : Improvisation

Live Oracle

bc c

Figure 4. Constrained navigation through the live oracle

phrase being built. The current position in the oracle is
the next-to-last state (c / C´) and the following chord label
read in the input grid is a. No forward transition pointing
on a matching label can be found, so we switch to suf-
fix mode. The suffix link starting from the current state
points, by definition, on the final state of the lefmost re-
peated suffix of dbc (bc): (c / C). A forward transition
matching the searched label a is found in this state. So we
finally follow the suffix link to jump from (c / C´) to (c /
C) where we arrive in the common context (bc) to be able
to reach the new beat (a / A´)

The notion of common context is crucial because it
ensures coherence and smooth musical transitions in the
generated sequences even if the navigation involves jumps
between different zones of the oracle. Indeed, in the case
of this exemple, neither the input chord labels sequence
nor the output musical segment can be found on their own
in the memory of the live oracle.

4. TOWARDS AN INTERACTIVE INSTRUMENT

4.1. Architecture

The live performance from the musicians is received, seg-
mented, formatted and saved in real-time via an interface
developed under Max/MSP. Through this same interface,
the ImproteK user selects a symbolic harmonic grid which
constitutes the spinal column of the improvisation. Then,
he has access to control parameters to guide the calcula-
tion of different kinds of musical phrases: new improvisa-
tions accompanied or not (see section 5) or live arrange-
ments of the grid (see paragraph 4.5).

These processing instructions are sent via OSC pro-
tocol to the OpenMusic improvisation module introduced
in the previous section (fig. 5), following therefore the
global architecture of OMax 2.0 who worked in live inter-
action with Max/MSP through a basic interface who did
not deal with the tempo management exposed in the fol-
lowing paragraph.

Under this version, a metronymic beat was imposed
by the computer. This condition necessarily implied the
loss of a part of the musical richness, and constrained the

IMPROVISATION MODULE

INTERFACE

Improvisation
MIDI inputs

Segmentation
Labelling

Selection
Settings

Saved
improvisations

Learning
Generation

Play following
the current grid

Percussion
audio inputs

Beat tracking
Local tempo

Current position
in the grid

Performer

Figure 5. Architecure

musician’s expression. Based on this analysis, a tempo
following module was implemented to extract the tempo
directly from the current improvisation session.

4.2. Get rhythm

During the performance, an external source of beat is re-
quired to segment the inputs from the musician in the lis-
tening process, and to play phrases rhythmically fitting the
current improvisation. To do so, ImproteK integrates the
association of a beat tracker and a score follower acting
as a sequencer by emitting in real-time the current posi-
tion in the harmonic grid. First, it marks every beat of the
listened live improvisations with the current chord label.
Then, the phrases returned by the improvisation module
being labelized sequences, it triggers the playing of the
corresponding beat slices.

The aim of the ImproteK project is to be a proper in-
teractive instrument finding its place within a band. It was
therefore fundamental that its use did not limit creativ-
ity and expressivity by subordinating the musicians to a
metronomic tempo dictated by its outputs. The Max/MSP
beat tracker object [8] was especially developed to be in-
tegrated into an environment related to OMax to result in
a richer musicality, the previous applications of the mode
beat oracles involving a fixed tempo imposed by the sys-
tem.

This module processes MIDI or audio streams (for ex-
ample the rhythm section of the band) and continually es-
timates the local tempo to be used to generate and play
improvisations adjusted to the necessarily variable human
beat. During an initialization phase, the user provides a
tempo indication with a manual time beating whose goal
is also to give the initial phase by indicating the absolute
dates of the beats in order to avoid an offbeat synchroniza-
tion. Following this stage, the tempo variations are calcu-
lated throughout the whole performance (the description
of the beat tracker is not the subject of the present paper,
more details can be found in [8]). This signal is then used
as a clock to trigger the different elements constituting the
sequences loaded in Antescofo.

_182 _183

3.2. Mode beat oracles

The improvisation module is built on a previous version
of OMax (OMax 2.0, 2004) conceived as a Lisp library
under the OpenMusic environment [9]. This version im-
plemented the oracle structure both in a free improvisation
context (mode free, direction adopted by the current ver-
sion of OMax) and with a regular beat (mode beat, starting
point of ImproteK).

In this view, each state of the oracles represents a mu-
sical slice whose duration is given by the current tempo
and which contains differents types of events happening
between two beats. These events can be musical MIDI se-
quences - melody or accompaniment fragments - or sym-
bolic information such as chord labels. During the gener-
ation steps, these different features constituting the states
will sometimes be considered as elementary outputs con-
catenated in a fragment reuse process, and sometimes seen
as labels to compare with the given path to follow in the
navigation through the oracle.

3.3. Learning and improvising with the live oracle

ImproteK improvises by retrieving and combining pre-
existant elementary units: the new phrases are built by
concatenating ”beat slices” coming from its musical mem-
ory. These fragments are not independently and randomly
drawn but continuously collected by following the chosen
harmonic grid supporting the musical session as a guide-
line.

This process involves a first instance of the oracle struc-
ture: the live oracle, which carries its learning process out
on the phrases played by the musicians (fig. 3). These
MIDI inputs are indeed indexed beat by beat in real-time
by the chord labels of the current harmonic grid (see sec-
tion 4.2) and are therefore formated for the building of this
object.

Live Oracle

Figure 3. Learning the live oracle

What we call ”improvise” is the generation of new
musical phrases using the memory stored in this live or-
acle. To do so, the chord labels in the oracle are con-
sidered as indexes in the context of a constrained navi-
gation, a heuristic designed by G. Assayag. This mech-
anism amounts to searching sub-patterns of an input se-

quence (here the harmonic grid) in a different sequence
(here the oracle’s harmonic labels). When a label matches,
the melodic beat slice present in the state is returned to be
added to the the sequence constituted by the results of the
previous steps.

3.4. Constrained Navigation and continuity

To ”improvize following a grid” means here to follow a
path in the automaton using transitions indexed by labels
coming from that grid. At each step, if no matching la-
bel is found from the current state, the navigation tries to
follow a suffix link pointing on an other state where the re-
quired label could be read. The suffix links provide the ex-
istence of a common context between both concatenated
fragments in the orignal sequence used to build the ora-
cle. In this way, the navigation first looks for continuity
by trying to stick to the previously learned progressions.
Then, it searches for the labels independently of the local
context if they do not appear, even after transposition, in
the chosen oracle.

A continuity parameter is tested at each step of the
calculation. It counts the number of successive forward
transitions followed during the navigation, and then gives
the length of the duplicated segments from the sequence
in the oracle. By imposing a maximum continuity param-
eter, one can therefore quantify the wished balance be-
tween fidelity to the original sequence and originality in
the generated improvisation: a high value will lead to a
high ressemblance whereas a low value will bring more
surprises.

The constrained navigation process consists in read-
ing the successive labels of the input grid to look for beats
indexed by these same labels in the oracle. If the current
continuity parameter does not exceed the imposed maxi-
mum continuity, the search is operated following graded
modes:

• Continuity mode: If its label matches, follow a for-
ward transition, update the current beat position in
the oracle, and output the associated melody frag-
ment. If not, switch to Suffix mode if operating
suffix links are found, otherwise switch to Nothing
mode.

• Suffix mode: Follow the suffix link pointing on the
longest repeated suffix to reach a matching label
(see fig. 4) , update the current beat position in the
oracle, and output the associated melody fragment.
Otherwise switch to Nothing mode.

• Nothing mode: The pattern matching is performed
independently of the context and the label is searched
in the whole oracle. A transposition can be used if
necessary.

Fig. 4 shows an example of generation step. At the
current stage, the chord labels d, b and c have been searched
and found in the live oracle, and the concatenation of
the associated musical fragments D, B´ and C´ forms the

a b a d d

A B C A' D B' C' D'

d b c a

D B' C' A'

Input : Chord labels sequence (grid)

Output : Improvisation

Live Oracle

bc c

Figure 4. Constrained navigation through the live oracle

phrase being built. The current position in the oracle is
the next-to-last state (c / C´) and the following chord label
read in the input grid is a. No forward transition pointing
on a matching label can be found, so we switch to suf-
fix mode. The suffix link starting from the current state
points, by definition, on the final state of the lefmost re-
peated suffix of dbc (bc): (c / C). A forward transition
matching the searched label a is found in this state. So we
finally follow the suffix link to jump from (c / C´) to (c /
C) where we arrive in the common context (bc) to be able
to reach the new beat (a / A´)

The notion of common context is crucial because it
ensures coherence and smooth musical transitions in the
generated sequences even if the navigation involves jumps
between different zones of the oracle. Indeed, in the case
of this exemple, neither the input chord labels sequence
nor the output musical segment can be found on their own
in the memory of the live oracle.

4. TOWARDS AN INTERACTIVE INSTRUMENT

4.1. Architecture

The live performance from the musicians is received, seg-
mented, formatted and saved in real-time via an interface
developed under Max/MSP. Through this same interface,
the ImproteK user selects a symbolic harmonic grid which
constitutes the spinal column of the improvisation. Then,
he has access to control parameters to guide the calcula-
tion of different kinds of musical phrases: new improvisa-
tions accompanied or not (see section 5) or live arrange-
ments of the grid (see paragraph 4.5).

These processing instructions are sent via OSC pro-
tocol to the OpenMusic improvisation module introduced
in the previous section (fig. 5), following therefore the
global architecture of OMax 2.0 who worked in live inter-
action with Max/MSP through a basic interface who did
not deal with the tempo management exposed in the fol-
lowing paragraph.

Under this version, a metronymic beat was imposed
by the computer. This condition necessarily implied the
loss of a part of the musical richness, and constrained the

IMPROVISATION MODULE

INTERFACE

Improvisation
MIDI inputs

Segmentation
Labelling

Selection
Settings

Saved
improvisations

Learning
Generation

Play following
the current grid

Percussion
audio inputs

Beat tracking
Local tempo

Current position
in the grid

Performer

Figure 5. Architecure

musician’s expression. Based on this analysis, a tempo
following module was implemented to extract the tempo
directly from the current improvisation session.

4.2. Get rhythm

During the performance, an external source of beat is re-
quired to segment the inputs from the musician in the lis-
tening process, and to play phrases rhythmically fitting the
current improvisation. To do so, ImproteK integrates the
association of a beat tracker and a score follower acting
as a sequencer by emitting in real-time the current posi-
tion in the harmonic grid. First, it marks every beat of the
listened live improvisations with the current chord label.
Then, the phrases returned by the improvisation module
being labelized sequences, it triggers the playing of the
corresponding beat slices.

The aim of the ImproteK project is to be a proper in-
teractive instrument finding its place within a band. It was
therefore fundamental that its use did not limit creativ-
ity and expressivity by subordinating the musicians to a
metronomic tempo dictated by its outputs. The Max/MSP
beat tracker object [8] was especially developed to be in-
tegrated into an environment related to OMax to result in
a richer musicality, the previous applications of the mode
beat oracles involving a fixed tempo imposed by the sys-
tem.

This module processes MIDI or audio streams (for ex-
ample the rhythm section of the band) and continually es-
timates the local tempo to be used to generate and play
improvisations adjusted to the necessarily variable human
beat. During an initialization phase, the user provides a
tempo indication with a manual time beating whose goal
is also to give the initial phase by indicating the absolute
dates of the beats in order to avoid an offbeat synchroniza-
tion. Following this stage, the tempo variations are calcu-
lated throughout the whole performance (the description
of the beat tracker is not the subject of the present paper,
more details can be found in [8]). This signal is then used
as a clock to trigger the different elements constituting the
sequences loaded in Antescofo.

_184 _185

4.3. Using a score follower as a sequencer

Antescofo [12] is a polyphonic score following system
and a synchronous programming language for musical com-
position conceived by A. Cont. This object, developed
as an external module for Max/MSP and PureData pro-
gramming environments, conducts an automatic recogni-
tion of music score position from a real-time audio stream.
It enables the synchronization of an instrumental perfor-
mance with the computer realized elements of an elec-
tronic score.

The sequences calculated by the Lisp/OpenMusic mod-
ule are written and saved as Anstescofo scores. The phrases
thus generated broaden the improvisations collection and
are available to be loaded by the performer during the im-
provisation: in our use of Antescofo, the beats provided
by the beat tracker object act as the ”notes” in the elec-
tronic score, and the contents to be triggered are the beat
slices. Finally, an improvisation generated from an acqui-
sition performed at a given tempo can be played with a
different one since the time notation under the Antescofo
format is relative.

4.4. Segmenting and indexing the inputs

This couple of objects in charge of the beat management
is found downstream to play the generated sequences, and
equally upstream in the live acquisition process. The im-
provisation session takes place in the scope of a known
harmonic grid, and this last is written as a progression of
chord labels, each of them being associated to a numbered
beat under the Antescofo format. In this way, a live in-
dexing of the MIDI inputs can be performed with these
harmonic labels.

We use a particular encoding to mark the MIDI streams:
the channel 16 is dedicated to the grid representation with
conventions to notify the root and the type of the chords
which are received from Antescofo. In this way, the MIDI
buffers used by the improvisation module contains all the
required information of segmentation and indexing to build
new oracles or musical phrases.

4.5. A source of proposals

ImproteK is conceived as an instrument played by a full-
time performer interacting with the rest of the band. He
pilots the system through a graphical interface and con-
trols in real-time the parameters of both steps of learning
and generation which are initiated on demand. During
the performance, he selects the musical phrases given as
inputs for the style modeling, determines the current or-
acles (the live oracle as well as the instances involved in
the harmonization and arrangement module introduced in
section 5) and sets technical parameters such as the max-
imum continuity parameter in the navigation for every or-
acle. Among other characteristics, the learning material,
the length, or even the ”boldness” of the improvisations
are therefore left to his discretion.

The performer is not only in charge of the listening
and learning but he also fully leads the playing via key-
board controls. He has access to phrases generated from
the last musical events as well as the ones from the previ-
ous sessions. Different forms of improvisation are avail-
able: they can be for instance melodic or accompanied
sequences, or live arrangements of the grid, and he can
easily and immediately switch phrases in real-time in a
continuous musical discourse.

Finally, the part played by ImproteK can evolve during
an improvisation session: it is actually able to be soloist
and/or accompanist depending on the nature of the se-
quences chosen by the performer to fill the live oracle.
Indeed, making this oracle listen to an accompanist’s play-
ing will lead to perform real-time arrangement of the har-
monic grid. The second way to deal with accompaniment
is the harmonization and arrangement module introduced
in the following section.

5. HARMONIZED AND ARRANGED
IMPROVISATIONS

The harmonization and arrangement module can be used
in an autonomous way as an independent block produc-
ing an accompaniment for a melody without interacting
in real-time. Yet, it was conceived to be integrated in the
wider environment of ImproteK to compose new accom-
panied improvisations.

It does not use any musical rule and is exclusively
based on a corpus which is simultaneously seen as a learn-
ing ground to extract empirical harmonization mechanisms,
and as a musical memory in the framework of a pattern
reuse technique to make the accompaniment concrete once
it has been calculated.

5.1. Learning step

5.1.1. The corpus

The learning of the corpus is performed on three features:
the melodic track (theme, solo improvisation, etc.), the
accompaniment track, and the associated harmonic grid.
It is carried out on live performances by musicians and
consists for the moment in jazz standards and pieces by
Bernard Lubat.

We refer to ”corpus” to designate the set of models
extracted from an offline learning as well as those cre-
ated during the current performance which are immedi-
ately available for generation: once again, the system lis-
tens to the musicians, segments the inputs by beat, and
learns these sequences as well as the associations between
the three features by building oracle objects. The learning
step is actually double. A couple of oracles is built for ev-
ery element of the corpus: an harmonization oracle, and
an arrangement oracle (fig. 6).

The harmonization oracle records the sequence of as-
sociations between the melodic fragments and the chord
labels of the beats it covers. In the case of the arrangement

Harmonization Oracle

Arrangement Oracle

Figure 6. Learning the harmonization and arrangement
oracles.

oracle, the concerned associations involve the chord la-
bels and the fragments of accompaniment. As their names
suggest, they will be used to associate a symbolic chord
progression with a melodic track, and a accompaniment
track with a symbolic chord progression, respectively.

5.1.2. Equivalence

This incremental building, as wells as the pattern match-
ing described in the next paragraph (5.2.1), is actually per-
formed on equivalence classes.

In the case of a harmonization oracle, two states are
considered as equivalent if they are indexed by the same
notes without taking into consideration their duration, or-
der, or repetition in the beat slice. In the same way, two
states of an arrangement oracle are equivalent if they are
indexed by the same chord label whatever the associated
fragment of accompaniment is.

These equivalences have been introduced to avoid the
unproductive rigidity which could have been brought by
a strict equality criterion. The consequence regarding the
oracles’ structure impacts the number of operating suffix
links as illustrates the simplified example in fig 7, applied
to a character string: an oracle built on the word oracle.

In the first example, every suffix link points on the ini-
tial state because no repeated sub-pattern has been found
(every letter only appears once). In the second example
using the equivalence classes vowels and consonants, we
observe repeated sub-patterns and the structure is much
more complex.

5.2. Generation step

5.2.1. Harmonizing and arranging in a cascade

The whole harmonization and arrangement process amounts
to repeating the mechanism of constrained navigation in
a cascade, first with a chosen harmonization oracle then
with a chosen arrangement oracle (fig. 8).

0 1
o

2
r

3
a

4
c

5
l

6
e

e

c
a

l

r

0 1
(o)

2
(r)

3
(a)

4
(c)

5
(l)

6
(e)

1

2

...

Figure 7. Suffix links and equivalence classes.

Current harmonization oracle

Current arrangement oracle

Input : segmented phrase

Output : accompaniment track

Figure 8. Harmonization and arrangement process.

_184 _185

4.3. Using a score follower as a sequencer

Antescofo [12] is a polyphonic score following system
and a synchronous programming language for musical com-
position conceived by A. Cont. This object, developed
as an external module for Max/MSP and PureData pro-
gramming environments, conducts an automatic recogni-
tion of music score position from a real-time audio stream.
It enables the synchronization of an instrumental perfor-
mance with the computer realized elements of an elec-
tronic score.

The sequences calculated by the Lisp/OpenMusic mod-
ule are written and saved as Anstescofo scores. The phrases
thus generated broaden the improvisations collection and
are available to be loaded by the performer during the im-
provisation: in our use of Antescofo, the beats provided
by the beat tracker object act as the ”notes” in the elec-
tronic score, and the contents to be triggered are the beat
slices. Finally, an improvisation generated from an acqui-
sition performed at a given tempo can be played with a
different one since the time notation under the Antescofo
format is relative.

4.4. Segmenting and indexing the inputs

This couple of objects in charge of the beat management
is found downstream to play the generated sequences, and
equally upstream in the live acquisition process. The im-
provisation session takes place in the scope of a known
harmonic grid, and this last is written as a progression of
chord labels, each of them being associated to a numbered
beat under the Antescofo format. In this way, a live in-
dexing of the MIDI inputs can be performed with these
harmonic labels.

We use a particular encoding to mark the MIDI streams:
the channel 16 is dedicated to the grid representation with
conventions to notify the root and the type of the chords
which are received from Antescofo. In this way, the MIDI
buffers used by the improvisation module contains all the
required information of segmentation and indexing to build
new oracles or musical phrases.

4.5. A source of proposals

ImproteK is conceived as an instrument played by a full-
time performer interacting with the rest of the band. He
pilots the system through a graphical interface and con-
trols in real-time the parameters of both steps of learning
and generation which are initiated on demand. During
the performance, he selects the musical phrases given as
inputs for the style modeling, determines the current or-
acles (the live oracle as well as the instances involved in
the harmonization and arrangement module introduced in
section 5) and sets technical parameters such as the max-
imum continuity parameter in the navigation for every or-
acle. Among other characteristics, the learning material,
the length, or even the ”boldness” of the improvisations
are therefore left to his discretion.

The performer is not only in charge of the listening
and learning but he also fully leads the playing via key-
board controls. He has access to phrases generated from
the last musical events as well as the ones from the previ-
ous sessions. Different forms of improvisation are avail-
able: they can be for instance melodic or accompanied
sequences, or live arrangements of the grid, and he can
easily and immediately switch phrases in real-time in a
continuous musical discourse.

Finally, the part played by ImproteK can evolve during
an improvisation session: it is actually able to be soloist
and/or accompanist depending on the nature of the se-
quences chosen by the performer to fill the live oracle.
Indeed, making this oracle listen to an accompanist’s play-
ing will lead to perform real-time arrangement of the har-
monic grid. The second way to deal with accompaniment
is the harmonization and arrangement module introduced
in the following section.

5. HARMONIZED AND ARRANGED
IMPROVISATIONS

The harmonization and arrangement module can be used
in an autonomous way as an independent block produc-
ing an accompaniment for a melody without interacting
in real-time. Yet, it was conceived to be integrated in the
wider environment of ImproteK to compose new accom-
panied improvisations.

It does not use any musical rule and is exclusively
based on a corpus which is simultaneously seen as a learn-
ing ground to extract empirical harmonization mechanisms,
and as a musical memory in the framework of a pattern
reuse technique to make the accompaniment concrete once
it has been calculated.

5.1. Learning step

5.1.1. The corpus

The learning of the corpus is performed on three features:
the melodic track (theme, solo improvisation, etc.), the
accompaniment track, and the associated harmonic grid.
It is carried out on live performances by musicians and
consists for the moment in jazz standards and pieces by
Bernard Lubat.

We refer to ”corpus” to designate the set of models
extracted from an offline learning as well as those cre-
ated during the current performance which are immedi-
ately available for generation: once again, the system lis-
tens to the musicians, segments the inputs by beat, and
learns these sequences as well as the associations between
the three features by building oracle objects. The learning
step is actually double. A couple of oracles is built for ev-
ery element of the corpus: an harmonization oracle, and
an arrangement oracle (fig. 6).

The harmonization oracle records the sequence of as-
sociations between the melodic fragments and the chord
labels of the beats it covers. In the case of the arrangement

Harmonization Oracle

Arrangement Oracle

Figure 6. Learning the harmonization and arrangement
oracles.

oracle, the concerned associations involve the chord la-
bels and the fragments of accompaniment. As their names
suggest, they will be used to associate a symbolic chord
progression with a melodic track, and a accompaniment
track with a symbolic chord progression, respectively.

5.1.2. Equivalence

This incremental building, as wells as the pattern match-
ing described in the next paragraph (5.2.1), is actually per-
formed on equivalence classes.

In the case of a harmonization oracle, two states are
considered as equivalent if they are indexed by the same
notes without taking into consideration their duration, or-
der, or repetition in the beat slice. In the same way, two
states of an arrangement oracle are equivalent if they are
indexed by the same chord label whatever the associated
fragment of accompaniment is.

These equivalences have been introduced to avoid the
unproductive rigidity which could have been brought by
a strict equality criterion. The consequence regarding the
oracles’ structure impacts the number of operating suffix
links as illustrates the simplified example in fig 7, applied
to a character string: an oracle built on the word oracle.

In the first example, every suffix link points on the ini-
tial state because no repeated sub-pattern has been found
(every letter only appears once). In the second example
using the equivalence classes vowels and consonants, we
observe repeated sub-patterns and the structure is much
more complex.

5.2. Generation step

5.2.1. Harmonizing and arranging in a cascade

The whole harmonization and arrangement process amounts
to repeating the mechanism of constrained navigation in
a cascade, first with a chosen harmonization oracle then
with a chosen arrangement oracle (fig. 8).

0 1
o

2
r

3
a

4
c

5
l

6
e

e

c
a

l

r

0 1
(o)

2
(r)

3
(a)

4
(c)

5
(l)

6
(e)

1

2

...

Figure 7. Suffix links and equivalence classes.

Current harmonization oracle

Current arrangement oracle

Input : segmented phrase

Output : accompaniment track

Figure 8. Harmonization and arrangement process.

_186 _187

The harmonization outputs a chord labels progression,
and this symbolic sequence therefore becomes the path to
follow for the navigation in the chosen arrangement ora-
cle (filled by sequences of associations between melodic
fragments and chord label sliced by beat). The pattern
matching is this time performed on chord labels to output
a sequence formed by the concatenation of the accompa-
niment fragments found in every stage of the research.

5.2.2. Formal intermediary

It is important to note that, even if an intermediate step
involves symbolic data such as chord labels, no harmonic
rule is used to perform harmonization and arrangement.
The denomination of this formal intermediary is only user-
oriented to make performance more intuitive: the system
itself is unaware of the musical meaning of this label-
ing and only considers two chord labels as two indexes
to compare.

The insertion of this formal language at an interme-
diate level separating the process in two different steps is
motivated by three reasons. First, it naturally comes from
the usual notation in jazz scores as we found in the Re-
albooks where a melody is facing a corresponding chords
label progression. Then, it enables to multiply the possi-
bilities: a phrase can indeed be harmonized with a given
oracle and then arranged using an arrangement oracle learned
on a completely different corpus. Finally, it will allow to
implement in a future development an optional level of
chord substitutions based on a grammar [10].

Furthermore, the terms ”harmonization” and ”arrange-
ment” come from the fact that ImproteK has been used so
far in tonal jazz sessions. In other musical contexts, its
genericity enables an understanding of other forms of ver-
tical associations that can be indexed in an agnostic way
with an other grammar.

6. EXPERIMENTS AND RESULTS

ImproteK has been used as a virtual partner by profes-
sional musicians, in particular French jazz musician Bernard
Lubat during improvisation sessions conducted in Uzeste
in 2011. Video and audio examples can be found at
http://ehess.modelisationsavoirs.fr/improtech/improtek.

Some of them show the real-time control of the soft-
ware through the Max/MSP interface (see for instance the
improvisation based on Erroll Garner’s mambo style tran-
scriptions). The direct interaction of the computer with
a live musician is illustrated by improvisation sessions
where Bernard Lubat and ImproteK alternately play as
soloist and accompanist, or trade choruses.

Other series illustrate the wide variety of results for a
same input in the harmonization and arrangement module
depending on the user’s choice to use different parts of the
corpus for both steps, and on the continuity he imposed.
It goes from ”imitation” by choosing a same part of the
corpus for the live, harmonization, and arrangement ora-
cles, to originality or even extravagance when completely
unrelated oracles are used.

7. CONCLUSION

We described a music generation system which is able to
understand the logic of the horizontal and vertical asso-
ciations in a live musical improvisation performance to
become itself a source of proposals by developing its own
aesthetics close to that of its partners. Its prime material
is indeed their playing. It is used at the same time as a
learning ground for the style modeling, and as a musical
memory to develop its own improvisations.

The properties of the oracle structuring this memory
enable to get over the dilemma ”innovation vs. coher-
ence” by ensuring continuity by construction, and there-
fore giving the possibility to work with a fine grain: the
beat is set as the elementary unit in the calculation, and its
restitution is made possible by following a beat tracker to
reach a better interaction.

ImproteK is indeed conceived as a proper instrument
and requires a full-time performer to manage the learning,
the generation, and the playing in real-time. It can alter-
nately be soloist or accompanist and is even capable of
creating accompanied improvisations via the harmoniza-
tion and arrangement module.

Current work is devoted to the evaluation of the com-
patibility between the harmonic progression of the current
session and that of the accompaniment returned by this
module. For the moment, the performer is given the com-
parison between both grids through the interface which
displays the respective chord labels. This study will lead
to a better integration of the ”harmonic interaction” in the
instrument, and will make its use more intuitive.

Acknowledgment

This work is realised with the support of the French Na-
tional Research Agency, in the framework of the project
”IMPROTECH”, ANR-09-SSOC-068.

We wish to thank the OMax family Gérard Assayag,
Georges Bloch, and Benjamin Lévy for the fruitful ex-
change of experiences and ideas regarding the concep-
tion and implementation of ImproteK. We thank Laurent
Bonnasse-Gahot who made it get rhythm with the beat
tracker, Carlos Agon and Jean Bresson for their advice
concerning OpenMusic, and Arshia Cont for the custom-
made Antescofos. Finally, we want to express special
thanks to La Compagnie Lubat for the always enriching
sessions.

8. REFERENCES

[1] C. Allauzen, M. Crochemore, and M. Raffinot, “Fac-
tor oracle: A new structure for pattern matching,” in
SOFSEM 99: Theory and Practice of Informatics.
Springer, 1999, pp. 758–758.

[2] G. Assayag and G. Bloch, “Navigating the oracle: A

heuristic approach,” in International Computer Mu-
sic Conference, vol. 7, 2007, pp. 405–412.

[3] G. Assayag, G. Bloch, and M. Chemillier, “Omax-
ofon,” Sound and Music Computing (SMC), 2006.

[4] G. Assayag, G. Bloch, M. Chemillier, A. Cont, and
S. Dubnov, “Omax brothers: a dynamic topology of
agents for improvization learning,” in Proceedings
of the 1st ACM workshop on Audio and music com-
puting multimedia. ACM, 2006, pp. 125–132.

[5] G. Assayag and S. Dubnov, “Using factor oracles
for machine improvisation,” Soft Computing-A Fu-
sion of Foundations, Methodologies and Applica-
tions, vol. 8, no. 9, pp. 604–610, 2004.

[6] G. Assayag, S. Dubnov, and O. Delerue, “Guessing
the composers mind: Applying universal prediction
to musical style,” in Proceedings of the International
Computer Music Conference, 1999, pp. 496–499.

[7] J. Biles, “Genjam: Evolutionary computation gets a
gig,” in Proceedings of the 2002 Conference for In-
formation Technology Curriculum, Rochester, New
York, Society for Information Technology Education,
2002.

[8] L. Bonnasse-Gahot, “Donner à omax le sens
du rythme: vers une improvisation plus
riche avec la machine,” École des Hautes
Études en sciences sociales, Tech. Rep., 2010,
http://ehess.modelisationsavoirs.fr/improtech/docs/
L.Bonnasse-Gahot-beat-tracking2010.pdf.

[9] J. Bresson, C. Agon, and G. Assayag, “Openmusic
5: A cross-platform release of the computer-assisted
composition environment,” in 10th Brazilian Sym-
posium on Computer Music, Belo Horizonte, MG,
Brésil, 2005.

[10] M. Chemillier, “Toward a formal study of jazz chord
sequences generated by steedman´ s grammar,” Soft
Computing-A Fusion of Foundations, Methodolo-
gies and Applications, vol. 8, no. 9, pp. 617–622,
2004.

[11] C. Chuan and E. Chew, “A hybrid system for auto-
matic generation of style-specific accompaniment,”
in 4th Intl Joint Workshop on Computational Cre-
ativity, 2007.

[12] A. Cont, “Antescofo: Anticipatory synchronization
and control of interactive parameters in computer
music,” in Proceedings of the International Com-
puter Music Conference, 2008.

[13] B. Lévy, “Visualising omax,” Master’s thesis, Mas-
ter ATIAM, Université Pierre et Marie Curie, Paris
VI - IRCAM, 2009.

[14] G. Lewis, “Too many notes: Computers, complexity
and culture in voyager,” Leonardo Music Journal,
pp. 33–39, 2000.

[15] J. Nika, “Intégrer l’harmonie dans un processus
informatique d’improvisation musicale,” Master’s
thesis, Master ATIAM, Université Pierre et Marie
Curie, Paris VI - IRCAM, 2011, http://articles.ircam.
fr/textes/Nika11a/index.pdf.

[16] F. Pachet, “The continuator: Musical interaction
with style,” Journal of New Music Research, vol. 32,
no. 3, pp. 333–341, 2003.

[17] A. Patel, J. Iversen, M. Bregman, I. Schulz, and
C. Schulz, “Investigating the human-specificity of
synchronization to music,” in Proceedings of the
10th International Conference on Music and Cog-
nition. Sapporo, Japan, 2008, pp. 100–104.

[18] G. Ramalho, P. Rolland, and J. Ganascia, “An arti-
ficially intelligent jazz performer,” Journal of New
Music Research, vol. 28, no. 2, pp. 105–129, 1999.

[19] R. Rowe, Interactive music systems: machine listen-
ing and composing. MIT press, 1992.

[20] I. Simon, D. Morris, and S. Basu, “MySong:
automatic accompaniment generation for vocal
melodies,” in Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing
systems. ACM, 2008, pp. 725–734.

[21] B. Thom, “BoB : an interactive improvisational mu-
sic companion,” in Proceedings of the fourth inter-
national conference on Autonomous agents. Cite-
seer, 2000, pp. 309–316.

[22] D. Zicarelli, “M and jam factory,” Computer Music
Journal, vol. 11, no. 4, pp. 13–29, 1987.

_186 _187

The harmonization outputs a chord labels progression,
and this symbolic sequence therefore becomes the path to
follow for the navigation in the chosen arrangement ora-
cle (filled by sequences of associations between melodic
fragments and chord label sliced by beat). The pattern
matching is this time performed on chord labels to output
a sequence formed by the concatenation of the accompa-
niment fragments found in every stage of the research.

5.2.2. Formal intermediary

It is important to note that, even if an intermediate step
involves symbolic data such as chord labels, no harmonic
rule is used to perform harmonization and arrangement.
The denomination of this formal intermediary is only user-
oriented to make performance more intuitive: the system
itself is unaware of the musical meaning of this label-
ing and only considers two chord labels as two indexes
to compare.

The insertion of this formal language at an interme-
diate level separating the process in two different steps is
motivated by three reasons. First, it naturally comes from
the usual notation in jazz scores as we found in the Re-
albooks where a melody is facing a corresponding chords
label progression. Then, it enables to multiply the possi-
bilities: a phrase can indeed be harmonized with a given
oracle and then arranged using an arrangement oracle learned
on a completely different corpus. Finally, it will allow to
implement in a future development an optional level of
chord substitutions based on a grammar [10].

Furthermore, the terms ”harmonization” and ”arrange-
ment” come from the fact that ImproteK has been used so
far in tonal jazz sessions. In other musical contexts, its
genericity enables an understanding of other forms of ver-
tical associations that can be indexed in an agnostic way
with an other grammar.

6. EXPERIMENTS AND RESULTS

ImproteK has been used as a virtual partner by profes-
sional musicians, in particular French jazz musician Bernard
Lubat during improvisation sessions conducted in Uzeste
in 2011. Video and audio examples can be found at
http://ehess.modelisationsavoirs.fr/improtech/improtek.

Some of them show the real-time control of the soft-
ware through the Max/MSP interface (see for instance the
improvisation based on Erroll Garner’s mambo style tran-
scriptions). The direct interaction of the computer with
a live musician is illustrated by improvisation sessions
where Bernard Lubat and ImproteK alternately play as
soloist and accompanist, or trade choruses.

Other series illustrate the wide variety of results for a
same input in the harmonization and arrangement module
depending on the user’s choice to use different parts of the
corpus for both steps, and on the continuity he imposed.
It goes from ”imitation” by choosing a same part of the
corpus for the live, harmonization, and arrangement ora-
cles, to originality or even extravagance when completely
unrelated oracles are used.

7. CONCLUSION

We described a music generation system which is able to
understand the logic of the horizontal and vertical asso-
ciations in a live musical improvisation performance to
become itself a source of proposals by developing its own
aesthetics close to that of its partners. Its prime material
is indeed their playing. It is used at the same time as a
learning ground for the style modeling, and as a musical
memory to develop its own improvisations.

The properties of the oracle structuring this memory
enable to get over the dilemma ”innovation vs. coher-
ence” by ensuring continuity by construction, and there-
fore giving the possibility to work with a fine grain: the
beat is set as the elementary unit in the calculation, and its
restitution is made possible by following a beat tracker to
reach a better interaction.

ImproteK is indeed conceived as a proper instrument
and requires a full-time performer to manage the learning,
the generation, and the playing in real-time. It can alter-
nately be soloist or accompanist and is even capable of
creating accompanied improvisations via the harmoniza-
tion and arrangement module.

Current work is devoted to the evaluation of the com-
patibility between the harmonic progression of the current
session and that of the accompaniment returned by this
module. For the moment, the performer is given the com-
parison between both grids through the interface which
displays the respective chord labels. This study will lead
to a better integration of the ”harmonic interaction” in the
instrument, and will make its use more intuitive.

Acknowledgment

This work is realised with the support of the French Na-
tional Research Agency, in the framework of the project
”IMPROTECH”, ANR-09-SSOC-068.

We wish to thank the OMax family Gérard Assayag,
Georges Bloch, and Benjamin Lévy for the fruitful ex-
change of experiences and ideas regarding the concep-
tion and implementation of ImproteK. We thank Laurent
Bonnasse-Gahot who made it get rhythm with the beat
tracker, Carlos Agon and Jean Bresson for their advice
concerning OpenMusic, and Arshia Cont for the custom-
made Antescofos. Finally, we want to express special
thanks to La Compagnie Lubat for the always enriching
sessions.

8. REFERENCES

[1] C. Allauzen, M. Crochemore, and M. Raffinot, “Fac-
tor oracle: A new structure for pattern matching,” in
SOFSEM 99: Theory and Practice of Informatics.
Springer, 1999, pp. 758–758.

[2] G. Assayag and G. Bloch, “Navigating the oracle: A

heuristic approach,” in International Computer Mu-
sic Conference, vol. 7, 2007, pp. 405–412.

[3] G. Assayag, G. Bloch, and M. Chemillier, “Omax-
ofon,” Sound and Music Computing (SMC), 2006.

[4] G. Assayag, G. Bloch, M. Chemillier, A. Cont, and
S. Dubnov, “Omax brothers: a dynamic topology of
agents for improvization learning,” in Proceedings
of the 1st ACM workshop on Audio and music com-
puting multimedia. ACM, 2006, pp. 125–132.

[5] G. Assayag and S. Dubnov, “Using factor oracles
for machine improvisation,” Soft Computing-A Fu-
sion of Foundations, Methodologies and Applica-
tions, vol. 8, no. 9, pp. 604–610, 2004.

[6] G. Assayag, S. Dubnov, and O. Delerue, “Guessing
the composers mind: Applying universal prediction
to musical style,” in Proceedings of the International
Computer Music Conference, 1999, pp. 496–499.

[7] J. Biles, “Genjam: Evolutionary computation gets a
gig,” in Proceedings of the 2002 Conference for In-
formation Technology Curriculum, Rochester, New
York, Society for Information Technology Education,
2002.

[8] L. Bonnasse-Gahot, “Donner à omax le sens
du rythme: vers une improvisation plus
riche avec la machine,” École des Hautes
Études en sciences sociales, Tech. Rep., 2010,
http://ehess.modelisationsavoirs.fr/improtech/docs/
L.Bonnasse-Gahot-beat-tracking2010.pdf.

[9] J. Bresson, C. Agon, and G. Assayag, “Openmusic
5: A cross-platform release of the computer-assisted
composition environment,” in 10th Brazilian Sym-
posium on Computer Music, Belo Horizonte, MG,
Brésil, 2005.

[10] M. Chemillier, “Toward a formal study of jazz chord
sequences generated by steedman´ s grammar,” Soft
Computing-A Fusion of Foundations, Methodolo-
gies and Applications, vol. 8, no. 9, pp. 617–622,
2004.

[11] C. Chuan and E. Chew, “A hybrid system for auto-
matic generation of style-specific accompaniment,”
in 4th Intl Joint Workshop on Computational Cre-
ativity, 2007.

[12] A. Cont, “Antescofo: Anticipatory synchronization
and control of interactive parameters in computer
music,” in Proceedings of the International Com-
puter Music Conference, 2008.

[13] B. Lévy, “Visualising omax,” Master’s thesis, Mas-
ter ATIAM, Université Pierre et Marie Curie, Paris
VI - IRCAM, 2009.

[14] G. Lewis, “Too many notes: Computers, complexity
and culture in voyager,” Leonardo Music Journal,
pp. 33–39, 2000.

[15] J. Nika, “Intégrer l’harmonie dans un processus
informatique d’improvisation musicale,” Master’s
thesis, Master ATIAM, Université Pierre et Marie
Curie, Paris VI - IRCAM, 2011, http://articles.ircam.
fr/textes/Nika11a/index.pdf.

[16] F. Pachet, “The continuator: Musical interaction
with style,” Journal of New Music Research, vol. 32,
no. 3, pp. 333–341, 2003.

[17] A. Patel, J. Iversen, M. Bregman, I. Schulz, and
C. Schulz, “Investigating the human-specificity of
synchronization to music,” in Proceedings of the
10th International Conference on Music and Cog-
nition. Sapporo, Japan, 2008, pp. 100–104.

[18] G. Ramalho, P. Rolland, and J. Ganascia, “An arti-
ficially intelligent jazz performer,” Journal of New
Music Research, vol. 28, no. 2, pp. 105–129, 1999.

[19] R. Rowe, Interactive music systems: machine listen-
ing and composing. MIT press, 1992.

[20] I. Simon, D. Morris, and S. Basu, “MySong:
automatic accompaniment generation for vocal
melodies,” in Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing
systems. ACM, 2008, pp. 725–734.

[21] B. Thom, “BoB : an interactive improvisational mu-
sic companion,” in Proceedings of the fourth inter-
national conference on Autonomous agents. Cite-
seer, 2000, pp. 309–316.

[22] D. Zicarelli, “M and jam factory,” Computer Music
Journal, vol. 11, no. 4, pp. 13–29, 1987.

