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Abstract. We prove a monotonicity formula for minimal or almost minimal sets for the
Hausdorff measure Hd, subject to a sliding boundary constraint where competitors for E
are obtained by deforming E by a one-parameter family of functions ϕt such that ϕt(x) ∈ L
when x ∈ E lies on the boundary L. In the simple case when L is an affine subspace of
dimension d−1, the monotone or almost monotone functional is given by F (r) = r−dHd(E∩
B(x, r)) + r−dHd(S ∩ B(x, r)), where x is any point of E (not necessarily on L) and S is
the shade of L with a light at x. We then use this, the description of the case when F is
constant, and a limiting argument, to give a rough description of E near L in two simple
cases.

Résumé en Français. On donne une formule de monotonie pour des ensembles minimaux
ou presque minimaux pour la mesure de Hausdorff Hd, avec une condition de bord où les
compétiteurs de E sont obtenus en déformant E par une famille à un paramètre de fonctions
ϕt telles que ϕt(x) ∈ L quand x ∈ E se trouve sur la frontière L. Dans le cas simple où L est
un sous-espace affine de dimension d− 1, la fonctionelle monotone ou presque monotone est
donnée par F (r) = r−dHd(E ∩ B(x, r)) + r−dHd(S ∩ B(x, r)), où x est un point de E, pas
forcément dans L, et S est l’ombre de L, éclairée depuis x. On utilise ceci, la description des
cas où F est constante, et un argument de limite, pour donner une description de E près de
L dans deux cas simples.
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1 Introduction

The central point of this paper is a monotonicity formula that is valid for minimal sets with
a sliding boundary condition, as defined in [D6], for balls that are not necessarily centered
on the boundary set and also when the boundary is not a cone with the same center as the
balls.

In this introduction, we restrict to the special case of minimal sets of dimension d in
some open set U ⊂ R

n, and when the boundary condition is given by an affine plane L of
dimension at most d − 1. The main monotonicity result of this paper is also valid in more
general situations, but the statements are more complicated and the author is not certain
that the extra generality will be used.

Let us say what we mean by sliding minimal sets in this simpler context. We only consider
sets E that are closed in U , and have a locally finite Hausdorff measure, i.e., for which

(1.1) Hd(E ∩ B) < +∞ for every closed ball B ⊂ U .

See for instance [F] of [M] for the definition of the Hausdorff measure Hd; recall that this is
the same as surface measure for subsets of smooth d-dimensional surfaces.

We compare E with images ϕ1(E), coming from one parameter families {ϕt}, t ∈ [0, 1],
of continuous functions defined on E, such that

(1.2) (x, t) → ϕt(x) : E × [0, 1] → U is continuous,

(1.3) ϕ0(x) = x for x ∈ E,
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(1.4) ϕ1 is Lipschitz on E,

(1.5) if we set Wt =
{
x ∈ E ; ϕt(x) 6= x

}
and Ŵ =

⋃

0≤t≤1

Wt ∪ ϕt(Wt),

then Ŵ is contained in a compact subset of U , and finally (the sliding boundary condition)

(1.6) ϕt(x) ∈ L for 0 ≤ t ≤ 1 when x ∈ E ∩ L.

Such families {ϕt} will be called acceptable deformations; note that the notion depends on
E, U , and L.

Definition 1.1. We say that E (a closed set in U) is a sliding minimal set in U , with boundary
condition given by L, or in short that E ∈ SM(U, L), when (1.1) holds, and

(1.7) Hd(E ∩ Ŵ ) ≤ Hd(ϕ1(E) ∩ Ŵ )

for every acceptable deformation {ϕt}, and where Ŵ is as in (1.5).

Thus, when we deform E to get F = ϕ1(E), we require points of L to stay on L. We
do not require the ϕt to be injective. We added the Lipschitz constraint in (1.4) mostly by
tradition, but our results would hold without it, because the resulting class of minimizers
would be smaller.

This definition and the more general ones that will be given in Section 2 are modifications
of Almgren’s initial definition of “restricted sets” (see [A3]), suited to fit a natural definition
of Plateau problems. See [D6] for motivations. Maybe we should mention that some of the
sets that arise from some other natural minimization problems are also sliding minimal (or
almost minimal) sets. This is the case, for instance, of the sets that minimize Hd under the
Reifenberg homology boundary conditions (see [R], [A2], and more recently [Fa]), or of the
support of size-minimizing currents. See for instance Section 7 of [D5] for a discussion and
a proof of this fact.

We are interested in the regularity properties of sliding minimal sets near the boundary
L, and a good monotonicity formula will clearly help. In [D6], it was checked that (among
other things) if L is a cone (not necessarily an affine subspace) centered at the origin, and
satisfies some mild regularity constraints, and E is a sliding minimizer as above, then the
density

(1.8) θ0(r) = r−dHd(E ∩B(0, r)) is nondecreasing on (0, R0)

when R0 is such that B(0, R0) ⊂ U . Here and below, B(x, r) denotes the open Euclidean
ball of radius r centered at x. This is a rather easy extension of a very standard result
that applies to minimal sets (without boundary conditions), and even more general objects.
As usual, the monotonicity of θ0 is proved by comparing E with a cone, and the sliding
boundary condition cooperates well with this when L is a cone.
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Various consequences can be derived from this, but it will be good to have monotonicity
properties for balls that are not necessarily centered on L, and this is the main point of this
paper.

An obvious difficulty with the extension of (1.8) when L is not a cone is that we cannot
use the same density. For instance, if L =

{
(x, y, z) ∈ R

3 ; x = 1 and z = 0
}
, the half

plane E =
{
(x, y, z) ∈ R

3 ; x ≤ 1 and z = 0
}
is a sliding minimal set of dimension 2 in R

3,
with boundary condition given by L. The function θ0 of (1.8) is constant on [0, 1], and then
decreasing. We shall add to E a missing piece, so that we get a nondecreasing function.

The case when E is a half subspace space bounded by L suggest that we symmetrize E,
but this is not what we are going to do. Instead, we shall add to Hd(E) the measure of the
shade of L, seen from the origin. The shade in question is

(1.9) S =
{
y ∈ R

n ; λy ∈ L for some λ ∈ [0, 1]
}

and the functional that we want to consider is

(1.10) F (r) = r−d
[
Hd(E ∩B(0, r)) +Hd(S ∩ B(0, r))

]
.

Our basic theorem is the following.

Theorem 1.2. Let U ∈ R
n be open, L be an affine space of dimension m ≤ d − 1, and E

be a sliding minimal set of dimension d in U , with boundary condition given by L. Then the
function F defined by (1.10) is nondecreasing on [0, dist(0,Rn \ U)).

See Theorem 7.1 for a generalization, where more general sets L are allowed. For these
more complicated sets L, we also change the formula for the added term in L; the shade
only works well when the half lines starting from the origin do not meet L twice.

In the case mentioned above when L is a line, E is a half plane bounded by L, and
0 ∈ E\L, our formula is exact, in the sense that F is constant (the shade exactly compensates
the missing half plane). The same thing is true when E is a truncated Y-set centered at the
origin, such that L is contained in one of the three branches of the Y-set, and the truncation
precisely consists in removing the interior of the shade S. See near (1.28) for the definition
of the Y-sets. Of course this is interesting because we believe that the truncated Y-set is a
sliding minimal set.

In contrast, the defect of the general monotonicity formula given in Theorem 7.1 below
is that it is possibly not exact on any additional minimal set.

In the two applications that we give below, we shall see that knowing examples where
the formula is exact helps a lot; otherwise, it still gives some information, but probably not
precise enough. One can thus object because the only cases where we know that the formula
is exact are the two examples given above (truncated planes and Y-sets), plus their products
by orthogonal (d − 2)-planes. This observation is right, but should probably be tempered
by the fact that we do not know so many minimal cones, and there are many places, in
particular when d = 2, where a sliding minimal set looks like one of the examples above.
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Notice also that although we do not exclude the case when 0 ∈ L, Theorem 1.2 is not
new in this case; we get that the shade S is reduced to L, so F coincides with θ0 and we
rediscover (1.8). Similarly, when r < dist(0, L), S ∩ B(0, r) is empty, and we rediscover the
more classical fact that θ0 is nondecreasing for minimal sets (with no boundary condition),
see for instance [D2], and which is true in much more general contexts (for instance [All]).

When L is less than d−1-dimensional, Hd(S) = 0 and we get again that θ0 is monotone,
but this is not an impressive result: the sliding condition (1.6), applied on a set L of dimension
< d−1, does not seem coercive enough to allow many sliding minimal sets that are not equal
Hd-almost everywhere to a minimal set.

A useful monotonicity formula should probably come with a toolbox, so we shall try to
give a few connected tools. The description of the next results will be slightly simpler with
the notion of coral sets. Let E be closed in U ; we denote by E∗ the closed support of the
restriction of Hd to E. That is,

(1.11) E∗ =
{
x ∈ E ; Hd(E ∩ B(x, r)) > 0 for every r > 0

}
.

Some times we call E∗ the core of E, and we shall say that E is coral when E = E∗. It
follows easily from the definition of E∗ that Hd(E \ E∗) = 0, and since E∗ ∈ SM(U, L)
when E∗ ∈ SM(U, L) (see the discussion in Section 2, just below (2.8)), we may restrict
our attention to coral minimal sets. The advantage is that coral sets are a little cleaner and
easier to describe: from the description above, we see that a general minimal set is the union
of a coral minimal set and a set of Hd measure 0, and this negligible set may be ugly. In
fact, if we start from any (coral if we want) minimal set and add to it any Hd-null set, it
follows from the definitions that the resulting set is still minimal as long as it is closed.

Our first complement to Theorem 1.2 deals with the case when our functional F is
constant on an interval.

Theorem 1.3. Let U ⊂ R
n, L, and E be as in Theorem 1.2, and suppose in addition that

E is coral, and 0 < R0 < R1 are such that B(0, R1) ⊂ U and F is constant on the interval
(R0, R1). Set A = B(0, R0) \B(0, R1). Then

(1.12) Hd(A ∩ E ∩ S) = 0

and, if X denotes the cone over A ∩ E, i.e.,

(1.13) X =
{
λx ; λ ≥ 0 and x ∈ A ∩ E

}
,

then

(1.14) A ∩X \ S ⊂ E.

If in addition R0 < dist(0, L), then X is a coral minimal set in R
n (with no boundary

condition), and

(1.15) Hd(S ∩B(0, R1) \X) = 0.
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Notice that E ∩ A ⊂ X by definition, and then (1.12) and (1.14) say that E and X \ S
coincide in A, modulo a set of vanishing Hd-measure.

The last part is interesting, because with some luck it will allow us to identify X , and
then A ∩ E.

In the present case when L is an affine subspace, (1.15) says that if its dimension is d−1
and if B(0, R1) meets L, then in fact X contains (the cone over) L∩B(0, R1). But we stated
the result like we did because it stays true for more general sets L. See Theorem 8.1.

The additional information (1.15) is not necessarily good news, because although it gives
some extra information when the assumptions of the theorem are satisfied, it also says that
the monotonicity formula is not exact when R0 < dist(0, L) and E coincides near ∂B(0, R0)
with a minimal cone that does not satisfy (1.15). For instance, if n = 3, d = 2, L is a line
that does not contain 0, and E is a plane through the origin that does not contain L, then
F (r) is strictly increasing for r > dist(0, L).

We will also be interested in almost monotonicity results for almost minimal sets. We
just give a simple statement here, and refer to Theorem 7.1 for a more general result, but
also more complicated to state.

Even this way we need some definitions. Almost minimality will be defined in terms
of some gauge function h : (0,+∞) → [0,+∞] (we allow h(r) = 0, which corresponds to
minimal sets, and h(r) = +∞, which is a brutal way of saying that we have no information
at that scale). We always restrict to nondecreasing functions h, with

(1.16) lim
r→0

h(r) = 0,

and for our almost monotonicity result we shall assume that h satisfies the Dini condition

(1.17)

ˆ r0

0

h(r)
dr

r
< +∞ for some r0 > 0.

Definition 1.4. Let E be a closed set in U , such that (1.1) holds, L be a closed set in U , and
let h : (0,+∞) → [0,+∞] be a nondecreasing function such that (1.16) holds. We say that
E is a sliding almost minimal set with boundary condition defined by L and gauge function
h, and in short we write E ∈ SAM(U, L, h), when

(1.18) Hd(E ∩ Ŵ ) ≤ Hd(ϕ1(E) ∩ Ŵ ) + rdh(r)

whenever {ϕt}, 0 ≤ t ≤ 1, is an acceptable deformation such that the set Ŵ of (1.5) is
contained in a ball of radius r.

Other, slightly different, notions exist, and will be treated the same way. See Section 2.
Here is the generalization of Theorem 1.2 to the classes SAM(U, L, h).
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Theorem 1.5. There exist constants a > 0 and τ > 0, which depend only on n and d, with
the following property. Let U and L be as above, and let E ∈ SAM(U, L, h) be a sliding
almost minimal set, for some gauge function h such that (1.17) holds. Suppose that

(1.19) 0 ∈ E∗, B(0, R1) ⊂ U , and h(R1) < τ ,

and set

(1.20) A(r) =

ˆ r

0

h(t)
dt

t
for 0 < r ≤ R1 ;

then

(1.21) F (r) eaA(r) is a nondecreasing function of r ∈ (0, R1).

See Theorem 7.1 for a more general version, where we allow more general boundary sets
L, and also slightly different definitions of almost minimality.

Notice that because of (1.17), eaA(r) tends to 1 when r tends to 0, so (1.21) can really
be interpreted as an almost monotonicity property. In particular, we get that limr→0 F (r)
exists and is finite; it is positive because E∗ is locally Ahlfors regular (see Section 2).

See for instance Proposition 5.24 on page 101 of [D2] for its analogue when L = ∅, and
Theorem 28.15 in [D6] for the case of sliding almost minimal sets, but with θ0 and balls
centered on L.

The second important element of our toolbox says that when E is as above and F (r)
varies very little on an interval, E looks a lot like a sliding minimal set E0 for which F is
constant on a slightly smaller interval. Hence, in many cases, Theorem 1.3 says that E0

and E look like truncated minimal cones. Here is the simplest result that corresponds to an
interval [0, r1).

Theorem 1.6. For each choice of L and r1 > 0 and each small τ > 0, we can find ε > 0,
which depends only on τ , n, d, L, and r1, with the following property. Let E ∈ SAM(U, L, h)
be a coral sliding almost minimal set in the open set U , with boundary condition defined by
L and some nondecreasing gauge function h. Suppose that

(1.22) B(0, r1) ⊂ U and h(r1) < ε,

and

(1.23) F (r1) ≤ ε+ inf
0<r<10−3r1

F (r).

Then there is a coral set E0 ∈ SM(B(0, r1), L) (i.e., E0 is sliding minimal in B(0, r1), with
boundary condition defined by L), such that

the analogue of F for the set E0 is constant on (0, r1),(1.24)

7



(1.25) dist(y, E0) ≤ τr1 for y ∈ E ∩ B(0, (1− τ)r1),

(1.26) dist(y, E) ≤ τr1 for y ∈ E0 ∩ B(0, (1− τ)r1),

and
∣∣Hd(E ∩B(y, t))−Hd(E0 ∩ B(y, t))

∣∣ ≤ τrd1
for all y ∈ R

n and t > 0 such that B(y, t) ⊂ B(0, (1− τ)r1).(1.27)

Notice that we do not need to assume (1.17) here. In many cases, in particular if
(1.17) holds, we know that limr→0 F (r) exists, and we could just require that F (r1) ≤
ε + limr→0 F (r) instead of (1.23). Finally observe that (1.27) does not say much when t is
much smaller than r, because the error term in (1.27) is τrd1, not τt

d.
See Theorem 9.1 for a generalization of this to more general boundary sets L, and The-

orem 9.7 for the analogue of Theorems 1.6 and 9.1 when F is only assumed to be nearly
constant on some interval (r0, r1), r0 > 0.

Once we have Theorem 9.1, we can use Theorem 1.3 or Theorem 8.1 to get more infor-
mation on E0; we do not do this in this introduction because the amount of information that
we get depends on L, in particular through dist(0, L) and r1.

Theorems 1.6 and 9.1 generalize Proposition 7.24 in [D2] (a version without boundary
set L) and Proposition 30.19 in [D6] (a version with the density θ0 and balls centered on L).
All these results are fairly easy to obtain by compactness, because we have results that say
that limits of almost minimal sets, with a fixed gauge function h, are almost minimal with
the same gauge function.

It is unpleasant that, in both Theorems 1.6 and 9.1, ε depend on the specific choice of L
and r1. In the present case where we assume that L is an affine subspace, the dependence
is in terms of r−1

1 dist(0, L), and we can try to eliminate this distance from the compactness
argument that leads to Theorem 1.6. Still we get three different regimes. When r1 <
dist(0, L), the boundary condition does not play a role and we can use results from [D2].
When dist(0, L) << r1, we shall find it more convenient in practice to reduce to the case
when 0 ∈ L, and then use results from [D6]. So we concentrate on the intermediate case
when dist(0, L) < r1 < C dist(0, L), with C large, and then we get an approximation of E
by a set E0 = X0 \ S, where X0 is a minimal cone (without boundary condition) and S is
the shade of an affine subspace. This is Corollary 9.3, where we also include the case when
L is not exactly an affine space, but is very close to one (in a bilipschitz way), to allow
subvarieties as well.

We shall give two rather elementary applications of the results above. Both concern the
behavior of a sliding almost minimal set E, with a boundary condition defined by a (d− 1)-
dimensional space L ⊂ R

n, and in a small ball where E looks simple enough. In both cases,
we shall not try to give an optimal result, but instead explain how the results of the first
part can be useful. A motivation for this type of results is that they provide first steps in
the study of specific boundary behavior of minimal sets, subject to a Plateau condition. See
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Figure 13.9.3 on page 134 of [Mo], or Figure 5.3 in [LM], for a list of conjectured behaviors
for a 2-dimensional minimal set bounded by a curve.

We start with some notation which is common to the two results. We are given a (d−1)-
dimensional vector space L in R

n, and we shall use some classes of minimal cones. First we
denote by P0 = P0(n, d) the set of d-planes through the origin, and by P = P(n, d) the set of
all affine d-planes.

Next, H(L) denotes the class of closed half-d-planes bounded by L. That is, to get
H ∈ H(L) we pick a d-plane P that contains L, select one of the two connected components
of P \ L, and let H be the closure of this component.

For the sake of Corollary 1.8, we also denote by V(L) the set of cones of type V bounded
by L. These are the unions V = H1 ∪H2, where H1 and H2 are elements of H(L) that make
an angle at least 2π/3 along L. This last means that if vi denotes the unit vector which lies
in Hi and is orthogonal to L, then 〈v1, v2〉 ≤ −1/2. We add this angle constraint because
it is easy to see that if it fails, then V is not a sliding minimal set with boundary condition
given by L. We believe that the elements of V(L) are sliding minimal sets, but we shall not
check this here.

Let us also define the set Y0 = Y0(n, d) of minimal cones of type Y that are centered at
0. We first say that Y ∈ Y0(n, 1) when Y is the union of three half lines that start from 0,
are contained in some plane P = P (Y ), and make 2π/3 angles with each other at the origin.
For d > 1, Y0(n, d) is the set of products Y ×W , where Y ∈ Y0(n, 1) and W is a vector
space of dimension (d− 1) that is orthogonal to the 2-plane P (Y ). Finally, we set

(1.28) Yx(n, d) =
{
x+ Z ; Z ∈ Y0(n, d)

}

(the cones of type Y centered at x). By Y-set, we usually mean an element of any Yx(n, d).
We are almost ready for our first application, which tries to say that if E is a coral

sliding almost minimal set in B(0, 3), with a sufficiently small gauge function, and if it is
close enough in B(0, 3) to a half plane H ∈ H(L), then E is Hölder-equivalent to H in
B(0, 1). The initial distance from E to H will be expressed in terms of the following very
useful, dimensionless local version of the Hausdorff distance: when E and F are two closed
sets, we set

(1.29) dx,r(E, F ) =
1

r
sup

y∈E∩B(x,r)

dist(y, F ) +
1

r
sup

y∈F∩B(x,r)

dist(y, E),

where by convention we set supy∈E∩B(x,r) dist(y, F ) = 0 when E ∩B(x, r) = ∅, for instance.
As we shall see, we express the conclusion in terms of distances dx,r and Reifenberg approx-
imation condition; we shall explain why after the statement.

Corollary 1.7. For each small τ > 0 we can find ε > 0, which depend only on τ , n and
d, with the following property. Let L be a vector (d − 1)-plane and let E be a coral sliding
almost minimal set in B(0, 3), with boundary condition given by L and a gauge function h
such that (1.17) holds. Suppose that

(1.30)

ˆ 3

0

h(t)dt

t
< ε
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and

(1.31) d0,3(E,H) ≤ ε for some H ∈ H(L).

Then

(1.32) L ∩B(0, 2) ⊂ E,

and for each x ∈ E ∩ B(0, 2) and 0 < r < 1/2, we can find a set Z = Z(x, r) with the
following properties:

(1.33) if r ≤ dist(x, L)/2, then Z(x, r) is a plane through x;

if dist(x, L)/2 < r ≤ τ−1 dist(x, L), then

Z(x, r) is the element of H(L) that contains x;(1.34)

(1.35) if r > τ−1 dist(x, L), then Z(x, r) ∈ H(L);

(1.36) dx,r(E,Z) ≤ τ,

and

∣∣Hd(E ∩ B(y, t))−Hd(Z ∩ B(y, t))
∣∣ ≤ τrd

for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(0, (1− τ)r).(1.37)

Recall that coral is defined near (1.11). We decided to work in B(0, 3) to simplify the
statement, but by translation and dilation invariance we could easily get a statement for
balls B(x0, r0), with x0 ∈ L and

´ 3r0
0

h(t)dt
t
< ε in (1.30).

Notice that we do not assume that 0 ∈ E (or that E∩L 6= ∅); this comes as a conclusion.
We claim that the conclusion of Corollary 1.7 (even without (1.37)) probably implies that

E is Hölder-equivalent to H in B(0, 1), as in the topological disk theorem of Reifenberg [R].
More precisely, we claim that for each η > 0, we should find τ > 0 such that if the conclusion
of Corollary 1.7 holds (without (1.37)), then there is a Hölder homeomorphism f of Rn such
that

(1.38) f(x) = x for x ∈ L and for x ∈ R
n \B(0, 2),

(1.39) |f(x)− x| ≤ η for x ∈ R
n,

(1.40) (1− η)|x− y|1+η ≤ |f(x)− f(y)| ≤ (1 + η)|x− y|1−η for x, y ∈ B(0, 3),
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and

(1.41) E ∩ B(0, 1) ⊂ f(H ∩ B(0, 1 + η)) ⊂ E.

We shall not prove this claim here, and unfortunately do not know of a proof in the literature.
However, a small modification (mostly a simplification) of the argument in [DDT] should
give this, and since this is not central to the present paper, we shall leave the claim with no
proof for the moment, and content ourselves with the conclusions of Corollary 1.7.

The corollary probably stays true when L is a flat enough smooth submanifold of dimen-
sion d− 1, but we shall not try to pursue this here; see Remark 11.4 though.

The local Hölder regularity that we claim here is probably far from optimal; we could
expect slightly better than C1 regularity, the proof given below obviously does not give this,
but at least it is fairly simple. Here the important issue is near L; far from L, we can deduce
additional regularity on E from its flatness (given by Corollary 1.7) and regularity results
from [A3] or [All], but at this point we cannot exclude that E turns around L infinitely many
times at some places.

Corollary 1.7 should be the simplest from a series of results that give a local description
of E when we know that E looks like a given minimal cone in a small ball centered on L.
The next case would be when E is close to a d plane through L, or a set of V(L). But new
ingredients seem to be needed for this; the author will try to investigate the special case
when d = 2, for which we have more control on the geometry and the list of minimal cones.

For our second application, we work on B(0, 3) again to simplify the statement, assume
that the coral almost minimal set E ∈ SAM(B(0, 3), L, h) is very close to a cone of type V

in B(0, 3) and that the gauge function h is small enough, and get some constraints on the
behavior of E near its singular points (if they exist). Since we don’t know whether all the
plain minimal cones (i.e., with no boundary condition) of dimension d in R

n that have a
density at most 3ωd/2 are necessarily cones of type Y, we restrict to dimensions n and d for
which we know that this is the case.

Corollary 1.8. Suppose that d = 2, or that d = 3 and n = 4. For each choice of N > 1 and
τ > 0 we can find ε > 0, which depends only on N , τ and n, with the following property. Let
L be a vector (d− 1)-plane, and let E be a coral sliding almost minimal set in B(0, 3), with
sliding condition defined by L and a gauge function h such that (1.17) holds. Suppose that

(1.42)

ˆ 3

0

h(t)dt

t
< ε

and that we can find V ∈ V(L) such that

(1.43) d0,3r(E, V ) ≤ ε.

Then for each x ∈ E ∩ B(0, 1) \ L,

(1.44) θx(0) := lim
r→0

r−dHd(E ∩ B(x, r)) ≤ 3ωd

2
+ τ.

11



In addition, let x ∈ E ∩B(0, 1) \L be such that θx(0) > ωd, and set δ(x) = dist(x, L). Then
δ(x) ≤ N−1, and if Y denotes the cone of Yx(n, d) (see the definition (1.28)) that contains
L, and

(1.45) W = Y \ Sx, with Sx =
{
y ∈ R

n ; x+ λ(y − x) ∈ L for some λ ∈ [0, 1]
}
,

then

(1.46) dx,2Nδ(x)(W,E) ≤ τ

and

∣∣Hd(E ∩ B(y, t))−Hd(W ∩B(y, t))
∣∣ ≤ τδ(x)d

for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(x, 2Nδ(r)).(1.47)

Recall that ωd = Hd(Rd ∩B(0, 1)) is the density of a d-plane. The existence of the limit
θx(0) in (1.44) is classical; for instance, it follows from (1.42) and Proposition 5.24 in [D2].
Our condition that θx(0) > ωd is another way to say that x is a singular point of E, and
(because we may take τ arbitrarily small) (1.44) just forbids certain types of singularities,
such as points of type T when d = 2 and n = 3.

Our assumption on the dimensions is a little strange and probably too conservative; we
shall prove the result as soon as n and d satisfy the assumption (10.9), which says that all
the plain minimal cones with density at most 3ωd

2
are d-planes or elements of Y0(n, d); see

Proposition 12.1. The assumption (10.9) is officially satisfied when d = 2 and when d = 3
and n = 4 (hence the statement above), but the author believes that the proof of the case
when d = 3 and n = 4 that was given by Luu in [Lu1] also works when d = n− 1 and n ≤ 6,
hence Corollary 1.8 should be valid in these dimensions as well, and maybe some other ones.

Corollary 1.8 gives a good description of E in B(x, 2Nδ(r)). The proof will also show
that we have a similar description in balls B(x, r), δ(x) < r < 2Nδ (see Lemma 12.5), which
we could even get form our main statement by taking τ even smaller, depending on N . In
Lemma 12.4, we will also show that in the balls B(x, r), r < δ(x), E is well approximated
by a cone Y (x, r) ∈ Yx(n, d). If d = 2 we can also use the description of E in B(x, 2δ(r)),
and the local regularity result of [D3], to show that E is also C1-equivalent to a cone of type
Yx(n, d) in B(x, δ(x)/2), say. When d = 3 and n = 4 we can use the local regularity result
of [Lu1] instead, and we only get that E is Hölder-equivalent to a cone of type Yx(n, d) in
B(x, δ(x)/2).

We can also deduce a reasonable description of E in the part of B(x,Nδ(r)/2) that lies
closer to L than the singular set of Y , because (1.46) allows us to apply Corollary 1.7 there
(notice that near L, W coincides with a half d-plane).

Our proof will also gives some control on the shape of E in balls B(x, r), Nδ(r) ≤ δ(x) ≤
1
2
, where it will be shown that E looks a lot like a sliding minimal cone with boundary L

and density close to ωd; when d = 2, for instance, we believe that this should mean that E
is close to a set of V(L) in these balls. See Proposition 12.7 and Remark 12.8.

12



But unfortunately, with the methods of this paper, it seems very hard to get a description
of E near the regular points of E, and in particular in balls that are far from the singular
set of E (i.e., the points x ∈ E such that d(x) > ωd). In such balls, we do not know that the
functional F (r) is nearly constant (it may increase from ωd, its value for small r, to 3ωd/3,
its approximate value for r = 1/2), and we don’t know what E looks like then.

An instance of the situation of Corollary 1.8 is when n = 3, d = 2, and E looks a lot,
in B(0, 3), like a plane that contains L. In this case, the following possibility seems to be
expected by specialists, as a typical way for a soap film to leave a curve. The reader may first
look at Figure 1.1, which we borrowed from J. Sullivan’s site, and which explains how a soap
film may leave a cylindrical boundary. Then Figure 1.2 tries to show how the picture may be
deformed when the inner radius of the cylinder gets smaller. In both cases E has a singular
point on the cylinder, near which E is composed ot three walls that are perpendicular to the
cylinder and make 120◦ angles with each other. The bottom curve that turns around the
cylinder would become more and more vertical, and the triangular wall would get thinner.
At the limit, we would get a large piece of E that crosses L tangentially at the origin, plus a
thin triangular piece that connects the upper part of L to the main piece, and meets it along
a curve Γ where E has singularities of type Y. See Figure 1.3 for a sketch of the limiting set
E, that would be sliding minimal, and Figure 1.4 for its sections by some vertical planes.
We also refer to [B] for additional detail on the description. The initial goal of the author,
when starting this paper, was not to control the curve Γ, as we can do (at least when d = 2
and when d = 3 and n = 4) as a consequence of Corollary 1.8, but to show that it does not
exist, at least when V is a plane or the angle between its two branches is larger than 2π/3.
But apparently this attempt fails.

  The main perpendicular

wall starts along this curve

The set of 

 Y-points
A vertical wall that 

starts from the tube

Figure 1.1(left). A soap film leaves a cylinder (Picture by J. Sullivan).
Figure 1.2 (right). The same picture with more tilt.

A thin vertical triangular wall

The set of Y-points

Horizontal tangent plane here, where E crosses L

L

Here E is like a plane below L

Figure 1.3. The limiting set E.
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The thin triangular wall

A point of type Y

3 branches in this region

A flat curve in this region

Figure 1.4. Sections of E by vertical planes.

Another possible behavior of a soap film that may perhaps occur is the one depicted by
Figure 1.5. On the left, E looks like a set of V(L); at the origin, E has a blow-up limit
V0 ∈ V(L), possibly with a different angle; on the left, E is composed of a thin triangular
vertical wall, as before, plus two surfaces that meet it along a singular set of points of type
Y. When the two faces of V0 make 120◦ angles along L, this picture is not shocking at all;
the question concerns the case when this angle is larger, which looks more surprising (why
this apparent discontinuity in angles?), but not more than the example of Figure 1.3. Notice
however that in this case, E is still attached to L on the left of the origin, so maybe it does
not pull itself down as much.

Thin vertical triangular wall

The set of Y-points

L
0

Figure 1.5. A minimal set E with a blow-up limit of type V at 0.

Maybe we should also say that experiments with soap should not help much here, to
decide whether the pictures above are realistic, because capillarity plays a strong role for
thin wires.

The rest this paper will be devoted to the proof of the various results mentioned above,
often in more generality than in the statements above.

Section 2 mostly records notation and definitions for of sliding almost minimal sets, and
rapidly recalls some results from [D6].

In Section 3 we give general conditions on the boundary sets that will allow us to prove
a monotonicity property. These should never be a restriction in practice; the main difficulty
will be to find situations where the monotonicity property is useful.

Then we prove the monotonicity and near monotonicity properties, in Sections 4-7, with
a comparison argument which looks technical (because we think we need to be careful when
taking some limits), but whose main point is to compare E with a deformation of E in
B(0, r) which is as close as possible to the cone over E∩∂B(0, r). We need to add a piece to
that cone (for instance, the cone over L ∩ B(0, r)), because this way we can deform on the
new set; this is why we end up adding a term to the density θ0(r) in the definition (1.10) of
F (r).

14



In Section 8 we show that for sliding minimal sets E, and when the functional F is
constant on an interval, E comes from a cone in the corresponding annulus (we may have
to remove a piece of the shade of L, for instance if E is a cone of type Y that contains L,
truncated by L, and this is why we refer to Theorem 8.1 for a more precise statement.

In Section 9 we deduce, from Theorem 8.1 and a compactness argument, that E is well
approximated by truncated minimal cones when it is a sliding almost minimal set and the
functional F is almost constant on an interval. See Theorem 9.1 for the statement with a
fixed (but general) boundary and an approximation result in a ball, and Theorem 9.7 for a
variant of Theorem 9.1 where F is nearly constant on an interval that does not start from
the origin, and then the approximation only takes place in an annulus.

Corollary 9.3 is a more precise and uniform version of Theorem 9.1 but where L is assumed
to be very close to affine subspace, and which is neither too close nor to far from the origin.

In Section 10 we prepare the two applications and discuss a few simple properties (true
or to be assumed) of plain minimal cones that will be used in Sections 11 and 12.

We prove Corollary 1.7 (the case when E looks like a half plane) in Section 11 and
Corollary 1.8 (the case when E looks like a V-set) in Section 12.

Acknowledgments. The author wishes to thank the Institut Universitaire de France, and
the ANR (programme blanc GEOMETRYA, ANR-12-BS01-0014) for their generous support,
M. Christ and the department of Mathematics of the University of California at Berkeley
for their hospitality during the conception stage of this paper, and J. Sullivan for allowing
him to use Figure 1.1 above.

2 Three types of sliding almost minimal sets

We shall be working with more general sliding almost minimal sets than described in the
introduction. In this section, we describe a set of assumptions that we import from [D6],
and that should be (more than) general enough for us here. We do this because we do not
necessarily want to restrict to the case of a unique boundary set L which is an affine subspace
of dimension at most d− 1, yet did not decide of an optimally nice set of assumptions, and
need some results from [D6] anyway.

The (fairly weak) assumptions presented in this section will be satisfied if there is a
unique boundary L, E is a coral sliding almost minimal set, as described in Definition 1.4,
and there is a bilipschitz mapping ψ : U → B(0, 1) ⊂ R

n such ψ(L) is the intersection with
B(0, 1) of a vector subspace of dimension at most d− 1.

Also, we shall present two minor variants of the definition of sliding almost minimal sets,
relative to the way we do the accounting in (1.18). The reader that would only be interested
in the case presented in the introduction may skip the rest of this section, and will probably
not be disturbed afterwards.

In [D6] (and from now on), we are in fact given a finite collection of boundary pieces Lj ,
0 ≤ j ≤ jmax (and not just one as above). We say that

(2.1) the sets Lj satisfy the Lipschitz assumption in the domain U
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when there is a constant λ (a scale normalization) and a bilipschitz mapping ψ : λU →
B(0, 1), such that each of the sets L̃j = ψ(λLj) ⊂ B(0, 1) coincides in B(0, 1) with a finite
union of (closed) dyadic cubes. We allow dyadic cubes of different dimensions in a single
Lj . We refer to Section 2 of [D6], and in particular Definition 2.7 and above, for additional
detail.

By convention, the first set L0 in [D6] was a larger set than the others, which plays the
role of a closed domain where things happen. See (1.1) in [D6]. This is a convenience, not a

constraint, because we may take L̃0 = R
n and L0 = U if there is no need for this. Because

of the constraint below, we shall not use this convenience here, and use L0 = U . Indeed, for
our monotonicity formula to make sense, we shall need to know that Hd(Lj) = 0 for all the
j ≥ 0 that matter, so we shall always assume that

(2.2) L0 = U and all the dyadic cubes that compose the L̃j , j ≥ 1, are of dimensions < d.

For many results in [D6], an additional technical assumption (namely, (10.7) in [D6]) is
needed; the reader does not need to worry, this condition, which concerns faces of dimensions
larger than d, is automatically satisfied because of (2.2).

The author is aware that (2.1) is complicated; in particular, it is not true that if the
Lj satisfy the Lipschitz assumption in U , then their restriction to a smaller domain V ⊂ U
also satisfy the Lipschitz assumption. For one thing, V may not be bilipschitz-equivalent
to a ball. This is not a major issue, because we are interested in local properties, and we
can always restrict first to a domain U for where the Lj satisfy the Lipschitz assumption,
and then apply the desired results. Even when U is a ball and L is an affine subspace of
dimension < d, we may have to restrict to a slightly smaller ball to make sure that (2.1) and
(2.2) hold (think about the case when L is nearly tangent to ∂B), but in the rest of the paper
we shall pretend that this has been done and use results where (2.1) and (2.2) hold without
explaining again. Notice also that if L does not meet 1

2
B, we may deduce information on

E ∩ 1
2
B from results about plain almost minimal sets (with no boundary) anyway.

The definition of an acceptable deformation is the same as above, except that we replace
the unique condition (1.6) with

(2.3) ϕt(x) ∈ Lj for 0 ≤ t ≤ 1 when w ∈ E ∩ Lj , 1 ≤ j ≤ jmax.

We removed j = 0, because (2.3) is a tautology for j = 0, by (2.2).
In [D6] we have three slightly different notions of sliding almost minimal sets (with the

given sets Lj and a given gauge function h), which we recall now.

Definition 2.1. Let E be closed in U and satisfy (1.1). For each acceptable deformation
{ϕt}, 0 ≤ t ≤ 1 (with (1.6) replaced by (2.3)), set

(2.4) W1 =
{
x ∈ E ; ϕ1(x) 6= x

}
.

Also denote by r the radius of a ball that contains the set Ŵ of (1.5). We say that E is a
(sliding) A-almost minimal set (and write E ∈ SAM(U, Lj , h)) when

(2.5) Hd(W1) ≤ Hd(ϕ1(W1)) + h(r)rd
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for all choice of acceptable deformations {ϕt} and r as above.
We say that E is A′-almost minimal (and write E ∈ SA′M(U, Lj , h)) when instead

(2.6) Hd(E \ ϕ1(E)) ≤ Hd(ϕ1(E) \ E) + h(r)rd

for {ϕt} and r as above, and that E is A+-almost minimal (E ∈ SA+M(U, Lj , h)) when
instead

(2.7) Hd(W1) ≤ (1 + h(r))Hd(ϕ1(W1)).

Let us finally set SA∗M(U, Lj , h) = SAM(U, Lj , h) ∪ SA′M(U, Lj , h) ∪ SA+M(U, Lj , h)
(where we don’t care about which definition is taken).

See Definition 20.2 in [D6]. The definition (1.18) that we gave above is the definition of

an A′-almost minimal set (notice that since E and ϕ1(E) coincide on U \ Ŵ , this set does
not play any role in (2.6), or just refer to (20.7) in [D6]).

It turns out that A+-almost minimal implies A-almost minimal and A′-almost minimal
(but in a slightly smaller domain, and with a slightly larger gauge function); see the com-
ments below (20.7) in [D6]. Moreover, the two notions of A-almost minimal and A′-almost
minimal are equivalent (with the same gauge function); see Proposition 20.9 in [D6]. In the
introduction we chose to give the A′-definition because it looks simpler, but finally this does
not matter.

When h = 0, the three notions coincide, and yield the sliding minimal sets defined in the
introduction.

The main reason why we give all this notation is that we shall be using some results from
[D6], which we quote now. For our convenience, we shall always assume that

(2.8) E is coral and E ∈ SA∗M(U, Lj , h),

which means that E is a coral (sliding) almost minimal set in U , with boundary conditions
given by the Lj and the gauge function h, and with any of the three definitions. In some rare
occasions, we shall need to specify. We like to ask E to be coral, because this way we don’t
need to worry about the fuzzy set E \ E∗, with E∗ as in (1.11), because E = E∗. We know
that we don’t lose anything, because Proposition 3.3 in [D6] says that E∗ is almost minimal
when E is almost minimal, with the same gauge function. More precisely, that proposition
is stated for more general quasiminimal sets, but its proof works for almost minimal sets,
and we can also deduce the result for almost minimal sets by comparing the definitions of
quasiminimal sets (Definition 2.3 in [D6]) and almost minimal sets (Definition 20.2).

The first main property of E that we shall use is its local Ahlfors regularity. There exist
constants η0 > 0 and C ≥ 1 (that depend on U , and the Lj) such that

(2.9) C−1rd ≤ Hd(E ∩ B(x, r)) ≤ Crd

when x ∈ E and r > 0 are such that

(2.10) B(x, 2r) ⊂ U and h(2r) ≤ η0.
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This is Proposition 4.74 in [D6]; since the proposition is stated for (more general) quasimin-
imal sets, use the comment below (20.8) in [D6], or compare directly with Definition 2.3 in
[D6].

We shall also use the fact that

(2.11) E is a rectifiable set of dimension d;

see Theorem 5.16 in [D6], and observe that we can trivially reduce to small balls B(x, r)
such that h(2r) is as small as we want, because the rectifiability of E is a local property.

We shall later quote from [D6] various limiting theorems, but we shall only mention them
when we need them.

3 Specific assumptions on L; local retractions

We shall now describe the additional assumptions that we shall make on our sets Lj (or the
unique L of the introduction), so that the proof below runs reasonably smoothly. We start
with some notation.

We assume that 0 ∈ U , and for r > 0 such that B(0, r) ⊂ U , set

(3.1) L(r) = B(0, r) ∩
{ ⋃

1≤j≤jmax

Lj

}
,

where the Lj are the boundary pieces of Section 2. If we have just one boundary set L, as
the introduction, just take L(r) = B(0, r) ∩ L.

We shall often use the truncated cone

(3.2) L∗(r) = B(0, r) ∩
{
λz, ; z ∈ L(r) and λ ≥ 0

}

over L(r), and then its trace

(3.3) L◦(r) = ∂B(0, r) ∩ L∗(r) = ∂B(0, r) ∩
{
λz, ; z ∈ L(r) and λ > 0

}

(think about the shadow of L \ {0} on ∂B(0, r), with a light at the origin).
Our first additional assumption is that

(3.4) Hd(L∗(ρ)) < +∞ for some ρ > 0.

Notice that as soon as we have this, then

(3.5) Hd(L∗(r)) < +∞ for every r > 0.

Indeed, L∗(r) ⊂ L∗(ρ) for r ≤ ρ, and if r > ρ, L∗(r) is contained in the union of two cones.
The first one is the cone over L(ρ), which we control by (3.4). The second one is the cone C
over L(r) \L(ρ). But by (2.2), L(r) \L(ρ) is contained in a finite union of bilipschitz images
of cubes of dimensions at most d; then Hd−1(L(r) \ L(ρ)) < +∞, and (for instance by the
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area theorem and because L(r) \ L(ρ) stays away from the origin) Hd(C ∩ B(0, r)) < +∞;
(3.5) follows.

If L(r) does not contain the origin, (3.4) holds trivially. But we also want to allow the
case when 0 lies in some Lj , j ≥ 1, so we include (3.4) as an assumption.

We shall play with the sets L∗(r), in particular to deform parts of B(0, r) onto subsets
of L∗(r), and it will be good to have some local retractions.

Definition 3.1. Let r > 0 be such that B(0, r) ⊂ U . We say that r admits a local retraction
when we can find constants τ0 > 0 and C0 ≥ 1, and a C0-Lipschitz function π0, defined on
the set

(3.6) R(r, τ0) =
{
x ∈ ∂B(0, r) ; dist(x, L◦(r)) ≤ τ0

}
,

such that

(3.7) π0(x) ∈ L◦(r) for x ∈ R(r, τ0),

and

(3.8) π0(x) = x for x ∈ L◦(r).

Our typical assumption will be that almost every r in the interval of interest admits a
local retraction. We won’t need uniform bounds on τ0 and C0, because these two constants
will disappear in a limiting argument.

Admittedly, this is not such a beautiful condition, but we only expect to use our results
with fairly simple sets L, and then the local retractions will be easy to obtain. For instance,
if L is an affine subspace, or is convex, π0 is very easy to construct.

Probably a Lipschitz retraction on a neighborhood of L∗(r) would have been easier to
use, but we decided to use retractions on spheres, just for the hypothetical case when we
would be interested in a set L with a loop, for which the cone L∗(r) then has a small loop
at 0, making retractions of L∗(r) near 0 hard to get.

4 The main competitor for monotonicity

The typical way to obtain monotonicity results like (1.8) is to compare E with a cone which
has the same trace on a sphere ∂B(0, r). Here we cannot quite do that when the Lj are not
cones centered at 0, so we shall need to add an extra piece to the cone (essentially, the set
L♯ below).

The assumptions for this section are the following. We work in a closed ball B = B(0, r),
and we assume that there is an open set U and boundary sets Lj , 0 ≤ j ≤ jmax, such that
B ⊂ U , (2.1), (2.2), and (3.4) hold, and E is a coral sliding almost minimal set in U , as in
(2.8). Set

(4.1) L = L(r) = B ∩
{ ⋃

1≤j≤jmax

Lj

}
,
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(as in (3.1)),

(4.2) L∗ = L∗(r) = B ∩
{
λz, ; z ∈ L and λ ≥ 0

}

(as in (3.2)), and also

(4.3) L♯ = L♯(r) =
{
λz, ; z ∈ L and λ ∈ [0, 1]

}
⊂ B.

In this section we just construct some acceptable deformations in the ball B; the idea
is to compare E ∩ B with the union of L♯ and the cone over E ∩ ∂B, but we shall not do
this exactly, and instead be very prudent and deform E ∩B to sets that tend to this union.
We shall only see later how to use the deformation of this section to prove our monotonicity
results.

We assume that

(4.4) r admits a local retraction,

as in Definition 3.1. Let us recall what this means with the present notation. Set

(4.5) R(τ) =
{
x ∈ ∂B ; dist(x, L∗ ∩ ∂B) ≤ τ

}

for τ > 0. If L∩B = ∅, we take L∗ = ∅ and R(τ) = ∅. Definition 3.1 gives us a C0-Lipschitz
mapping π0 : R(τ0) → L∗ ∩ ∂B, such that

(4.6) π0(x) = x for x ∈ L∗ ∩ ∂B.

Our construction will have four parameters, a small τ that controls distances to L∗, and
three radii rj, j = 0, 1, 2, with r ≥ r0 > r1 > r2 (and r − r2 very small). Later on, we shall
take specific values for the rj and take limits twice. We shall take τ < 1/4min(τ0, r), but
rapidly it will tend to 0.

Our first task is to use π0 to construct a new mapping π, which will be defined on the
whole ∂B. Set

(4.7) π(x) = π0(x) for x ∈ R(τ)

and

(4.8) π(x) = x for x ∈ ∂B \R(2τ).

In the remaining region R(2τ) \R(τ), set

(4.9) α(x) =
dist(x, L∗ ∩ ∂B)

τ
− 1 ∈ [0, 1]

and then

(4.10) π(x) = α(x)x+ (1− α(x))π0(x),
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which is well defined because x ∈ R(τ0/2). Let us check that

(4.11) π is 12C0-Lipschitz on ∂B.

First notice that (4.10) is still valid for x ∈ R(2τ0), if we set α(x) = 0 on R(τ) and α(x) = 1
on R(2τ0)\R(2τ). Next we show that π is 12C0-Lipschitz on R(2τ0). Consider x, y ∈ R(2τ0),
and notice that

|π(x)− π(y)| =
∣∣[π0(x)− π0(y)] + α(x)[x− π0(x)]− α(y)[y − π0(y)]

∣∣
≤ C0|x− y|+ α(x)|x− π0(x)− y + π0(y)|+ |α(x)− α(y)||y − π0(y)|
≤ C0|x− y|+ α(x)(1 + C0)|x− y|+ τ−1|x− y||y − π0(y)|,(4.12)

where we used (4.9) to get a bound on |α(x)− α(y)|. If in addition, y ∈ R(4τ), we can find
z ∈ L∗ ∩ ∂B such that |z − y| ≤ 4τ ; then

(4.13) |y − π0(y)| ≤ |y − z|+ |π0(z)− π0(y)| ≤ (1 + C0)4τ

because π0(z) = z by (4.6); altogether

(4.14) |π(x)− π(y)| ≤ 6(1 + C0)|x− y| ≤ 12C0|x− y| for x ∈ R(2τ0) and y ∈ R(4τ).

We get the same bound when x ∈ R(4τ) and y ∈ R(2τ0) (just exchange x and y in the
estimate). And when both x and y lie in R(2τ0) \ R(4τ), |π(x) − π(y)| = |x − y| by (4.8);
thus π is 12C0-Lipschitz on R(2τ0).

To complete the proof of (4.11), we still need to estimate |π(x) − π(y)| when x ∈ ∂B \
R(2τ0). When y ∈ R(2τ),

|π(x)− π(y)| = |x− π(y)| ≤ |x− y|+ |y − π(y)| ≤ |x− y|+ |y − π0(y)|
≤ |x− y|+ 4(1 + C0)τ ≤ |x− y|+ 2(1 + C0)|x− y|(4.15)

by (4.8), (4.10), and (4.13), and because dist(x, L∗∩∂B) ≥ 2τ0 ≥ 4τ and dist(y, L∗∩∂B) ≤
2τ . When y ∈ ∂B \ R(2τ), π(x) − π(y) = x − y by (4.8), and we are happy too. So (4.11)
holds.

Next we extend π to B by homogeneity, i.e., set

(4.16) π(λx) = λπ(x) for x ∈ ∂B and 0 ≤ λ ≤ 1.

This completes our definition of π. Notice that

(4.17) π is 13C0-Lipschitz on B;

this time, the simplest is to compute the radial and tangential derivatives, and notice that
|π(x)| ≤ |x| (by (4.10) and because |π0(x)| = r on ∂B). Set

(4.18) B∗ = B \ {0} and d(x) = dist
( rx
|x| , L

∗ ∩ ∂B
)
for x ∈ B∗;
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we use this to measure a radial distance to L∗. Notice that d is locally Lipschitz on B∗, with

(4.19) |∇d(x)| ≤ r

|x| .

Then set

R1 =
{
x ∈ B∗ ; d(x) ≤ τ

}
=

{
x ∈ B∗ ;

rx

|x| ∈ R(τ)
}
,

R2 =
{
x ∈ B∗ ; τ < d(x) ≤ 2τ

}
=

{
x ∈ B∗ ;

rx

|x| ∈ R(2τ) \R(τ)
}
, and(4.20)

R3 = B∗ \ [R1 ∪R2] =
{
x ∈ B∗ ;

rx

|x| ∈ ∂B \R(2τ)
}
.

In the easier special case when L = ∅ and L∗ = ∅, we just have R1 = R2 = ∅, and we can
take d(x) = +∞. Notice that

(4.21) π(x) = x for x ∈ L∗

by (4.6), (4.7), and (4.16),

(4.22) π(x) ∈ L∗ for x ∈ R1

by (4.4), (4.7), and (4.16), and

(4.23) π(x) = x for x ∈ R3,

by (4.8) and (4.16). Finally record that

(4.24) |π(x)| ≤ |x| for x ∈ B,

by (4.16) and the definition of π on ∂B.

We are ready to define our final mapping ϕ = ϕ1. We don’t need to restrict to E yet; ϕ
will be defined on R

n. Set

(4.25) Bj = B(0, rj), for j = 0, 1, 2, A1 = B0 \B1, and A2 = B1 \B2.

We start slowly and set

(4.26) ϕ(x) = x for x ∈ R
n \B0.

Next we set

(4.27) ϕ(x) = π(x) for x ∈ ∂B(0, r1),

and interpolate quietly in the middle. That is, we take

(4.28) α1(x) =
|x| − r1
r0 − r1

and ϕ(x) = α1(x)x+ (1− α1(x))π(x) for x ∈ A1 = B0 \B1.
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In the remaining ballB1 = B(0, r1), we shall use a function ~ to contract along radii whenever
this is possible. Set

(4.29) ~(x) =
[
1− τ−1 dist(x, L)− τ−1d(x)

]
+
∈ [0, 1] for x ∈ B

∗

(where d and B∗ come from (4.18) and [a]+ is a notation for max(a, 0)). Thus ~ ≡ 0 when
L = ∅. Then define ϕ on B2 by

(4.30) ϕ(x) = ~(x)π(x) for x ∈ B2 \ {0}

and ϕ(0) = 0; this makes a continuous function, by (4.24) and because 0 ≤ ~ ≤ 1 everywhere.
On the remaining annulus A2, we interpolate. That is, we set

(4.31) α2(x) =
|x| − r2
r1 − r2

for x ∈ A2 = B1 \B2,

and take

(4.32) ϕ(x) = α2(x)π(x) + (1− α2(x))~(x)π(x) for x ∈ A2.

Since d has a singularity at the origin, we feel obligated to check that

(4.33) ϕ is Lipschitz on B.

Since it is continuous along the boundaries of our different pieces, it is enough to check that
ϕ is Lipschitz on each piece separately. The various cut-off functions are Lipschitz, so it will
be enough to check that

(4.34) ~(x)π(x) is
15C0r

τ
-Lipschitz on B.

We know that ~π is locally Lipschitz on B∗ (by (4.19) in particular), so we just need to
bound the derivative D(~π)(x); but

|D(~π)(x)| ≤ |Dπ(x)|~(x) + |π(x)||D~(x)| ≤ 13C0~(x) + |π(x)|
[
τ−1 + τ−1|∇d(x)|

]

≤ 13C0 + τ−1|x|+ τ−1|x||∇d(x)| ≤ 13C0 + 2τ−1r ≤ 15C0r

τ
(4.35)

by (4.17), (4.29), (4.24), and (4.19), and because |x| ≤ r and τ ≤ r/4; (4.34) follows because
~π is also continuous across 0.

We now complete the family by taking

(4.36) ϕt(x) = tx+ (1− t)ϕ(x) for x ∈ R
n and t ∈ [0, 1],

and check that

(4.37)
the restriction to E of the ϕt, 0 ≤ t ≤ 1,

forms an acceptable deformation, with Ŵ ⊂ B0.
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By (4.33) in particular, the mapping (x, t) → ϕt(x) is Lipschitz on R
n × [0, 1], which takes

care of (1.2) and (1.4); (1.3) is trivial. All the sets Wt, 0 ≤ t ≤ 1, of (1.5) are contained in
B0, by (4.26), and

(4.38) ϕt(Wt) ⊂ ϕt(B0) ⊂ B0

by (4.24) and because 0 ≤ ~(x) ≤ 1. Thus Ŵ ⊂ B0 and (1.5) holds.
We are left with (2.3) (the current replacement for (1.6)) to check. So let 1 ≤ j ≤ jmax

and x ∈ E ∩ Lj be given, and let us check that ϕt(x) ∈ Lj for 0 ≤ t ≤ 1. If x ∈ R
n \ B0,

(4.26) and (4.36) say that ϕt(x) = x, and we are happy because x ∈ Lj . Otherwise, notice
that x ∈ L ⊂ L∗, by (4.1) and (4.2). Then π(x) = x, by (4.21), and ~(x) = 1 by (4.29).
This yields ϕt(x) = x ∈ Lj , which proves (2.3); (4.37) follows.

Thus we get one of the formulas (2.5)-(2.7), with r = r0. Our next task is to estimate
the measure of ϕ1(E ∩ B0) = ϕ(E ∩B0), which we will cut into many small pieces.

We start with B2. Notice that by (4.29) and the definitions (4.18) and (4.20),

(4.39) ~(x) = 0 for x ∈ R2 ∪ R3;

thus (4.30) yields ϕ(x) = 0 for x ∈ B2 ∩ [R2 ∪R3], hence

(4.40) Hd(ϕ(B2 ∩ [R2 ∪R3])) = 0.

We are left with B2 ∩R1. Let us show that

(4.41) ϕ(B2 ∩ R1) ⊂
{
z ∈ L∗ ; dist(z, L♯) ≤ (C0 + 2)τ

}
.

Let x ∈ B2∩R1 be given. If dist(x, L♯) ≥ τ , then dist(x, L) ≥ τ (because L ⊂ L♯), ~(x) = 0
by (4.29), ϕ(x) = 0 by (4.30), and we are happy because R1 is not empty, L∗ and L are not
empty either, and (4.3) says that 0 ∈ L♯. So we may assume that

(4.42) dist(x, L♯) ≤ τ.

Set x◦ = rx
|x|
. By (4.16), π(x) = |x|π(x◦)

r
. Since x ∈ R1, (4.20) says that x◦ ∈ R(τ), then

π(x◦) = π0(x
◦) ∈ L∗ by (4.7) and (4.4). Since x◦ ∈ R(τ), we can find y ∈ L∗ ∩ ∂B such that

|y − x◦| ≤ τ (see (4.5)), and then

(4.43) |π0(x◦)− x◦| ≤ |π0(x◦)− π0(y)|+ |y − x◦| ≤ (C0 + 1)|y − x◦| ≤ (C0 + 1)τ

because π0(y) = y by (4.6). Next

(4.44) |π(x)− x| = |x|
r

|π(x◦)− x◦| = |x|
r

|π0(x◦)− x◦| ≤ (C0 + 1)τ

and so dist(π(x), L♯) ≤ (C0 + 2)τ by (4.42). But λy ∈ L♯ when y ∈ L♯ and λ ∈ [0, 1] (by
(4.2)), so

(4.45) dist(ϕ(x), L♯) = dist(~(x)π(x), L♯) ≤ dist(π(x), L♯) ≤ (C0 + 2)τ
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by (4.30) and because ~(x) ∈ [0, 1]. By (4.22), π(x) ∈ L∗ and hence also ϕ(x) = ~(x)π(x) ∈
L∗; this completes our proof of (4.41).

Next we consider the (more interesting) interior annulus A2. The largest piece is A2∩R3.
Recall from (4.23) that π(x) = x for x ∈ R3. In addition, ~(x) = 0 by (4.39), so (4.32)
simplifies and becomes

(4.46) ϕ(x) = α2(x)x =
|x| − r2
r1 − r2

x for x ∈ A2 ∩ R3,

by (4.31); this is a rather simple dilation that maps A2 ∩ R3 to B1 ∩ R3. In this region, we
have no other option but to compute Hd(ϕ(E ∩ A2 ∩ R3)) with the area formula, and later
take a limit.

Recall from (2.11) that E is rectifiable. Then it has an approximate tangent d-plane
P (x) at Hd-almost every point x. In fact, thanks to the local Ahlfors regularity (2.9), this
approximate tangent plane is even a true tangent plane; this is reassuring, but we shall not
really need this remark. The mapping ϕ, given by (4.46), is smooth, and we can compute
its Jacobian J(x) relative to the plane P (x). Again, an approximate differential would be
enough, but we are happy that we can compute J(x) in terms of P (x). Denote by P ′(x) the
vector space of dimension d parallel to P (x). The main quantity here is the smallest angle
θ(x) ∈ [0, π/2] between the line (0, x) and a vector of P ′(x). Said in other words,

(4.47) cos θ(x) = sup
{
〈v, x|x|〉 ; v ∈ P ′(x) and |v| = 1

}
.

If E were a cone centered at 0, we would get cos θ(x) = 1 almost everywhere, for instance.
Denote by D = Dϕ(x) the differential of ϕ at x. Set e = x

|x|
and define α : [r2, r1] → [0, 1]

by α(ρ) = ρ−r2
r1−r2

. From (4.46) we deduce that for v ∈ R
n,

(4.48) D(v) = α2(x)v + 〈∇α2(x), v〉x = α2(x)v + α′(|x|)〈e, v〉x = α2(x)v +
〈e, v〉
r1 − r2

x.

Then we compute the Jacobian J(x). Use (4.47) to choose a first unit vector v1 ∈ P ′(x),
such that cos θ(x) = 〈v, e〉, and then choose unit vectors v2, . . . , vd such that (v1, . . . , vd) is
an orthonormal basis of P ′(x). By (4.47) again,

(4.49) 〈v1 + tvj , e〉 ≤ cos θ(x)|v1 + tvj |

for j ≥ 2 and t ∈ R. When we take the derivative at t = 0, we get that 〈vj , e〉 = 0.
Now return to (4.48). Set ρ = |x|; for j ≥ 2, we get that

(4.50) D(vj) = α2(x)vj = α(ρ)vj .

For v1, we further decompose v1 as v1 = cos θ(x)e + sin θ(x)w, where w is a unit normal
vector orthogonal to e, and get that

(4.51) D(v1) = α2(x)v1 +
x cos θ(x)

r1 − r2
= α(ρ)[cos θ(x)e + sin θ(x)w] +

ρ cos θ(x)e

r1 − r2
.
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Both e and sin θ(x)w = v1 − cos θ(x)e are orthogonal to the vj , j ≥ 2, so all the vectors
D(vj), j ≥ 1, are orthogonal, and

(4.52) J(x) =
∏

j≥1

|D(vj)| = α(ρ)d−1|D(v1)| = α(ρ)d−1β(x),

with

β(x) =
{
cos2 θ(x)

(
α(ρ) +

ρ

r1 − r2

)2
+ sin2 θ(x)α2(ρ)

}1/2

=
{
cos2 θ(x)

(2ρ− r2
r1 − r2

)2
+ sin2 θ(x)α2(ρ)

}1/2

.(4.53)

We now write the area formula for the injective mapping ϕ (see for instance [F]):

(4.54) Hd(ϕ(E ∩ A2 ∩R3)) =

ˆ

E∩A2∩R3

J(x)dHd(x) =

ˆ

E∩A2∩R3

α(ρ)d−1β(x)dHd(x),

where we set

(4.55) ρ = |x| and α(ρ) =
ρ− r2
r1 − r2

.

We leave this as it is for the moment, to be evaluated later, and return to the other pieces
of A2, starting with A2 ∩ R2. In this region, we still have that ~(x) = 0, by (4.39), but we
need to keep π(x) as it is, and (4.32) only yields

(4.56) ϕ(x) = α2(x)π(x) =
|x| − r2
r1 − r2

π(x) for x ∈ A2 ∩R2.

Let us again apply the area formula. Let x ∈ E be such that E has a tangent plane P (x)
at x (as before), but also ϕ has an approximate differential Dϕ(x) at x in the direction of
P (x); since ϕ is Lipschitz, this happens for Hd-almost every x ∈ E ∩B; see for instance [F],
to which we shall systematically refer concerning the area formula on rectifiable sets. At
such a point x, π also has an approximate differential Dπ(x) in the direction of P (x); we
compute as in (4.48) and get that for v ∈ P ′(x),

(4.57) Dϕ(x)(v) = α2(x)Dπ(x)(v) + 〈∇α2(x), v〉π(x) = α2(x)Dπ(x)(v) +
〈e, v〉π(x)
r1 − r2

.

Let us use the same orthonormal basis (v1, . . . , vd) of P ′(x) as before. For j ≥ 2, we
now get that Dϕ(x)(vj) = α2(x)Dπ(x)(vj) (because vj ⊥ e), and we shall remember that
|Dϕ(x)(vj)| ≤ C for Hd-almost every x, where C depends on C0, just because (4.17) says
that π is 13C0-Lipschitz. For v1 we have an extra term, and we can only say that

(4.58) |Dϕ(x)(v1)| ≤ C +
|π(x)|
r1 − r2

≤ C +
r

r1 − r2
.
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Then we estimate J(x), the Jacobian of ϕ on E at x, brutally, and get that J(x) ≤ Cr
r1−r2

.
The area formula now yields

(4.59) Hd(ϕ(E ∩A2 ∩R2)) ≤
ˆ

E∩A2∩R3

J(x)dHd(x) ≤ Cr

r1 − r2
Hd(E ∩ A2 ∩R2),

where we only get an inequality in the first part because do not know whether ϕ is injective.
This looks large because of r

r1−r2
, but we hope that the fact that A2 is quite thin, plus the

small angle of R2, will compensate.
Our next piece is A2 ∩R1, which we decompose again. Set

(4.60) V =
{
x ∈ B ; dist(x, L♯) ≤ τ

}
.

On A2 ∩ R1 \ V , we again have that ~(x) = 0 (directly by (4.29) and because dist(x, L) ≥
dist(x, L♯) ≥ τ), so the formula (4.56) still holds, and we can compute as for A2 ∩ R2. We
avoid L∗ for the moment, and we get that

Hd(ϕ(E ∩ A2 ∩ R1 \ (V ∪ L∗))) ≤ Cr

r1 − r2
Hd(E ∩A2 ∩R1 \ (V ∪ L∗))

≤ Cr

r1 − r2
Hd(E ∩A2 ∩R1 \ L∗).(4.61)

Next we claim that

(4.62) ϕ(A2 ∩ R1 ∩ V ) ⊂
{
z ∈ L∗ ; dist(z, L♯) ≤ (C0 + 2)τ

}
.

We can repeat the proof that we gave below (4.42), up to (4.45), which is the first time
where we used the fact that x ∈ B2 (to compute ϕ(x)). Here (4.31) and (4.32) say that
ϕ(x) ∈ [~(x)π(x), π(x)], so we still can write ϕ(x) = λπ(x) for some λ ∈ [0, 1], and we can
replace (4.45) by

(4.63) dist(ϕ(x), L♯) = dist(λπ(x), L♯) ≤ dist(π(x), L♯) ≤ (C0 + 2)τ.

Then our claim follows as before.
The last part of A2 is A2 ∩ L∗ \ V . By (4.21), π(x) = x on this set, so ϕ(x) ∈ [0, x], and

we just record that

(4.64) ϕ(E ∩ A2 ∩ L∗ \ V ) ⊂
⋃

x∈E∩A2∩L∗

[0, x] =
{
λx ; x ∈ E ∩ A2 ∩ L∗ and λ ∈ [0, 1]

}
.

We are left with the contribution of the exterior annulus A1, where ϕ interpolates between
x and π(x) (see (4.28)). When x ∈ R3, (4.23) says that π(x) = x, so let us record that

(4.65) ϕ(x) = x for x ∈ A1 ∩ R3.
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Let us check that

(4.66) ϕ is 28C0

(
1 +

τ

r0 − r1

)
-Lipschitz on A1.

As usual, for x, y ∈ A1, we write

ϕ(x)− ϕ(y) = α1(x)x+ (1− α1(x))π(x)− α1(y)y − (1− α1(y))π(y)

= [π(y)− π(x)] + α1(x)[x− π(x)]− α1(y)[y − π(y)]

= [π(y)− π(x)] + α1(x)[x− π(x)− y + π(y)] + [α1(x)− α1(y)][y − π(y)].(4.67)

Then we observe that dist(y, R3) ≤ 2τ by (4.20) and (4.5), so we can choose z ∈ R3 such
that |z − y| ≤ 2τ , and

(4.68) |y − π(y)| ≤ |y − z|+ |π(z)− π(y)| ≤ 14C0|z − y| ≤ 28C0τ

by (4.23) and (4.17). Thus (4.67) yields

(4.69) |ϕ(x)− ϕ(y)| ≤ 13C0|x− y|+ 14C0|x− y|+ 28C0τ |x− y|
r0 − r1

by (4.28) and (4.68); the Lipschitz bound (4.66) follows. We deduce from this that

(4.70) Hd(ϕ(E ∩ A1 ∩ (R1 ∪R2))) ≤
[
28C0

(
1 +

τ

r0 − r1

)]dHd(E ∩ A1 ∩ (R1 ∪ R2)).

Let us summarize our estimates so far. Let us first assume that E is A′-almost minimal
(see Definition 2.1). As a consequence of (4.37), we can apply (2.6) (see above (4.39)). We
get that

(4.71) Hd(E \ ϕ(E)) ≤ Hd(ϕ(E) \ E) + h(r0)r
d
0 ≤ Hd(ϕ(E) \ E) + h(r)rd

because ϕ1 = ϕ and h is nondecreasing. Next observe that E and ϕ(E) coincide on R
n \B0,

because ϕ(x) = x on R
n \B0 and ϕ(B0) ⊂ B0. Then add Hd(B0 ∩ E ∩ ϕ(E)) to both sides

of (4.71). We get that

(4.72) Hd(E ∩B0) ≤ Hd(ϕ(E) ∩B0) + h(r)rd = Hd(ϕ(E ∩B0)) + h(r)rd,

where the last part holds because ϕ(x) = x on R
n \B0. Then we add the various pieces from

above and get that

(4.73) Hd(E ∩ B0) ≤ Hd(L♯) + I1 + I2 + I3 + I4 + I5 + I6 + h(r)rd,

where we get no contribution from (4.40),

(4.74) I1 = Hd(Z1), with Z1 =
{
z ∈ L∗ \ L♯ ; dist(z, L♯) ≤ (C0 + 2)τ

}
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comes from (4.41),

(4.75) I2 = Hd(ϕ(E ∩ A2 ∩ R3)) =

ˆ

E∩A2∩R3

α(ρ)d−1β(x)dHd(x)

comes from (4.54),

(4.76) I3 = Hd(ϕ(E ∩ A2 ∩ R2)) ≤
Cr

r1 − r2
Hd(E ∩ A2 ∩ R2)

comes from (4.59),

(4.77) I4 =
Cr

r1 − r2
Hd(E ∩ A2 ∩R1 \ L∗)

comes from (4.61), the contribution of (4.62) was already accounted for in I1,

(4.78) I5 = Hd(Z5), with Z5 =
{
λx ; x ∈ E ∩A2 ∩ L∗ and λ ∈ [0, 1]

}
\ L♯

comes from (4.64), and we remove L♯ because it was accounted for in (4.73), and

I6 = Hd(ϕ(E ∩A1))

≤ Hd(E ∩ A1 ∩ R3) +
[
28C0

(
1 +

τ

r − r1

)]dHd(E ∩A1 ∩ (R1 ∪ R2))

≤ [28C0

(
1 +

τ

r − r1

)]dHd(E ∩A1)(4.79)

comes from (4.65) and (4.70). We shall estimate all these terms in the next section.

If E is A-almost minimal, we can of course use Proposition 20.9 in [D6] to say that E is
A′-almost minimal, with the same gauge function, and use the estimate above. Since this is
a little heavy, we can instead use (2.5) and work a little bit more.

Since (2.5) is written in terms of W1 =
{
x ∈ E ; ϕ(x) 6= x

}
, we shall need to control

E \W1. We claim that

(4.80) E ∩ B0 \W1 ⊂ (E ∩A1) ∪ (E ∩ L) ∪ {0}.

Indeed, let x ∈ E ∩ B0 \W1 be given; by definition, ϕ(x) = x. We may assume that x /∈ L,
and then (4.29) says that ~(x) < 1. Also recall from (4.24) that |π(x)| ≤ |x|.

If x ∈ A1, we are happy. If x ∈ A2, (4.31) and (4.32) say that ϕ(x) lies (strictly)
between ~(x)π(x) and π(x); hence |ϕ(x)| < |π(x)| ≤ |x|, and ϕ(x) 6= x (a contradiction). If
x ∈ B2 \ {0}, then again |ϕ(x)| = |~(x)||π(x)| < |x|. Finally, we are also happy if x = 0. So
(4.80) holds.

Now we want to estimate Hd(E ∩ B0). We say that

Hd(E ∩ B0) = Hd(W1) +Hd(E ∩ B0 \W1) ≤ Hd(ϕ(W1)) + h(r)rd +Hd(E ∩B0 \W1)

≤ Hd(ϕ(E ∩ B0)) + h(r)rd +Hd(E ∩ B0 \W1)

≤ Hd(ϕ(E ∩ B0)) + h(r)rd +Hd(E ∩ A1)(4.81)
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because W1 ⊂ E ∩B0 (by (2.4)), by (2.5), and then by (4.80) and because Hd(L) = 0 (recall
that L is at most (d − 1)-dimensional). This almost the same thing as (4.72), and then we
get the same thing as (4.73), except that we need to add the extra term

(4.82) I7 = Hd(E ∩ A1).

This term will not bother, as it is dominated by I6.

Finally assume that E is A+-almost minimal. This time we can only use (2.7), whose
error term is h(r)Hd(ϕ(W1)) instead of h(r)rd. Notice that if Hd(ϕ(W1)) ≥ Hd(W1)), we
have (2.5) with no error term, and otherwise we can replace the error term h(r)Hd(ϕ(W1))
with the larger Hd(W1)). Thus we get that

Hd(E ∩ B0) ≤ Hd(L♯) +

7∑

j=1

Ij + h(r)min(Hd(ϕ(W1)),Hd(W1)))

≤ Hd(L♯) +

7∑

j=1

Ij + h(r)Hd(E ∩ B)(4.83)

when E is sliding A+-almost minimal.
This may be better than (4.73), if the origin lies outside of E. It is not much worse,

because of the local Ahlfors regularity of E. That is, if we assume (as in (2.10)) that

(4.84) B(0, 2r) ⊂ U and h(2r) is small enough,

then we get that

(4.85) Hd(E ∩B) ≤ Crd,

with a constant C that depend only on n, d, and the Lj (through the constants in (2.1)),
regardless of whether x ∈ E or not, and (4.83) is nearly as good as (4.73). If we do not want
to assume that B(0, 2r) ⊂ U , we still get (4.85), but with a constant C that depends also on
r−1 dist(B,Rn \ U) (apply (2.8) to balls of size dist(B,Rn \ U), and then count how many
you need to get an upper bound for Hd(E ∩B)).

5 We take a first limit and get an integral estimate

In this section we integrate the estimate obtained in the previous section, and take a first
limit. We get a bound on Hd(E ∩ B(0, a)), for a < r, in terms of the restriction of E to an
annulus B(0, b) \B(0, a); see Lemma 5.1 below. Later on, we will let a tend to b.

We continue with the fixed radius r, and keep the same assumptions as in Section 4. Let
a, b ∈ [r/2, r] be given, with a < b ≤ r. We want to do the following computations. For each
small τ > 0 and t ∈ [a, b], we shall write down the main estimate (4.73) (with the added
term I7 if E is A-almost minimal, or even (4.83) if E is A+-almost minimal), with

(5.1) r0 = t, r1 = t− τ, and r2 = t− 2τ,
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average in t, and then take the limit when τ tends to 0.
The main reason why we do this slow and cautious limiting process is that the author

was not able to handle the more natural process when one would take r0 = r, r1 = r − τ ,
and r2 = r − 2τ , and go to the limit directly. It seems harder to control the contribution of
the regions R2 ∩A2 when we do that.

The average of (4.73) (adapted to A-almost minimal sets) yields

(5.2) Hd(E ∩ B(0, a)) ≤ Hd(L♯ ∩B(0, b)) +

7∑

j=1

Jj(τ) + h(r)rd,

with

(5.3) Jj(τ) =
1

b− a

ˆ

t∈[a,b]

Ij(t, τ)dt

for 1 ≤ j ≤ 7, and where Ij(t, τ) is the value of Ij for the choice of r0, r1, r2 of (5.1). For
A+-almost minimal sets, we would replace h(r)rd with h(r)Hd(E ∩ B), or Ch(r)rd, as in
(4.83) or (4.85).

Our next task is to take the Jj(τ) one after the other, and estimate them. The advantage
of I1 (in (4.74)) is that it does not depend on t. Recall that Hd(L∗) < +∞ (because
we assumed (3.4) and (3.5) follows), and since the set Z1 = Z1(τ) is contained in L∗ and
decreases to the empty set when τ tends to 0, we get that

(5.4) lim
τ→0

J1(τ) = lim
τ→0

Hd(Z1(τ)) = 0.

Next consider the integral

(5.5) J2(τ) =
1

b− a

ˆ

t∈[a,b]

ˆ

E∩A2(t,τ)∩R3(τ)

αt(ρ)
d−1βt(x)dHd(x)

(coming from (4.75)), where αt and βt are as in (4.53) and (4.55), and we still work with
ρ = |x|. Here

(5.6) A2(t, τ) = B1(t) \B2(t) =
{
t− 2τ ≤ |x| < t− τ

}

by (4.25) and (5.1), the set R3(τ) depends on τ , but not on t (see (4.20)),

(5.7) αt(ρ) =
ρ− r2
r1 − r2

=
ρ− t + 2τ

τ

by (4.55), and

βt(x) =
{
cos2 θ(x)

(2ρ− r2
r1 − r2

)2
+ sin2 θ(x)α2(ρ)

}1/2

=
{
cos2 θ(x)

(2ρ− t+ 2τ

τ

)2
+ sin2 θ(x)α2

t (ρ)
}1/2

(5.8)
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by (4.53). We apply Fubini and get

(5.9) J2(τ) =
1

b− a

ˆ

E

f(x)dHd(x),

where in fact we only integrate on

(5.10) A(τ) =
⋃

t∈[a,b]

A2(t, τ) =
{
a− 2τ ≤ |x| < b− τ

}

and

(5.11) f(x) =

ˆ

t∈[a,b]

1t−2τ≤|x|<t−τ (x)1R3(τ)(x)αt(ρ)
d−1βt(x)dt.

We want to estimate βt. Notice that 0 ≤ αt(ρ) ≤ 1 when x ∈ A2(t, τ), so

(5.12) βt(x)
2 ≤ cos2 θ(x)

(2ρ− t + 2τ

τ

)2
+ 1 ≤ cos2 θ(x)

( t
τ

)2
+ 1 ≤ b2 cos2 θ(x)

τ 2
+ 1

because ρ ≤ t− τ and t ≤ b. Since
√
1 + u2 ≤ 1 + u for u ≥ 0, we get that

(5.13) βt(x) ≤ 1 + τ−1b cos θ(x) for x ∈ A2(t, τ).

Thus

(5.14) f(x) ≤ 1R3(τ)(x) [1 + τ−1b cos θ(x)] g(x),

with

g(x) =

ˆ

1t−2τ≤|x|<t−τ(x)αt(ρ)
d−1dt =

ˆ

[ρ+τ,ρ+2τ ]

(ρ− t+ 2τ

τ

)d−1

dt

=

ˆ

u∈[0,τ ]

(τ − u

τ

)d−1

du = τ 1−d

ˆ

v∈[0,τ ]

vd−1dv =
τ

d
,(5.15)

where we set t = u+ ρ+ τ and then v = τ − u. We return to (5.9) and get that

J2(τ) ≤ 1

d(b− a)

ˆ

E∩A(τ)∩R3(τ)

[b cos θ(x) + τ ]dHd(x)

≤ 1

d(b− a)

ˆ

E∩A(τ)\L∗

[b cos θ(x) + τ ]dHd(x)(5.16)

by (5.14) and because the set R3(τ) never meets L∗ (see (4.20)). Set A(a, b) = B(0, b) \
B(0, a). We claim that

(5.17) lim sup
τ→0

J2(τ) ≤
b

d(b− a)

ˆ

E∩A(a,b)\L∗

cos θ(x)dHd(x).
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Indeed, for every c < a, A(τ) ⊂ A(c, b) for τ small, so (5.16) yields (5.17), but where we
integrate on A(c, b) instead of A(a, b). We easily deduce (5.17) from this, because Hd(E ∩
B(0, b)) < +∞.

Recall from (4.76) that

(5.18) I3(t) ≤
Cr

r1 − r2
Hd(E ∩ A2(t, τ) ∩R2(τ)) ≤

2Cb

τ
Hd(E ∩A2(t, τ) ∩ R2(τ))

with the same sort of notation as above. We average over [a, b] and get that

J3(τ) ≤ Cb

τ(b − a)

ˆ

t∈[a,b]

Hd(E ∩A2(t, τ) ∩ R2(τ))dt

=
Cb

τ(b − a)

ˆ

x∈E∩A(τ)∩R2(τ)

ˆ

t∈[a,b]

1x∈A2(t,τ)(t)dtdHd(x).(5.19)

But
´

t∈[a,b]
1x∈A2(t,τ)(t)dt ≤ τ by (5.6), so we are left with

(5.20) J3(τ) ≤
Cb

(b− a)
Hd(E ∩A(τ) ∩R2(τ)).

Now E∩A(τ)∩R2(τ) ⊂ H(τ), where H(τ) =
{
x ∈ E∩B(0, b) ; 0 < d(x) ≤ 2τ

}
(see (4.20)).

Since Hd(E ∩ B(0, b)) < +∞ and the H(τ) decrease to the empty set, we get that

(5.21) lim
τ→0

J3(τ) = 0.

We turn to

(5.22) I4(t) =
Cr

r1 − r2
Hd(E ∩ A2(t, τ) ∩R1(τ) \ L∗) ≤ 2Cb

τ
Hd(E ∩ A2(t, τ) ∩R1(τ) \ L∗)

(see (4.77)). This term can be treated exactly like I3(t), and we get that

(5.23) lim
τ→0

J4(τ) = 0.

Next we study I5(t, τ) = Hd(Z5(t, τ)), where Z5(t, τ) is as in (4.78). For each c ∈ (0, a], set

(5.24) Z(c, b) =
{
λx ; x ∈ E ∩ L∗ ∩ B(0, b) \B(0, c) and λ ∈ [0, 1]

}
\ L♯.

If c < a, then for τ small, Z5(t, τ) ⊂ Z(c, b) for every t ∈ [a, b]. We take the average and get
that J5(τ) ≤ Hd(Z(c, b)). Then we let c tend to a, use the fact that Hd(L∗) < +∞, and get
that

(5.25) lim sup
t→0

J5(τ) ≤ Hd(Z(a, b)).

Recall from (5.1) that r0 − r1 = τ ; then by (4.79)

(5.26) I6(t) ≤ [56C0]
dHd(E ∩ A1(t, τ)),
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where by (5.1)

(5.27) A1(t, τ) = B(0, r0) \B(0, r1) = B(0, t) \B(0, t− τ).

Set A1(τ) =
⋃

t∈[a,b]A1(t, τ) = B(0, b) \B(0, a− τ). We proceed as for J3(τ) and use Fubini
to estimate

(5.28) J6(τ) =
1

b− a

ˆ

t∈[a,b]

I6(t)dt ≤ [56C0]
d 1

b− a

ˆ

x∈E∩A1(τ)

1x∈A1(t,τ)(t)dtdHd(x).

As before,
´

t∈[a,b]
1x∈A1(t,τ)(t)dt ≤ τ , so

(5.29) J6(τ) ≤ [56C0]
d τ

b− a
Hd(E ∩ A1(τ)) ≤ [56C0]

d τ

b− a
Hd(E ∩ B(0, b)).

Recall from (4.82) that I7(t) = Hd(E ∩A1(t)); this term is smaller than the right-hand side
of (5.26), so (5.29) also holds for J7(τ). Then of course

(5.30) lim
τ→0

(J6(τ) + J7(τ)) = 0.

Let us summarize the estimates from this section as a lemma.

Lemma 5.1. Let U , E, and r satisfy the assumptions of Section 4. If E is of type A or A′

(as in (2.5) or (2.6)), then for all choices of r/2 ≤ a < b ≤ r,

(5.31)
Hd(E ∩B(0, a)) ≤ Hd(L♯ ∩ B(0, b)) +

1

d

b

(b− a)

ˆ

E∩A(a,b)\L∗

cos θ(x)dHd(x)

+Hd(Z(a, b)) + h(r)rd,

with Z(a, b) as in (5.24). If E is of type A+ (as in (2.7)), replace h(r)rd by h(r)Hd(E ∩B),
or Ch(r)rd, as in (4.83) or (4.85).

This follows from (5.2), (5.4), (5.17), (5.21), (5.23), (5.25), and (5.30).

6 The second limit and a differential inequality

In this section we still work with U , E, and a fixed r > 0, with the same assumptions as in
the previous sections, and we try to see what happens to the estimates of Lemma 5.1 when
we fix b (in a suitable Lebesgue set) and let a tend to b.

We start with Hd(Z(a, b)), for which no special caution needs to be taken. Set

(6.1) Z(b) =
{
λx ; x ∈ E ∩ L∗ ∩ ∂B(0, b) and λ ∈ [0, 1]

}
\ L♯.

We claim that

(6.2) lim sup
a→b−

Hd(Z(a, b)) ≤ Hd(Z(b)).
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Indeed, the sets Z(a, b) ∪ Z(b) all trivially contain Z(b), are contained in a set L∗ such that
Hd(Z∗) < +∞, and their monotone intersection is the set Z(b) (see (5.24)); (6.2) follows.

We want to evaluate Hd(Z(b)), and for this we shall use the coarea formula. First we
check that

(6.3) L∗ is a rectifiable set of dimension d.

For k ≥ 0, set Lk = L \ B(0, 2−k). By the definition (4.1) and our assumptions (2.1)
and (2.2), Lk is a rectifiable set of dimension d − 1, with finite measure. Then the set
L∗
k = B ∩

{
λx ; λ ≥ 0 and x ∈ Lk

}
is a rectifiable set of dimension d, with finite measure.

Since L∗ is the union of these sets, it is rectifiable as well. We already know from (3.4) and
(3.5) that Hd(L∗) < +∞, so (6.3) holds.

Since Z(b) ⊂ L∗, it is rectifiable as well, with finite measure, and we can write the
coarea formula, applied to Z(b) and the radial projection π defined by π(x) = |x|. By [F],
Theorem 3.2.22, we have the following identity between measures:

(6.4) JdHd
|Z(b) =

ˆ b

0

dHd−1
|π−1(t)∩Z(b)dt =

ˆ b

0

dHd−1
|∂B(0,t)∩Z(b)dt,

where J is a Jacobian function that we shall discuss soon, and (6.4) means that we can
take any positive Borel function, integrate both sides of (6.4) against this function, and get
the same result. Let us say that, if needed, we normalized the Hausdorff measures so that
they coincide with the Lebesgue measures of the same dimensions; then we do not need a
normalization constant in (6.4) (i.e, we can take J = 1 when Z(b) is a d-plane through the
origin).

Now the Jacobian J is the same as if we computed it for L∗ (either go to the definitions,
or observe that (6.4) is the restriction of the coarea formula on L∗). But in B(0, r), L∗

coincides with a cone, so its approximate tangent planes, wherever they exist, contain the
radial direction. In these direction, the derivative of π is ±1, so J(x) ≥ 1 almost everywhere
on L∗ and Z(b). Also, π is 1-Lipschitz, so J ≤ 1. Altogether, J = 1.

We apply (6.4) to the function 1 and get that

(6.5) Hd(Z(b)) =

ˆ b

0

dHd−1(∂B(0, t) ∩ Z(b))dt.

Set X = E∩L∗∩∂B(0, b). For our main estimate, we can forget about removing L♯ in (6.1),
say that Z(b) is contained in the cone over X , and get that

(6.6) Hd−1(∂B(0, t) ∩ Z(b)) ≤ Hd−1((t/b)X) = (t/b)d−1Hd−1(X),

and hence

(6.7) Hd(Z(b)) ≤
ˆ b

0

(t/b)d−1Hd−1(X)dt =
b

d
Hd−1(X).
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But we want to prepare the case of equality, so we also evaluate the intersection with L♯.
Define a function g on X by

(6.8) g(x) = sup
{
t ∈ [0, 1]; tx ∈ L

}
.

Since L is closed, this a Borel (even semicontinuous) function. Also (again because L is
closed), g(x)x ∈ L, which implies that λx ∈ L♯ for 0 ≤ λ ≤ g(x), by (4.3).

Let us check that for 0 < t ≤ b,

(6.9) ∂B(0, t) ∩ Z(b) = b−1t
{
x ∈ X ; g(x) < b−1t

}
.

If z ∈ ∂B(0, t) ∩ Z(b), then by (6.1) we can find x ∈ X and λ ∈ [0, 1] such that z = λx.
Clearly, λ = b−1t, and also λ > g(x) because otherwise z = λx ∈ L♯. That is, g(x) < b−1t.
Conversely, if x ∈ X and g(x) < b−1t, then z = b−1tx ∈ Z(b) because otherwise z = λy for
some y ∈ L and λ ∈ [0, 1] (by (4.3)), and then g(x) ≥ b−1t.

Now (6.5) yields

Hd(Z(b)) =

ˆ b

0

(b−1t)d−1

ˆ

X

1g(x)<b−1t dHd−1(x)dt = b1−d

ˆ

X

{ ˆ b

bg(x)

td−1dt
}
dHd−1(x)

= b1−d

ˆ

X

bd

d
(1− g(x)d)dHd−1(x) =

b

d
Hd−1(X)− b

d

ˆ

X

g(x)ddHd−1(x).(6.10)

For the moment, just set

(6.11) ∆ =
b

d

ˆ

X

g(x)ddHd−1(x),

and remember that ∆ ≥ 0 and

(6.12) Hd(Z(b)) =
b

d
Hd−1(X)−∆.

Next we evaluate integrals on the annulus A(a, b). We start with integrals on E ∩ L∗.
Denote by µ the restriction of Hd to E∩L∗, and by ν its pushforward by the radial projection
π. Thus

(6.13) ν(K) = µ(π−1(K)) = Hd(E ∩ L∗ ∩ π−1(K))

for Borel subsets K of [0, r]. Let us use again the coarea formula (6.4), but now on the set
E ∩ L∗. The Jacobian is still J = 1, for the same reason. We apply the formula to the
function F = 1π−1(K), and we get that

ν(K) = Hd(E ∩ L∗ ∩ π−1(K)) =

ˆ

E∩L∗

FdHd =

ˆ r

t=0

ˆ

E∩L∗∩∂B(0,t)

FdHd−1dt

=

ˆ r

t=0

1K(t)H
d−1(E ∩ L∗ ∩ ∂B(0, t))dt.(6.14)
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This proves that ν is absolutely continuous with respect to the Lebesgue measure on [0, r],
with the density f(t) = Hd−1(E ∩ L∗ ∩ ∂B(0, t)) (the measurability of f is included in the
formula). We shall restrict to points b ∈ [r/2, r] that are Lebesgue points for f , because for
such points b,

(6.15) lim
a→b, a<b

1

b− a

ˆ

[a,b)

f(t)dt = f(b).

Since

(6.16)

ˆ

[a,b)

f(t)dt = ν([a, b) = Hd(E ∩ L∗ ∩ π−1([a, b)) = Hd(E ∩ L∗ ∩A(a, b))

by (6.13) and with the notation introduced above (5.17), we get that

lim
a→b, a<b

1

b− a
Hd(E ∩ L∗ ∩ A(a, b)) = f(b) = Hd−1(E ∩ L∗ ∩ ∂B(0, b))

= Hd−1(X) =
d

b
Hd(Z(b)) +

d

b
∆ ≥ d

b
Hd(Z(b))(6.17)

by various definitions and (6.12).
Let us now consider the measures

(6.18) µ0 = Hd
|E∩B(0,r)

, µ1 = Hd
|E∩B(0,r)\L∗

= µ0 − µ and µ2 = cos θ(x)µ1,

where θ(x) is the same angle as in (5.31), for instance. For j = 0, 1, 2, define the pushforward
measure νj of µj by π, as we did for µ in (6.13), and then decompose νj into its absolutely
continuous part νj,a and its singular part νj,s. Finally, let fj denote the density of νj,a with
respect to the Lebesgue measure dλ on [0, r].

Observe that fj can be computed from density ratios, i.e.,

(6.19) fj(t) = lim
τ→0

τ−1µj([t− τ, t))

for (Lebesgue)-almost every t ∈ [0, r]. See for instance Theorem 2.12 in [M], in a much more
general context.

Again we shall assume that b is such a point. Then the definitions yield

lim
a→b, a<b

1

b− a

ˆ

E∩A(a,b)\L∗

cos θ(x)dHd(x) = lim
a→b, a<b

1

b− a
µ2(A(a, b))

= lim
a→b, a<b

1

b− a
ν2([a, b)) = f2(b).(6.20)
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We now let a tend to b in (5.31), and get that

Hd(E ∩ B(0, b)) ≤ Hd(L♯ ∩B(0, b)) +
b

d
f2(b) +Hd(Z(b)) + h(r)rd

= Hd(L♯ ∩B(0, b)) +
b

d
f2(b) +

b

d
f(b)−∆+ h(r)rd

= Hd(L♯ ∩B(0, b)) +
b

d
f2(b) +

b

d
(f0(b)− f1(b))−∆+ h(r)rd(6.21)

≤ Hd(L♯ ∩B(0, b)) +
b

d
f0(b) + h(r)rd

by (6.20) and (6.2), then the second part of (6.17), then (6.18), and (6.19) and its analogue
(6.15) for f . This holds for Lebesgue-almost every b ∈ [r/2, r] and when E is of type A or
A′; when E is of type A+, we modify the last term h(r)rd as usual. This comment about
A+ will remain valid, but we shall not always repeat it.

We are now ready to take a third limit, and let b tend to r, but since additional constraints
on r will arise, let us review some of the notation. Set

(6.22) R = dist(0,Rn \ U) = sup
{
r > 0 ; B(0, r) ⊂ U

}
,

define the measure µ0 = Hd
|E∩B(0,R), and let ν0 denote the pushforward measure of µ0 by π,

as usual. Thus our measure ν0 is the restriction of ν0 to [0, r].
Write ν0 = ν0,a + ν0,s, and denote by f0 the density of the absolutely continuous part

ν0,a. There is no confusion here, the previous f0 was just the restriction of the new one to
[0, r]. In addition to the assumptions from the beginning of Section 4, let us assume that r
is a Lebesgue point of f0, so that in particular

(6.23) f0(r) = lim
τ→0

1

τ

ˆ r

r−τ

f0(t)dt.

Then we can take a limit in (6.21) (which is valid for almost every b ∈ [r/2, r]), and get that

(6.24) Hd(E ∩B(0, r)) ≤ Hd(L♯ ∩B(0, r)) +
r

d
f0(r) + h(r)rd.

7 The almost monotonicity formula

We start with the assumptions for the next theorem. We are given a domain U , which
contains 0, and a finite collection of boundary sets Lj , 0 ≤ j ≤ jmax. We assume that

(7.1) the Lj satisfy (2.1), (2.2), and (3.4).

We are also given an interval (R0, R1), such that

(7.2) B(0, R1) ⊂ U
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and

(7.3) almost every r ∈ (R0, R1) admits a local retraction (as in Definition 3.1).

Then we consider a coral sliding almost minimal set E in U , with boundary conditions
defined by the Lj , and with a gauge function h, as in (2.8).

Finally we assume that h satisfies the Dini condition (1.17), and we set, as in (1.20),

(7.4) A(r) =

ˆ r

0

h(t)
dt

t
for 0 < r < R1 .

Next we introduce more notation and define our functional F . First set

(7.5) L′ =
⋃

1≤j≤jmax

Lj .

If, as in the introduction, there is only one boundary set L, then L′ = L. For 0 < r < R1,
set

(7.6) L♯(r) =
{
λz, ; z ∈ L′ ∩ B(0, r) and λ ∈ [0, 1]

}

(this is the same thing as L♯ in the previous sections), then

(7.7) m(r) = Hd(L♯(r)) and H(r) = drd
ˆ r

0

m(t)dt

td+1
.

With our current assumptions we are not sure that H(r) < ∞ for r small. For instance,
when d = 2, L′ could be a Logarithmic spiral in the plane; then m(r) = ar2 for r small, and
the integral in (7.7) diverges. But if L′ is a C1+ε curve through the origin, m(r) ≤ Cr2+ε

(only a small sector is seen), and the integral converge. Of course H(r) = 0 for r small when
L′ lies at positive distance from the origin.

If H ≡ +∞, the theorem below is true, but useless, so we may as well assume that the
integral in (7.7) converges.

The reason why we choose this function H is that it is a solution of a differential equation.
Namely, (7.7) yields

(7.8) H ′(r) =
d

r
H(r) + drd

m(r)

rd+1
=
d

r
H(r) +

d

r
m(r)

for 0 < r < R1.
We shall use the functions G and F defined by

(7.9) G(r) = Hd(E ∩ B(0, r)) +H(r) and F (r) = r−dG(r)

for r ∈ (0, R1). In our mind, H is a correcting term which we add to Hd(E∩B(0, r)) so that
F becomes nondecreasing for minimal sets, and almost nondecreasing for almost minimal
sets. Notice that although it seems complicated, it depends only on the geometry of L′. We
will check later that in the special case of the introduction where L′ is an affine subspace of
dimension d− 1, H(r) = Hd(S ∩B(0, r)), where the shade S is as in (1.9). See Remark 7.3.
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Theorem 7.1. Let U , the Lj, E, and h satisfy the assumptions (7.1)-(7.3) and (1.17). Then
there exist constants a > 0 and τ > 0, that depend only on n, d, and the constants that show
up in (2.1), with the following property. Suppose in addition that

(7.10) 0 ∈ E and h(R1) ≤ τ.

Then

(7.11) F (r)eaA(r) is nondecreasing on the interval (R0, R1).

We start with a few remarks, and then we shall prove the theorem.
When E is a minimal set, i.e., h = 0, then A = 0 and (7.11) says that F is nondecreasing.
In the special case when all the Lj are composed of cones of dimensions at most d − 1

centered at the origin, m ≡ 0, F is the same as θ0 in (1.8), and we recover a special case of
Theorem 28.7 in [D6].

When the Lj are almost cones (again, of dimensions smaller than d), r−dm(r) is rather
small near 0, and we get some form of near monotonicity for θ0 as well. The author did not
try to compare this to Theorem 18.15 in [D6], but bets that Theorem 18.15 in [D6] is at
least as good because the competitor used in the proof looks more efficient.

When E is an A+-almost minimal set, we do not even need (7.10), and and we can take
a = d. See Remark 7.2 below.

In the special case when L′ is an affine subspace, or more generally when L′ has at most
one point on each ray starting from the origin, H(r) = Hd(S∩B(0, r)), where S is the shade

(7.12) S =
{
x ∈ R

n ;λx ∈ L′ for some λ ∈ (0, 1]
}
.

See Remark 7.3. We thus recover Theorems 1.2 and 1.5 as special cases of Theorem 7.1.
Even though Theorem 7.1 looks quite general, it is not clear to the author that all this

generality will be useful (in fact, the author did not know exactly where to stop and ended up
not taking tough decisions). In the proof, we spend some time making sure that it works in
many complicated situations, but this does not mean that it is efficient there. For instance,
if n = 3, d = 2, and L consists in two parallel lines at a small distance from each other,
our main competitor uses two half planes bounded by the two lines, and it would be more
efficient to use one of these half planes, plus a small thin stripe that connects the two lines.

Many of our assumptions (for instance (2.2), (3.4), or (7.3)) are used in the limiting
process, but do not show up in the final estimate. This explains why we do not need uniform
bounds for C0 in (7.3).

We shall now complete the proof of the theorem. The main point will be a differential
inequality, that we shall derive from (6.24). Recall from Sections 4-6 that (6.24) holds for
almost every r ∈ (0, R1) that admits a local retraction, as in (4.4). Because of our assumption
(7.3), this means almost every r ∈ (R0, R1).

40



The set L♯ in (6.24) is the same as our L♯(r); see (7.6), (4.3), and (4.1). Then we get
that for almost every r ∈ (R0, R1),

G(r) = Hd(E ∩ B(0, r)) +H(r) ≤ Hd(L♯(r) ∩ B(0, r)) +
r

d
f0(r) + h(r)rd +H(r)

≤ m(r) +
r

d
f0(r) + h(r)rd +H(r) =

r

d
(f0(r) +H ′(r)) + h(r)rd(7.13)

by (7.9), (6.24), (7.7), and (7.8).

This is our main differential inequality. We now need to integrate it to obtain the desired
conclusion (7.11). Let a and A be as in (7.11), and set

(7.14) g(r) = r−deaA(r) for R0 < r < R1.

Since F (r) = r−dG(r) by (7.9), (7.11) amounts to checking that

(7.15) gG is nondecreasing on (R0, R1).

Recall from the definitions below (6.22) that for 0 < r < s ≤ R1,

Hd(E ∩B(0, s))−Hd(E ∩ B(0, r)) = ν0([0, s))− ν0([0, r)) = ν0([r, s))

≥ ν0,a([r, s)) =

ˆ s

r

f0(u)du.(7.16)

By (7.7),

(7.17) H(s)−H(r) =

ˆ s

r

H ′(t)dt.

Set dν = dν0 +H ′(t)dt for the moment. We sum (7.16) and (7.17) and get that

(7.18) G(s)−G(r) = ν([r, s)),

by (7.9). Next we check that for 0 < r < t < R1,

(7.19) g(t)G(t)− g(r)G(r) =

ˆ t

r

g′(s)G(s)ds+

ˆ

[r,t)

g(s)dν(s).

To see this without integrating by parts, we use Fubini’s theorem to compute the integral
I =
´ ´

r≤s≤u<t
g′(s)dν(u) in two different ways. When we integrate in s first, we get that

(7.20) I =

ˆ

r≤u<t

(g(u)− g(r))dν(u) =

ˆ

r≤u<t

g(u)dν(u)− g(r)[G(t)−G(r)].

When we integrate in u first, we get

(7.21) I =

ˆ

r≤s<t

g′(s)[G(t)−G(s)]ds = G(t)(g(t)− g(r))−
ˆ

r≤s<t

g′(s)G(s)ds.
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We compare the two and get (7.19).
The positive measure ν is at least as large as its absolutely continuous part νa, whose

density is f0 +H ′ (see (7.16)). Thus (7.19) yields

(7.22) g(t)G(t)− g(r)G(r) ≥
ˆ t

r

g′(s)G(s)ds+

ˆ t

r

g(s)(f0 +H ′)(s)ds.

But g′(s) = g(s)
[
−d
s
+ aA′(s)

]
= g(s)

[
−d
s
+ ah(s)

s

]
by (7.14) and (7.4). So (7.15) and (7.11)

will follow if we prove that

(7.23) (f0 +H ′)(s) ≥
[d
s
− ah(s)

s

]
G(s)

for almost every s ∈ (R0, R1). But (7.13) says that

(7.24)
d

s
G(s) ≤ (f0 +H ′)(s) +

d

s
h(s)sd,

so it is enough to prove that

(7.25)
d

s
h(s)sd ≤ ah(s)

s
G(s).

This is the place where we use our assumption (7.10): the (lower) local Ahlfors regularity
(2.9) yields

(7.26) G(s) ≥ Hd(E ∩B(0, r/2)) ≥ C−12−drd

(we used r/2 to make sure that (2.10) holds). We now choose a sufficiently large, depending
on C, and (7.25) follows from (7.26). This completes the proof of Theorem 7.1.

Remark 7.2. When E is a sliding A+-almost minimal set (as in (2.7)), we may drop (7.10)
from the assumptions of Theorem 7.1. Indeed, our initial error term in (4.83) could be
taken to be h(r)Hd(E ∩ B). When we follow the computations, we see that we can replace
sd with Hd(E ∩ B(0, s)) in (7.24) and (7.25). Then we just need to observe that G(s) ≥
Hd(E ∩ B(0, s)), and we get (7.25) if a ≥ d, without using (7.10) or the local Ahlfors
regularity. Some constraint on h, namely the fact that it tends to 0, is needed to obtain the
qualitative properties of E (mainly the rectifiability; the local Ahlfors regularity was only
comfort), but not the specific bound in (7.10).

Remark 7.3. Suppose that for some R ∈ (0, R1),

(7.27) the set L′ ∩ B(0, R) never meets a radius (0, x] more than once.

Then

(7.28) H(r) = Hd(S ∩ B(0, r)) for 0 < r < R,

where S is the shade set of (7.12).
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Since we also want to prepare the next remark, we shall make a slightly more general
computation than needed for (7.28). First we define a function N .

Set N(0) = 0 and, for x 6= 0, denote by N(x) the number of points of L′ that lie on the
line segment (0, x]. In short,

(7.29) N(x) = ♯(L′ ∩ (0, x]) ∈ [0,+∞].

It is not hard to check that N is a Borel function. Notice that

(7.30) S \ {0} =
{
x ∈ R

n ; N(x) > 0
}
.

Then set

(7.31) H1(r) =

ˆ

S∩B(0,r)

N(x)dHd(x);

we will later show that H1 could have been used instead of H , but let us not discuss this
yet. When we assume (7.27), we have that

(7.32) N(x) ≤ 1 for x ∈ B(0, R)

and we shall see that H1 = H , but let us not use this assumption for the moment.
Since we prefer to work with finite measures, let us first replace L′ with L′

ρ = L′ \B(0, ρ),
where the small ρ > 0 will soon tend to 0. Define Nρ, Sρ, and H1,ρ as above, but with the
smaller set L′

ρ. As for (7.30) and because 0 /∈ Sρ,

(7.33) Sρ =
{
x ∈ R

n ; Nρ(x) > 0
}
.

For 0 < r ≤ R1, set

(7.34) Lρ(r) = L′
ρ ∩ B(0, r) = L′ ∩ B(0, r) \B(0, ρ)

and

(7.35) L∗
ρ(r) = B(0, r) ∩

{
λz, ; z ∈ Lρ(r) and λ ≥ 0

}
.

Recall that by the description of L′ by (2.1) and (2.2), L′
ρ is contained in a finite union of

biLipschitz images of dyadic cubes of dimensions at most d− 1. Since it also stays far from
the origin, we get that Hd(L∗

ρ(R1)) < +∞.
Set µρ = NρHd

|B(0,R1)
= NρHd

|Sρ∩B(0,R1)
(by (7.33)). Our nice description of L′

ρ also
implies, with just a little more work, that µρ is a finite measure. Finally denote by νρ the
pushforward measure of µρ by π; we want to show that νρ is absolutely continuous and
control its density, and we shall use the coarea formula again.

By (7.12), Sρ ∩ B(0, R1) ⊂ L∗
ρ(R1), which is a rectifiable truncated cone of finite Hd

measure. This allows us to apply the coarea formula (6.4), with Z(b) replaced by Sρ and
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J = 1, as we did near (6.13)-(6.14) with the set E∩L∗. That is, for every nonnegative Borel
function h on B(0, R1),

(7.36)

ˆ

Sρ∩B(0,R1)

h(x)dHd(x) =

ˆ R1

t=0

ˆ

S∩∂B(0,t)

h(x)dHd−1(x)dt.

We apply this with h = 1π−1(K)Nρ, where K is a Borel subset of [0, R1], and get that

νρ(K) =

ˆ

Sρ∩B(0,R1)

1π−1(K)(x)dµρ(x) =

ˆ

Sρ∩B(0,R1)

1π−1(K)(x)Nρ(x)dHd(x)

=

ˆ R1

t=0

ˆ

S∩∂B(0,t)

1π−1(K)(x)Nρ(x)dHd−1(x)dt

=

ˆ R1

t=0

1K(t)

ˆ

S∩∂B(0,t)

Nρ(x)dHd−1(x)dt;(7.37)

this proves that νρ is absolutely continuous with respect to the Lebesgue measure, and its
density is

(7.38) fρ(t) =

ˆ

Sρ∩∂B(0,t)

Nρ(x)dHd−1(x).

The function fρ is locally integrable, but we can say a bit more: since Nρ is radially nonde-
creasing, fρ is also nondecreasing, so its restriction to any [0, T ], T < R1, is bounded.

Let us record that by the analogue of (7.31) for H1,ρ,

(7.39) H1,ρ(r) =

ˆ

Sρ∩B(0,r)

Nρ(x)dH
d(x) = νρ([0, r)) =

ˆ r

0

fρ(t)dt.

For r > 0, define a function gr on B(0, r) by

(7.40) gr(0) = 0 and gr(x) = Nρ(xr/|x|) for x 6= 0.

Notice that

(7.41) gr(x) ≥ Nρ(x) for x ∈ B(0, r),

just because Nρ is radially nondecreasing (see the definition (7.29)). In addition, we claim
that

(7.42) gr(x) ≥ Nρ(x) + 1 for x ∈ B(0, r) ∩ L♯
ρ(r) \ Lρ(r),

where

(7.43) L♯
ρ(r) =

{
λz, ; z ∈ Lρ(r) and λ ∈ [0, 1]

}
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is the analogue of L♯(r) for L′
ρ (see (7.6) and (7.34)). Indeed, if x ∈ B(0, r) ∩ L♯

ρ(r) \ Lρ(r),
(7.43) says that there exists z ∈ Lρ(r) and λ ∈ [0, 1] such that x = λz. In addition, λ 6= 1
because x /∈ Lρ(r). Thus z ∈ (x, rx/|x|], and by (7.40) and (7.29), gr(x) = Nρ(x, rx/|x|) >
Nρ(x), as claimed. This yields

H1,ρ(r) +Hd(L♯
ρ(r) ∩B(0, r)) =

ˆ

Sρ∩B(0,r)

Nρ(x)dH
d(x) +

ˆ

L♯
ρ(r)∩B(0,r)

dHd(x)

≤
ˆ

B(0,r)

gr(x)dH
d(x)(7.44)

by (7.39), (7.41), and (7.42), and because Hd(Lρ(r)) = 0.
In the special case when (7.27) holds and for r < R, we claim that in fact

(7.45) H1,ρ(r) +Hd(L♯
ρ(r) ∩ B(0, r)) =

ˆ

B(0,r)

gr(x)dH
d(x).

By the first line of (7.44), we just need to check that Nρ(x)+1L♯
ρ(r)

(x) = gr(x) for H
d-almost

every x ∈ B(0, r). So let x ∈ B(0, r) be given. If gr(x) = 0, then Nρ(x) = 0 by (7.41), and x
cannot lie in L♯

ρ(r)\Lρ(r), by (7.42). Since Hd(Lρ(r)) = 0, we get that Nρ(x)+1L♯
ρ(r)

(x) = 0

almost surely. If instead gr(x) 6= 0, then (0, xr/|x|] meets Lρ(r) by (7.40) and (7.29). By
(7.27), the intersection is unique. Call z the only point of (0, xr/|x|] ∩ Lρ(r); if |z| > |x|,
then Nρ(x) = 0, but x ∈ L♯(r) \ Lρ(r). If |z| ≤ |x|, then Nρ(x) = 1, but x /∈ L♯(r) \ Lρ(r).
In both cases Nρ(x) + 1L♯

ρ(r)
(x) = 1. The claim follows.

We return to the general case. The coarea formula (7.36), applied with h = gr1B(0,r),
yields

ˆ

Sρ∩B(0,r)

gr(x)dH
d(x) =

ˆ r

t=0

ˆ

Sρ∩∂B(0,t)

gr(x)dHd−1(x)dt

=

ˆ r

t=0

ˆ

Sρ∩∂B(0,t)

Nρ(xr/t)dHd−1(x)dt

=

ˆ r

t=0

(t/r)d−1

ˆ

Sρ∩∂B(0,r)

Nρ(y)dHd−1(y)dt =
r

d
fρ(r)(7.46)

by (7.40) and (7.38). Thus by (7.44) and (7.45)

(7.47) H1,ρ(r) +Hd(L♯
ρ(r) ∩B(0, r)) ≤ r

d
fρ(r)

for almost every r ∈ [0, R1), with equality when (7.27) holds and 0 < r < R.
Let us now complete the proof of Remark 7.3. Set ϕ = H1,ρ; by (7.39) and the paragraph

above it, ϕ is differentiable almost everywhere on [0, R), with a derivative ϕ′ = fρ which is
bounded on compact subintervals, and in addition ϕ(r) =

´ r

0
ϕ′(t)dt for 0 < r < R. Finally,

set mρ(r) = Hd(L♯
ρ(r)) ∩ B(0, r)), and recall that

(7.48)
r

d
ϕ′(r) = ϕ(r) +mρ(r)
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almost everywhere on [0, R), by (7.47) and the line that follows it.
Notice that thanks to the fact that we removed B(0, ρ) from L′, mρ(r) = 0 for r < ρ

(see (7.43) and (7.34)). Similarly, ϕ(r) = H1,ρ(r) = 0 for r < ρ, by the analogue for
L′
ρ = L′ \ B(0, ρ) of (7.31) and (7.29). On any compact subinterval of (0, R) our equation

(7.48) is very nice, and it is easy to see that

(7.49) H1,ρ(r) = ϕ(r) = drd
ˆ r

0

mρ(t)dt

td+1
for 0 < r < R;

for instance we may call ψ the right-hand side of (7.49), observe that η = ϕ − ψ vanishes
near 0, is the integral of its derivative, and satisfies η′(r) = d

r
η(r) almost-everywhere, and

then apply Grönwall’s inequality to show that it vanishes on (0, R).
We may now let ρ tend to 0 in (7.49), notice that both H1,ρ and mρ are nondecreasing

functions of ρ (see (7.43) and (7.7) for mρ, and (7.29), (7.31), (7.34), and (7.39) for H1,ρ).
Thus by Beppo-Levi we get that H1(r) = H(r) for 0 < r < R. Since N(x) = 1S(x) by

(7.32) and (7.33), (7.31) yields H1(r) = Hd(S ∩B(0, r)), as needed for Remark 7.3.

Return to the general case. Notice that H1,ρ, L
♯
ρ(r), and fρ, are nondecreasing functions

of ρ; then by (7.47) and Beppo-Levi,

(7.50) H1(r) +Hd(L♯(r) ∩ B(0, r)) ≤ r

d
f(r)

for almost every r ∈ (0, R1), with f(r) = limρ→0 fρ(r) =
´

S∩∂B(0,t)
N(x)dHd−1(x). Let us

assume that

(7.51) H1(r) < +∞ for some r > 0.

Since the formulas (7.29) and (7.31) are additive in terms of L′, and we checked earlier that
the function H1,ρ associated to L′ \B(0, ρ) is bounded on [0, R1] (see (7.39) and recall that
νρ is a finite measure), we get that H1(r) ≤ H1(R1) < +∞ for 0 < r ≤ R1 (because H1 is
clearly nondecreasing). We are ready for the following.

Remark 7.4. In the statement of Theorem 7.1, we may replace the function H of (7.7) with
the function H1 of (7.31).

Of course the statement is only useful when the functional F that we build with H1 is
finite somewhere, which forces (7.51). When this happens, H1 is bounded by H1(R1), H1 is
the integral of its derivative f (start from (7.39) and apply Beppo-Levi), and we have the
differential inequality (7.50). We can then reproduce the proof of Theorem 7.1, starting at
(7.17), and conclude as before.

8 E is contained in a cone when F is constant.

The main result of this section is the following theorem, which gives some information on
the case of equality in Theorem 7.1.
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Theorem 8.1. Let U and the Lj satisfy the assumptions (7.1)-(7.3) of Theorem 7.1, and
let E be a coral sliding minimal set in U , with boundary conditions given by the Lj. Suppose
in addition that the functional F defined by (7.6), (7.7), and (7.9) is finite and constant on
(R0, R1) (the same interval as in (7.3)). Set A = B(R1) \B(0, R0). Then

(8.1) Hd(E ∩ S ∩A) = 0,

where S is the shade set defined by (7.12), and, if

(8.2) X =
{
λx ; λ ≥ 0 and x ∈ A ∩ E

}

denotes the cone over A ∩ E, then

(8.3) A ∩X \ S ⊂ E.

If in addition R0 < dist(0, L′), then X is also a coral minimal set of dimension d in R
n

(with no boundary condition), and

(8.4) Hd(S ∩B(0, R1) \X) = 0.

By sliding minimal, we mean sliding almost minimal with the gauge function h = 0, as
in Definition 2.1; then the three ways to measure minimality (that is, A, A′, and A+) are
equivalent. Recall also that “coral” is defined near (1.11). When R0 = 0, we will prove the
result with A = B(0, R1) \ {0}, but it immediately implies the result with A = B(0, R1).

In the special case of the introduction, we recover Theorem 1.3. Theorem 8.1 is also a
generalization of Theorem 6.2 in [D2] and a partial generalization of Theorem 29.1 in [D6].

Of course we can feel very good when we can apply Theorem 8.1, because this means
that the choice of functional F was locally optimal. We are lucky that there is at least one
example (the case when L is an affine space of dimension d− 1) where this happens.

Most of the proof of Theorem 8.1, which we shall start now, consists in checking the
proof of Theorem 7.1 for places where we could have had strict inequalities, and our main
target is the string of inequalities that lead to the differential inequality (6.24).

Let E be as in the statement. This means that on (R0, R1), F is finite and constant. In
the present situation, (7.14) just says that g(r) = r−d, and then gG = F (see (7.9)). By
(7.19),

(8.5)

ˆ

[r,t)

g(s)dν(s) = −
ˆ t

r

g′(s)G(s)ds = d

ˆ t

r

s−d−1G(s)ds

for R0 < r < t < R1. This forces ν, and then ν0 to be absolutely continuous on (R0, R1)
(recall from below (7.17) that dν = dν0 + H ′(t)dt), and since the density of ν0 is f0 (see
below (6.22)), we get that

(8.6) s−d(f0 +H ′)(s) = g(s)(f0 +H ′)(s) = ds−d−1G(s) for almost every s ∈ (R0, R1).
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That is, (7.13) is an identity almost everywhere on (R0, R1) (recall that h ≡ 0), which means
(because (7.13) was derived from (6.24)) that (6.24) is an identity almost everywhere on
(R0, R1). Let us record this:

(8.7) Hd(E ∩B(0, r)) = Hd(L♯(r) ∩B(0, r)) +
r

d
f0(r) for almost every r ∈ (R0, R1);

we noted above (7.13) that L♯ in (6.24) is the same as L♯(r) in (7.6).
We first prove (8.1). We proceed by contradiction, and suppose that Hd(E ∩S ∩A) > 0.

First define a function g by

(8.8) g(x) = sup
{
t ∈ [0, 1]; tx ∈ L′

}
for x ∈ E ∩ S.

Notice that g(x) > 0 by the definition (7.12) of S. It is easy to check that g is a Borel
function, and we can use our contradiction assumption that Hd(E ∩ S ∩ A) > 0 to find
x0 ∈ E ∩ S ∩ A such that

(8.9) lim inf
ρ→0

ρ−dHd(E ∩ S ∩ B(x0, ρ)) = ωd

(this density requirement holds Hd-almost everywhere on E∩S ∩A, because this is a subset
of the rectifiable set L∗(R1), which also has a finite Hausdorff measure (see the proof of
(6.3)); in fact bounds on the lower and upper densities would also be enough),

(8.10) lim inf
ρ→0

ρ−d

ˆ

E∩S∩B(x0,ρ)

|g(x)d − g(x0)
d|dHd(x) = 0

(i.e., x0 is a Lebesgue point for gd on E ∩S), and finally x0 /∈ L′, which we may add because
L′ is at most (d− 1)-dimensional. We shall restrict our attention to radii ρ so small that

(8.11) B(x0, 4ρ) ⊂ A \ L′.

For r ∈ (R0, R1), set

(8.12) L∗(r) = B(0, r) ∩
{
λz ; z ∈ B(0, r) ∩ L′ and λ ≥ 0

}
;

this is the same set that was called L∗ in (4.2) (also see (7.5) for L′) but since we shall let r
vary, we include it in the notation. Set B = B(x0, ρ) and notice that

(8.13) S ∩ B ⊂ L∗(|x0|+ ρ)

because if x ∈ S ∩ B, (7.12) says that we can find λ ∈ (0, 1] such that λx ∈ L′; by
(8.11), |λx − x0| ≥ 4ρ, which implies that |λx − x| ≥ 3ρ and forces λx ∈ B(0, |x| − 3ρ) ⊂
B(0, |x0| − 2ρ). Hence x ∈ L∗(|x0|+ ρ) by (8.12). Let us also check that

(8.14) B ∩ L∗(r) = B ∩ B(0, r) ∩ L∗(|x0|+ ρ) for |x0| − ρ ≤ r ≤ |x0|+ ρ.
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The direct inclusion is clear from the definitions; conversely, if x ∈ B∩B(0, r)∩L∗(|x0|+ρ),
then x = λz for some z ∈ L′ ∩B(0, |x0|+ ρ) and λ ≥ 0. By definition of B and then (8.11),
|z − x| ≥ |z − x0| − ρ ≥ 3ρ, and since z is collinear with x, this forces |z| ≤ |x| − 3ρ or
|z| ≥ |x|+3ρ. The second one is impossible because z ∈ B(0, |x0|+ρ), and so |z| ≤ |x|−3ρ <
|x0| − ρ ≤ r. Thus z ∈ L′ ∩ B(0, r) and x ∈ L∗(r), which proves (8.14).

Now suppose that

(8.15) |x0| − ρ ≤ b < r ≤ |x0|+ ρ,

and recall from the intermediate estimate in (6.21) that

Hd(E ∩ B(0, b)) ≤ Hd(L♯(r) ∩ B(0, b)) +
b

d
f0(b)−

b

d
(f1(b)− f2(b))−∆(b, r)

≤ Hd(L♯(r) ∩ B(0, b)) +
b

d
f0(b)−∆(b, r),(8.16)

where we give a more explicit notation for ∆ because we will let b and r vary, and where the
last line follows because f1(b) ≥ f2(b), by (6.18)). Also recall that

(8.17) ∆(b, r) =
b

d

ˆ

X

g(x)dHd−1(x)

(by (6.11)), with X = E ∩ L∗(r) ∩ ∂B(0, b) (see below (6.5)) and

(8.18) g(x) = sup
{
t ∈ [0, 1]; tx ∈ L′ ∩B(0, r)

}

(see (6.8), and recall the definitions (4.1) of L and (7.5) of L′). We claim that

(8.19) g(x) = g(x) for x ∈ X ∩ B

when r and b as in (8.15). Indeed, if t ∈ [0, 1] is such that tx ∈ L′, then |tx − x| ≥
|tx − x0| − ρ ≥ 3ρ by (8.11), hence tx ∈ B(0, |x| − 3ρ) ⊂ B(0, r); hence the supremums in
(8.8) and (8.17) are the same, and (8.19) follows. Thus

(8.20) ∆(b, r) ≥ b

d

ˆ

X∩B

g(x)dHd−1(x) ≥ b

d

ˆ

B∩E∩S∩∂B(0,b)

g(x)dHd−1(x)

because B∩E∩S∩∂B(0, b) ⊂ B∩E∩L∗(|x0|+ρ)∩∂B(0, b) = B∩X by (8.13) and (8.14).
Thus (8.16) implies that

(8.21) Hd(E ∩ B(0, b)) ≤ Hd(L♯(r) ∩B(0, b)) +
b

d
f0(b)−

b

d

ˆ

B∩E∩S∩∂B(0,b)

g(x)dHd−1(x).

Fix b and let r > b tend to b. Notice that by (7.6), L♯(r) is a nondecreasing set function
that tends to L♯(b); since all these sets have finite Hd-measure by (3.5), we can take a limit
in (8.21) and get that

(8.22) Hd(E ∩B(0, b)) ≤ Hd(L♯(b) ∩ B(0, b)) +
b

d
f0(b)−

b

d

ˆ

B∩E∩S∩∂B(0,b)

g(x)dHd−1(x).
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We compare this to (8.7) and get that

(8.23)

ˆ

B∩E∩S∩∂B(0,b)

g(x)dHd−1(x) = 0 for almost every b ∈ (|x0| − ρ, |x0|+ ρ).

We are going to use the coarea formula again. By (8.13), B ∩ E ∩ S is contained in the
truncated rectifiable cone L∗(|x0|+ ρ), which has a finite Hd-measure; as in (6.4) above, the
coarea formula yields

(8.24) JdHd
|B∩E∩S =

ˆ |x0|+ρ

|x0|−ρ

dHd−1
|π−1(t)∩B∩E∩Sdt =

ˆ |x0|+ρ

|x0|−ρ

dHd−1
|∂B(0,t)∩B∩E∩Sdt,

where in addition J = 1 because L∗(|x0| + ρ) is a truncated cone. We apply this to the
function g and get that

(8.25)

ˆ

B∩E∩S

g(x)dHd(x) =

ˆ |x0|+ρ

|x0|−ρ

ˆ

∂B(0,t)∩B∩E∩S

g(x)dHd−1(x)dt = 0

by (8.23). On the other hand, recall that B = B(x0, ρ), where we still may choose ρ as small
as we want. Then by (8.9) and (8.10),

ˆ

B∩E∩S

g(x)dHd(x) ≥ g(x0)Hd(B ∩ E ∩ S)−
ˆ

B∩E∩S

|g(x)− g(x0)|dHd(x)

≥ g(x0)
ωdρ

d

2
−
ˆ

B∩E∩S

|g(x)− g(x0)|dHd(x) > 0(8.26)

if ρ is small enough. This contradiction with (8.25) completes our proof of (8.1).

Next we worry about the angle θ(x). Recall that θ(x) ∈ [0, π/2] was defined, for Hd-
almost every point x ∈ E, to be the smallest angle between the radial direction [0, x) and
the (approximate) tangent plane P (x) to E at x; see near (4.47). We want to check that

(8.27) θ(x) = 0 for Hd-almost every point x ∈ E ∩ A.

Suppose that (8.27) fails. Then we can find η < 1 and a set E0 ⊂ E∩A such that Hd(E0) > 0
and cos θ(x) ≤ η for Hd-almost every y ∈ E0.

Then choose x0 ∈ E0 such that (as in (8.9))

(8.28) lim inf
ρ→0

ρ−dHd(E0 ∩ B(x0, ρ)) > 0.

As before, we can take x0 ∈ A \ L′, because Hd(L′) = 0. Then pick ρ > 0 so small that
(8.11) holds and set B = B(x0, ρ). Notice that (8.14) holds for the same reason as before. In
fact, we just need the (trivial) first inclusion. Observe that since L∗(|x0|+ ρ) is a truncated
rectifiable cone with finite Hd-measure, the tangent measure to any of its points, when it
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exists, passes through the origin. Since this is almost never the case on the set E0 (and by
the uniqueness of the tangent plane almost everywhere on E0 ∩ L∗(|x0|+ ρ)), we get that

(8.29) Hd(E0 ∩ L∗(r)) ≤ Hd(E0 ∩ L∗(|x0|+ ρ)) = 0

for r ≤ |x0|+ ρ.
Denote by µB the restriction of Hd to E0 ∩ B, and let νB be direct image of µB by π.

Observe that since µB ≤ µ0 (the restriction of Hd to E ∩ B(0, R) ⊃ E ∩ A; see (6.22) and
below), we get that νB ≤ ν0 is absolutely continuous as well (see below (8.5)). Denote by
fB the density of νB.

Let r ∈ (|x0| − ρ, |x0| + ρ) be given; for b < r, we defined in (6.18) the two measures
µ1 = Hd

E∩B(0,r)\L∗(r)
and µ2 = cos θ(x)µ1, and then defined the pushed measures ν1 and ν2

as usual. Notice that 1B(0,r)µB ≤ 1E0∩B µ1 because of (8.29).
Next consider b such that |x0| − ρ < b < r. For τ > 0 (small),

ν1([b− τ, b))− ν2([b− τ, b)) =

ˆ

B(0,b)\B(0,b−τ)

(1− cos θ(x))dµ1(x)

≥
ˆ

B(0,b)\B(0,b−τ)

1E0∩B(x)(1 − cos θ(x))dµ1(x)

≥ (1− η)

ˆ

B(0,b)\B(0,b−τ)

dµB(x) = (1− η)νB([b− τ, b))(8.30)

because cos θ(x) ≤ η almost everywhere on E0, then by definition of µB and νB.
If in addition b is a Lebesgue point for the absolutely continuous parts of ν1, ν2, and of

νB, we can divide (8.30) by τ , take a limit, and get that

(8.31) f1(b)− f2(b) ≥ (1− η)fB(b).

Then (6.21) says that

Hd(E ∩ B(0, b)) ≤ Hd(L♯(r) ∩B(0, b)) +
b

d
f2(b) +

b

d
(f0(b)− f1(b))

≤ Hd(L♯(r) ∩B(0, b)) +
b

d
f0(b)−

b

d
(1− η)fB(b).(8.32)

With b fixed, we may let r > b tend to b, observe that Hd(L♯(r)∩B(0, b)) tends to Hd(L♯(b)∩
B(0, b)) (see above (8.22)), and get as in (8.22) that

(8.33) Hd(E ∩B(0, b)) ≤ Hd(L♯(b) ∩B(0, b)) +
b

d
f0(b)−

b

d
(1− η)fB(b).

Then we compare with (8.7) and get that fB(b) = 0 for almost every b ∈ (|x0| − ρ, |x0|+ ρ).
Since νB is absolutely continuous and fB is its density, we get that νB = 0, and hence
Hd(E0 ∩ B) = µB(E0 ∩ B) = 0. If ρ was chosen small enough, this contradicts (8.28), and
proves (8.27).
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Now we shall worry about cones. For x ∈ A, set

(8.34) ℓ(x) =
{
λx ; λ > 0

}
.

The next stage is to prove the following: for Hd-almost every x ∈ E ∩ A \ S (in fact, every
x ∈ E ∩ A \ S such that the tangent plane to E at x goes through the origin),

(8.35) the connected component of x in A ∩ ℓ(x) \ L′ is contained in E.

Notice that x ∈ ℓ(x) \ L′ because L′ ⊂ S by (7.12), so (8.35) makes sense. The proof of this
is long and painful (especially since this should morally be easy once we know (8.27)), but
fortunately it was already done in [D2], Proposition 6.11. Of course the statement in [D2]
does not mention sliding boundary conditions, but the argument applies for the following
reason. The proof goes by contradiction: if (8.35) fails, we first find a point y ∈ ℓ′(x), the
component of x in A∩ℓ(x)\L′, which does not lie in E. Then we deform E into a set E ′ with
smaller measure and get a contradiction. The deformation takes place in a neighborhood
of the segment [x, y] which is as small as we want, and in particular can be taken not to
meet L′ (because L′ is closed and does not meet [x, y]). Then the boundary constraints (2.3)
are automatically satisfied, the competitor constructed in [D2] is also valid here, and we
can use the estimates from [D2] to get the conclusion. So (8.35) holds for Hd-almost every
x ∈ E ∩ A \ S.

We are ready to prove (8.3). Let z ∈ A ∩X be given, and let x ∈ E ∩ A and λ ≥ 0 be
such that z = λx.

Since E is coral, Hd(E ∩B(x, r)) > 0 for every r > 0, so we can find a sequence {xk} in
E, that converges to x, such that for each k ≥ 0, xk ∈ A \ S (possible by (8.1)) and (8.35)
holds.

For each k, the segment (0, xk] lies in R
n \L′ (see the definition (7.12)), so A∩(0, xk] ⊂ E

by (8.35), and now A ∩ (0, x] ⊂ E because E is closed. Thus z ∈ E if λ ≤ 1.
Suppose that λ > 1 instead, and assume in addition that z ∈ A ∩ X \ S. Then the

segment [x, z] = [x, λx] does not meet L′ (because z /∈ S and by the definition (7.12)), and
is contained in A (because x ∈ A). For k large, [xk, λxk] is also contained in A, and does
not meet L′ either (because L′ is closed). By (8.35), [xk, λxk] ⊂ E. Hence [x, λx] ⊂ E, and
in particular z ∈ E. This completes our proof of (8.3).

Let us now assume that R0 < dist(0, L′) and get additional information on X . First we
want to show that

(8.36) X is a minimal set in R
n,

with no boundary condition.
Set δ = dist(0, L′) and observe that for 0 < r < δ, H(r) = 0 and so F (r) = r−dHd(E ∩

B(0, r)). See (7.6), (7.7), and (7.9). Similarly, S ∩ B(0, δ) = ∅ (see (7.12)).
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By (8.2) and (8.3), E and X coincide on B(0, δ) \B(0, R0). In particular, X is closed. If
D denotes the constant value of F on (R0, R1); then for R0 < r < δ,

Hd(X ∩B(0, r)) =
rd

δd −Rd
0

Hd(X ∩ B(0, δ) \B(0, R0))

=
rd

δd −Rd
0

Hd(E ∩ B(0, δ) \B(0, R0))

= rdD = Hd(E ∩ B(0, r))(8.37)

because X is a cone and by the discussion above. Notice also that E is a minimal set in
B(0, δ), with no boundary condition (because L′∩B(0, δ) = ∅). Now if X was not a minimal

in R
n, it would be possible to find a strictly better competitor X̃ of X , with a deformation

inside B(0, δ) (we may reduce to this because X is a cone). We could then deform E inside

B(0, δ), first to X and then to X̃ , and contradict the minimality of X . See the argument on
page 1225-126 of [D2] (near (6.98)) for detail. This proves (8.36).

Since E is coral and X = E on B(0, δ)\B(0, R0), we easily get that X is coral too. Then
we prove (8.4). Observe that

(8.38) Rd
1D = Hd(X ∩ B(0, R1)) = Hd(E ∩ (B(0, R1)) +Hd(X ∩ S ∩ B(0, R1))

by (8.37) and because X is a cone, and because (8.2) and (8.3) say that A∩E = A∩X \ S
modulo a Hd-negligible set. Also,

(8.39) Rd
1D = Rd

1F (R1) = G(R1) = Hd(E ∩ (B(0, R1)) +H(R1)

by (7.9). Thus Hd(X ∩ S ∩ B(0, R1)) = H(R1). We shall now prove that

(8.40) H(r) ≥ Hd(S ∩ B(0, r)) for 0 < r ≤ R1,

and (8.4) will follow at once. Let us proceed as in Remark 7.3, and compare H2(r) =
Hd(S ∩B(0, r)) with H(r) by means of the differential equalities that they satisfy. We claim
that for 0 < r < R1,

(8.41) H2(r) =

ˆ r

0

f2(t)dt, with f2(t) = Hd−1(S ∩ ∂B(0, t)).

Indeed, S ∩ B(0, R1) ⊂ L∗(R1), where L
∗(R1) is the same as in (7.35). We observed above

(7.36) that L∗(R1) is a rectifiable truncated cone with Hd(L∗(R1)) < +∞; then we can use
the coarea formula on S ∩ B(0, R1) ⊂ L∗(R1), and we get (8.41), as in (7.37)-(7.38), where
we use 1S instead of Nρ. If we prove that for almost all r < R1, we have the differential
inequality

(8.42) H ′
2(r) = f2(r) ≤

d

r
H2(r) +

d

r
m(r),
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where m(r) = Hd(L♯(r)) is as in (7.7), then the comparison with H , which satisfied the corre-
sponding identity (by (7.8)) and has the same vanishing values on (0, δ)], we will deduce (8.40)
from Grönwall’s inequality, as we did near (7.49). But by the coarea formula again, r

d
f2(r) =

r
d
Hd−1(S∩∂B(0, r)) is theHd-measure of the cone Γ =

{
λz ; z ∈ S∩∂B(0, r) and λ ∈ [0, 1)

}
.

Let us check that

(8.43) Γ ⊂ (S ∩ B(0, r)) ∪ L♯(r).

Let x ∈ Γ be given, and write x = λz as in the definition of Γ. Since z ∈ S, the segment
(0, z] meets L′ at some point w (see (7.12)). If |w| ≤ |x|, then (0, x] contains w ∈ L′, and
x ∈ S. Otherwise, x ∈ [0, w] and x ∈ L♯(r) (see (7.6)). This proves (8.43), the differential
inequality (8.42), and finally (8.40) and (8.4). This also completes the proof of Theorem
8.1.

9 Nearly constant F and approximation by a cone

The main result of this section is a simple consequence of the theorems on limits of sliding
almost minimal sets that are at the center of [D6]. Roughly speaking, we start from a sliding
almost minimal set E with sufficiently small gauge function h, assume that its function F
is almost constant on an interval, and get that in a slightly smaller annulus, E is close to a
sliding minimal set E0 for which F is constant.

Then we should be able to apply Theorem 8.1 to the set E0, prove that it is close to a
truncated cone, and get the same thing for E, but we shall only do this here in very special
cases; see Sections 11 and 12.

We start with a statement where the interval is of the form (0, r1).

Theorem 9.1. Let U and the Lj be as in Section 7. In particular, assume (2.1), (2.2),
and (3.4). Let r1 > 0 be such that B(0, r1) ⊂ U and almost every r ∈ (0, r1) admits a local
retraction (as in Definition 3.1). For each small τ > 0 we can find ε > 0, which depends
only on τ , n, d, U , the Lj, and r1, with the following property. Let E ∈ SA∗M(U, Lj , h)
be a coral sliding almost minimal set in U , with sliding condition defined by L and some
nondecreasing gauge function h (see Definition 2.1). Suppose that

(9.1) B(0, r1) ⊂ U and h(r1) < ε,

and

(9.2) F (r1) ≤ ε+ inf
0<r<10−3r1

F (r) < +∞.

Then there is a coral minimal set E0 in B(0, r1), with sliding condition defined by L, such
that

the analogue of F for the set E0 is constant on (0, r1),(9.3)
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(9.4) E0 satisfies the conclusion of Theorem 8.1, with the radii R0 = 0 and R1 = r1,

(9.5) dist(y, E0) ≤ τr1 for y ∈ E ∩ B(0, (1− τ)r1),

(9.6) dist(y, E) ≤ τr1 for y ∈ E0 ∩ B(0, (1− τ)r1),

and
∣∣Hd(E ∩B(y, t))−Hd(E0 ∩ B(y, t))

∣∣ ≤ τrd1
for all y ∈ R

n and t > 0 such that B(y, t) ⊂ B(0, (1− τ)r1).(9.7)

Clearly this is not a perfect statement, because we would prefer ε not to depend on r1 or
the Lj . The difficulty is that we should then understand how the part H of the functional
depends on L′, and in particular its values near the origin.

Instead we decided to make a simple statement, show how the proof goes, and maybe
revise it later if a specific need arises.

See Corollary 9.3 for a statement that concerns a single boundary condition that comes
from a set L which is very close to an affine subspace.

We now prove the theorem by contradiction and compactness, following the arguments
for Proposition 7.24 in [D2] and Proposition 30.19 in [D6]. Let U , the Lj , r1, and τ be given,
and suppose we cannot find ε as in the statement. In particular, ε = 2−k does not work,
which means that for k ≥ 1 we can find Ek and hk as in the statement (and in particular
that satisfy (9.1) and (9.2) with ε = 2−k), and for which no minimal set E0 satisfies the
conclusion.

First we want to replace {Ek} with a converging subsequence. Let us say what we mean
by that. For each ball B(x, r), let dx,r be the normalized local variant of the Hausdorff
distance between closed sets that was defined by (1.29). Standard compactness results on
the Hausdorff distance imply that we can replace {Ek} with a subsequence for which there
is a closed set E0 such that

(9.8) lim
k→+∞

dx,r(Ek, E0) = 0

for every ball B(x, r) such that B(x, r) ⊂ U . In short, we will just say that the Ek converge
to E0 locally in U . We want to show that

(9.9) E0 is a sliding A-almost minimal set in U ,

where it is understood that the boundary conditions are still given by the Lj, for the gauge
function h0 defined by

(9.10) h0(r) = 0 for 0 < r < r1 and h0(r) = +∞ for r ≥ r1.

For this we shall apply Theorem 10.8 in [D6].
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We may replace {Ek} with a subsequence so that all the Ek are almost minimal of the
same type (i.e, A, A′, or A+; see Definition 2.1). Let us first suppose that the Ek are almost
minimal of type A, i.e., satisfy (2.5). Then let us check the assumptions with M = 1, δ = r1,
and any small number h > 0.

The Lipschitz assumption ((10.1) in [D6]) is satisfied, by (2.1). For k large enough,
hk(r1) ≤ 2−k < h, and then the main assumption that Ek lies in the class GSAQ(U,M, δ, h)
follows from (2.5) (compare with Definition 2.3 in [D6]). This takes care of (10.3) in [D6],
(10.4) holds because the Ek are coral, and (10.5) holds (with the limit E0), precisely by (9.8).
Finally the technical assumption (10.7) holds, because we said in (2.2) that the faces of the
Lj are at most (d − 1)-dimensional. So Theorem 10.8 in [D6] applies, and we get that E0

lies in GSAQ(U, 1, r1, h) for any h > 0. Looking again at Definition 2.3 in [D6], we see that
E0 ∈ GSAQ(U, 1, r1, 0), and this means that (9.9) holds with the function h0.

If the Ek are almost minimal of type A′, i.e., satisfy (2.6), the easy part of Proposition 20.9
in [D6] says that they are also of type A, with the same function hk, and we can conclude
as before. Finally, if the Ek are of type A+, as in (2.7), we apply Theorem 10.8 in [D6] with
M = 1 + a, where a > 0 is any small number, δ = r1, and h = 0. The main assumption
that Ek ∈ GSAQ(U, 1 + a, r1, 0) is satisfied as soon as hk(r1) < a (compare (2.7) with
Definition 2.3 in [D6]). This time we get that E0 ∈ GSAQ(U, 1 + a, r1, 0) for any a > 0,
hence E0 ∈ GSAQ(U, 1, r1, 0), and E is A-almost minimal with the gauge h0, as before. So
we get (9.9).

Next we worry about Hausdorff measure. By Theorem 10.97 in [D6], which has the same
hypotheses as Theorem 10.8 there, we get that for every open set V ⊂ U ,

(9.11) Hd(E0 ∩ V ) ≤ lim inf
k→+∞

Hd(Ek ∩ V ).

In addition, Lemma 22.3 in [D6], which has also the same assumptions as Theorem 10.8,
can be applied with M as close to 1 and h as small as we want; thus we get that for every
compact set K ⊂ U ,

(9.12) Hd(E0 ∩K) ≥ lim sup
k→+∞

Hd(Ek ∩K).

Because of (2.9), for each ρ < r1 there is a constant C(ρ) such that Hd(Ek ∩B(0, ρ)) ≤ C(ρ)
for all k ≥ 0. Then by (9.11), Hd(E0 ∩ B(0, ρ)) ≤ C(ρ) < +∞ for each ρ < r1, and
Hd(E0 ∩ ∂B(0, r)) = 0 for almost every r ∈ (0, r1), because the ∂B(0, r) are disjoint. For
such r,

lim sup
k→+∞

Hd(Ek ∩ B(0, r)) ≤ Hd(E0 ∩B(0, r)) = Hd(E0 ∩B(0, r))

≤ lim inf
k→+∞

Hd(Ek ∩B(0, r)),(9.13)

by (9.11) and (9.12), so

(9.14) lim
k→+∞

Hd(Ek ∩ B(0, r)) = Hd(E0 ∩B(0, r)).
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Denote by Fk the analogue of F for Ek; that is, set

(9.15) Fk(r) = r−dHd(Ek ∩B(0, r)) + r−dH(r) for 0 < r ≤ r1,

where H(r) is as in (7.7) (see (7.9) for the definition of F ). Notice that H(r) stays the same
(it depends on the geometry of L′, not on Ek). Similarly, set

(9.16) F∞(r) = r−dHd(E0 ∩ B(0, r)) + r−dH(r) for 0 < r ≤ r1.

We want to show that

(9.17) F∞ is finite and constant on (0, r1).

We start with the finiteness. We checked below (9.12) that for 0 < r < r1, there is a constant
C(r) such that Hd(E0 ∩ B(0, r)) ≤ C(r) < +∞, so we just need to show that H(r) < +∞.
This last follows from our assumption (9.2) (for any k).

Let us apply Theorem 7.1 to E0, with the function h0. First observe that E0 is also
A+-almost minimal, with the same gauge function h0 (just compare (2.5) and (2.7) when
h(r) = 0). By Remark 7.2, we do not need to check (7.10). Also observe that the function
A defined by (7.4) with the gauge function h0 vanishes on (0, r1). Then Theorem 7.1 says
that F∞ is nondecreasing on (0, r1).

Next r and s be such that 0 < r < 10−3r1 < s < r1 and (9.14) holds for r and s. Then

F∞(s) = lim
k→+∞

Fk(s) ≤ (r1/s)
d lim sup

k→+∞
Fk(r1)

≤ (r1/s)
d lim
k→+∞

(2−k + Fk(r))) = (r1/s)
d lim
k→+∞

Fk(r) = (r1/s)
dF∞(r)(9.18)

by (9.14), the definition of Fk in (9.15) (twice), because Ek satisfies (9.2) with ε = 2−k, and
by (9.14) again. We know that F∞ is nondecreasing; then F∞(s) has a limit when s tends
to r1, and by (9.18) this limit is at most F∞(r); thus F∞ is constant on (r, r1) and since this
holds for all r ∈ (0, 10−3r1) we get (9.17).

Now we claim that (9.4) holds. This is not an immediate consequence of the statement,
because (9.9) does not exactly say that E0 is minimal in U , but the proof of Theorem 8.1
only uses deformations in compact subsets of B(0, r1), for which the values of h0(r), r ≥ r1,
do not matter. So (9.4) holds.

The set E0 also satisfies the constraints (9.5) and (9.6) for k large, by (9.8). We want
to check that it satisfies (9.7) as well, and as soon as we do this, we will get the desired
contradiction with the definition of Ek. Since we shall use this sort of argument a few times,
let us state a lemma.

Lemma 9.2. Let the open set U ⊂ R
n and the closed sets Lj satisfy the Lipschitz assumption

(as in (2.1)), and let B0 = B(0, r0) ⊂ U be given. Then let {Ek} be a sequence of coral sliding
almost minimal sets, such that

(9.19) Ek ∈ SA∗M(U, Lj , hk) for k ≥ 0,
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for a sequence {hk} of nondecreasing gauge functions hk such that

(9.20) lim
k→+∞

hk(r0) = 0.

Also suppose that there is a closed set E0 such that

(9.21) lim
k→+∞

dx,r(Ek, E0) for every ball B(x, r) such that B(x, r) ⊂ U.

Finally assume that E0 ∩ B(x0, r0) is contained in a cone X, which is a countable union of
closed rectifiable cones Xm such that Hd(Xm ∩ B(0, R)) < +∞ for every R > 0. Then for
each τ > 0, the following measure estimate holds for k large:

∣∣Hd(E ∩B(y, t))−Hd(E0 ∩ B(y, t))
∣∣ ≤ τrd0

for all y ∈ R
n and t > 0 such that B(y, t) ⊂ B(x0, (1− τ)r0).(9.22)

Proof. Recall that the distance dx0,r0 is defined in (1.29). We start as in the argument
above. We first check that (9.9) holds with the gauge function h0 of (9.10); the proof relies
on Theorem 10.8 in [D6] and is the same as above. We also have the two semicontinuity
estimates (9.11) and (9.12), with the same proof, and we deduce from this that

(9.23) Hd(E0 ∩ B(y, t)) = lim
k→+∞

Hd(Ek ∩B(y, t))

for every ball B(y, t) such that B(y, t) ⊂ U and

(9.24) Hd(E0 ∩ ∂B(y, t)) = 0.

The proof is the same as for (9.14).
Now this almost the same thing as (9.22); the difference is that maybe some balls do not

satisfy (9.24), but also that in the lemma, we announced some uniformity in B(y, t). This is
where we use our extra assumption about X . Again we follow the proof of Proposition 7.1
in [D2]. First we observe that if Xm is a rectifiable cone of locally finite Hd-measure (as in
the statement), not necessarily minimal, Lemma 7.34 in [D2] says that Hd(X ∩ ∂B) = 0
for every ball B. This stays true for a countable union X of such cones, and then also for
E0 ∩B(x0, r0).

So (9.24), and then (9.23) hold for all balls B(y, t) such that B(y, t) ⊂ B(x0, r0).
Finally we need to deduce from this the conclusion of the lemma. This can be done with

a small uniformity argument. We do not repeat it here, and instead send the reader either to
[D2], starting from (7.15) on page 128 and ending below (7.19) on the next page, where the
proof is done in almost the same context, or to Lemma 9.4 and the argument that follows
it, where we shall do it in a slightly more complicated situation. Lemma 9.2 follows.
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We may now return to the proof of Theorem 9.1. We observed just before Lemma 9.2
that all we have to do is prove that the sets Ek that we constructed satisfy the condition
(9.7) for k large.

For this, it is enough to show that we can apply Lemma 9.2 to the sets Ek, in the ball
B(0, r1). We already checked all the assumptions except one, the existence of the closed
rectifiable cone X .

Recall from (9.4) that E0 satisfies the conclusions of Theorem 8.1. Then let X be, as in
(8.2), the cone over A∩E, where here A = B(0, r1) (see the remark below the statement of
Theorem 8.1). By definition, X contains E ∩A = E∩B(0, r1). By (8.3), and for any r < r1,

Hd(X ∩B(0, r)) ≤ Hd(E ∩ B(0, r)) +Hd(S ∩B(0, r))

≤ Hd(E ∩ B(0, r)) +H(r) ≤ rdF∞(r) < +∞(9.25)

where the bound on Hd(S ∩ B(0, r)) follows from (8.40). So Hd(X ∩ B) < +∞ for every
ball B. Next, X is (locally) rectifiable by (8.3), because E is locally rectifiable (see (2.11)),
and S is also locally rectifiable.

Maybe X is not closed because of bad things that may happen near the origin, but it is
a countable union of closed cones Xm ⊂ X ; for instance, we may take for Xm the cone over
E ∩ B(0, r1 − 2−m) \ B(0, 2−m). So Lemma 9.2 applies, and we get (9.7) and the desired
contradiction.

This completes our proof of Theorem 9.1 by contradiction.

In the special case of the introduction when L′ is composed of a unique boundary piece
L which is an affine subspace of Rn, we can try to choose an ε in Theorem 9.1 that does not
depend on the position of L. We shall only do this when 0 is not too close to the origin (see
the condition (9.26) below, but we shall include the possibility that L be very close (in a
bilipschitz way) to an affine subspace, without necessarily being one. We leave open the case
when dist(0, L) is very small, but in this case we claim that it is probably just as convenient
to center the balls at some x0 ∈ L, use the simple density r−dHd(E ∩ B(x0, r)), and apply
Proposition 30.3 in [D6]. See Remark 9.6.

Corollary 9.3. For each small τ > 0 we can find ε > 0, which depends only on τ , n, and
d, with the following property. Let E ∈ SA∗M(U, Lj , h) be a coral sliding almost minimal
set (as in Definition 2.1), associated to a single boundary set L, a gauge function h, and an
open set U that contains B(0, 1). Suppose that

(9.26) τ ≤ dist(0, L) ≤ 9

10
,

and let y0 ∈ L be such that dist(0, L) = |y0|. Also suppose that there exists a vector subspace
L0, whose dimension m is at most d − 1, and a bilipschitz mapping ξ : Rn → R

n, such that
ξ(L0) = L and

(9.27) (1− ε)|y − z| ≤ |ξ(y)− ξ(z)| ≤ (1− ε)|y − z| for y, z ∈ R
n
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Finally suppose that

(9.28) h(1) < ε and F (1) ≤ ε+ inf
0<r<10−3

F (r).

Then we can find a coral minimal cone X0 in R
n (with no sliding boundary condition), and

an affine subspace L′ of dimension m through y0, such that

(9.29) L′ ∩B(0, 99/100) ⊂ X0 if m = d− 1,

and, if

(9.30) S =
{
z ∈ R

n ; λz ∈ L′ for some λ ∈ (0, 1]
}

denotes the shade of L′,

E0 = X0 \ S is a coral minimal set in B(0, 1− τ),

with sliding boundary condition defined by L′,(9.31)

(9.32) dist(y, E0) ≤ τ for y ∈ E ∩ B(0, 1− τ),

(9.33) dist(y, E) ≤ τ for y ∈ E0 ∩ B(0, 1− τ),

and

∣∣Hd(E ∩B(y, t))−Hd(E0 ∩B(y, t))
∣∣ ≤ τ

for all y ∈ R
n and t > 0 such that B(y, t) ⊂ B(0, 1− τ).(9.34)

We are mostly interested in the case when L is an affine subspace, in which case Defi-
nition 2.1 could be replaced by the simpler Definition 1.4 (or its A- and A+ variants). In
this case we take L0 to be the vector space parallel to L, and the proof will show that the
conclusion holds with L′ = L.

For our main application, X0 will turn out to be a plane through 0 or a Y-set centered
at 0, (9.29) will say that X0 contains (a piece of) L, and this will determine X0 and E0.

Of course we don’t really need to have a bilipschitz mapping defined on the whole R
n; a

ball of radius 3 centered at ξ−1(y0) would be more than enough to cover B(0, 1) and prove
the theorem.

When L lies very close to the origin, we can still get an approximation result, but only by
a sliding minimal cone, and we claim that it should be as simple to use results concerning ball
that are centered on the boundary. See Remark 9.6. When dist(x, L) ≥ 9/10, the simplest
is to restrict to B(0, 9/10) and apply Proposition 7.24 in [D2] to the plain almost minimal
set E, with no boundary condition. We would still get something like the conclusion above,
maybe in a smaller ball (notice that then E0 = X0 in B(0, 9/10), and (9.29) and (9.31) are
void anyway).
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We start the proof of the corollary as for Theorem 9.1 above. We may assume that the
dimension of L is a given integer m ≤ d − 1, and that L0 is a fixed m-dimensional vector
space.

We assume that we can find τ > 0 such that the corollary fails for all ε, and we let Ek

provide a counterexample for the statement, with ε = 2−k. This time, Ek is a sliding almost
minimal set associated to a (changing) boundary set Lk, of fixed dimension m, and which is
bilipschitz equivalent, through some mapping ξk whose bilipschitz constants that tend to 1,
to the set L0.

By precomposing each ξ0 with a translation in L0 if needed, we may assume that
ξk(0) = y0,k, where y0,k denotes a point of Lk such that |y0,k| = dist(0, Lk). Then we
can use the uniform Lipschitz bounds on the ξk to choose our subsequence so that the ξk
converge, uniformly in B(0, 1), to some Lipschitz mapping ξ∞. Since the ξk satisfy (9.27)
with biLipschitz constants that tend to 1, ξ∞ is an isometry from B(0, 1) to its image, and
it is known that there is an affine isometry of Rn that coincides with ξ∞ on B(0, 1). We
subtract ξ∞(0) and we get a linear isometry ξ of Rn such that

(9.35) ξ(y) = ξ∞(y)− ξ∞(0) = lim
k→+∞

[ξk(y)− ξk(0)] = lim
k→+∞

[ξk(y)− y0,k] for y ∈ B(0, 1).

By rotation invariance of our problem, the sets ξ−1(Ek) still provide a counterexample,
so we may replace the Ek by ξ−1(Ek); thus we may assume that ξ is the identity, i.e., that

(9.36) lim
k→+∞

[ξk(y)− y0,k] = y for y ∈ B(0, 1).

We want to use the m-planes L0 + y0,k and their limit

(9.37) L∞ = L0 + y0,∞, where y0,∞ = ξ∞(0) = lim
k→+∞

y0,k,

as boundaries. Maybe we should mention that in the simpler case of Corollary 9.3 when L
is an affine space, we may decide in advance that L0 was the vector space parallel to L, and
then ξ∞ is a translation. When we follow the argument above, we see that we do not need
to modify the Ek, and that we get L0 + y0,k = Lk.

We replace {Ek} with a subsequence for which {Ek} converges, locally in B(0, 1), to a
closed set E∞. This just means that d0,ρ(E,E∞) tends to 0 for every ρ ∈ (0, 1), and the
existence of a subsequence like this is classical.

We claim that

E∞ is a coral almost minimal set in B(0, 1− τ/2),

with boundary condition coming from L∞,(9.38)

and with the special gauge function h0 given by (9.10) with r1 = 1.
Compared to what we did for Theorem 9.1, the situation is slightly different, because we

have variable boundary conditions, so we shall have to use a limiting result of Section 23
in [D6] rather than its Section 10. We want to apply Theorem 23.8, so let us check the
assumptions.
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We use the domain U = B(0, 1− τ/2) and the single boundary piece L∞, and then the

Lipschitz assumption (23.1) is satisfied. We use the bilipschitz mappings ξ̃k defined by

(9.39) ξ̃k(y) = ξk(y − y0,∞).

Notice that if we set Uk = ξ̃k(U), then

(9.40) Uk = ξ̃k(B(0, 1− τ

2
)) = ξk(B(−y0,∞, 1−

τ

2
)) ⊂ y0,k +B(−y0,∞, 1−

τ

3
) = B(0, 1− τ

4
)

by (9.36) and for k large; in addition,

(9.41) ξ̃k(L∞) = ξk(L0) = Lk,

so the condition (23.2) of [D6] is satisfied, the asymptotically optimal Lipschitz bound (23.3)

comes from (9.27), and (23.4) (the pointwise convergence of the ξ̃k to the identity) follows
from (9.36), (9.39), and (9.37).

With the current notation, Ek is sliding minimal in a domain that contains Uk, with a
boundary condition given by ξ̃k(L∞), and the gauge function hk. This implies that (23.5)
holds with constants M that are arbitrarily close to 1, δ arbitrarily close to 1, and h as small
as we want because of (9.28) (see the discussion below (9.9)).

The assumption (23.6) comes from the convergence of the Ek to E∞, we don’t need to
check the technical assumptions (10.7) or (19.36) because the Lk are m-dimensional, and
so Theorem 23.8 in [D6] applies. We get that E∞ is sliding quasiminimal, relative to L∞,
and with constants M arbitrarily close to 1, δ arbitrarily close to 1, and h arbitrarily small;
(9.38) follows.

Next we estimate Hausdorff measures. We start with the analogue of (9.11). By Re-
mark 23.23 in [D6], we can apply Theorem 10.97 in [D6] as soon as the assumptions of
Theorem 23.8 there are satisfied. We checked this to prove (9.38), so we get that if V is an
open set such that V ⊂ B(0, ρ) for some ρ < 1,

(9.42) Hd(E∞ ∩ V ) ≤ lim inf
k→+∞

Hd(Ek ∩ V ),

as in (23.23) in [D6]. This stays true for any open set V ⊂ B(0, 1) (just apply (9.42) to
V ∩B(0, ρ) and take a limit). Similarly, Lemma 23.31 in [D6] (applied with constantsM > 1
arbitrarily close to 1 and h > 0 arbitrarily small) says that ifK is a compact subset ofB(0, 1),

(9.43) lim sup
k→+∞

Hd(Ek ∩K) ≤ Hd(E∞ ∩K).

Alternatively we could use Lemma 23.36 in [D6], or copy its proof. As in (9.14), we deduce
from (9.42) and (9.43) that

(9.44) lim
k→+∞

Hd(Ek ∩ B(0, r)) = Hd(E∞ ∩B(0, r))
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for almost every r ∈ (0, 1).
Denote by Fk the functional associated to Ek and the boundary Lk. By (7.9),

(9.45) Fk(r) = r−dHd(Ek ∩B(0, r)) + r−dHk(r),

where Hk(r) is given by (7.6) and (7.7) in terms of L′ = Lk. That is,

(9.46) Hk(r) = drd
ˆ r

0

mk(t)dt

td+1
,

with mk(t) = Hd(L♯
k(t) ∩ B(x, t)) and L♯

k(t) =
{
λz ; λ ∈ [0, 1] and z ∈ Lk ∩ B(0, t)

}
.

We also define F∞, H∞, m∞, and the L♯
∞(t) similarly, but in terms of E∞ and L∞ =

L0 + y0,∞ (see (9.37)). We want to check that

(9.47) F∞(r) = lim
k→+∞

Fk(r)

for almost every r ∈ (0, 1) and, because of (9.44), it will follow from the next lemma.

Lemma 9.4. We have that

(9.48) H∞(r) = lim
k→+∞

Hk(r) for 0 < r < 1.

Proof. First notice that the lemma is particularly simple when the sets Lk are affine subspaces
of dimension m (and in this case it is also slightly simpler to use Remark 7.3 and the more
direct formula (7.28) to compute H∞ and theHk in terms of shades), and also whenm < d−1
(because then Hk = H∞ = 0). When the Lk are bilipschitz images of (d−1)-planes, we need
to be a little careful about how the Hk tend to a limit, but hopefully the reader will not be
surprised by the result.

So let us assume that m = d− 1. The main step will be to check that for 0 < t < 1,

(9.49) m∞(t) = lim
k→+∞

mk(t).

Recall from (9.41) that Lk = ξ̃k(L∞), so we get a parameterization of L♯
k(t) as

(9.50) L♯
k(t) =

{
λξ̃k(y) ; (λ, y) ∈ [0, 1]× Zk(t)

}
,

where Zk(t) =
{
y ∈ L∞ ; ξ̃k(y) ∈ B(0, t)

}
. We use the area formula and get that

Hd(L♯
k(t)) ≤

ˆ

y∈Zk(t)

ˆ

t∈[0,1]

λm−1
∣∣∣∂ξ̃k(y)
∂x1

∧ . . . ∧ ∂ξ̃k(y)

∂xm
∧ ξ̃k(y)

∣∣∣dydλ

=
1

d

ˆ

y∈Zk(t)

∣∣∣∂ξ̃k(y)
∂x1

∧ . . . ∧ ∂ξ̃k(y)

∂xm
∧ ξ̃k(y)

∣∣∣dy(9.51)

63



where we took coordinates (x1, . . . , xm) in L∞ to compute the Jacobian of the parameteri-
zation. Unfortunately for the converse computation, we only have an inequality because the
parameterization may fail to be injective.

Recall from (9.39), (9.36) and (9.37) that the ξ̃k converge uniformly to the identity; then
for each ρ ∈ (t, 1), Zk(t) ⊂ Zρ =: L∞ ∩B(0, ρ) for k large, so

(9.52) lim sup
k→+∞

Hd(L♯
k(t)) ≤

1

d
lim sup
k→+∞

ˆ

y∈Zρ

∣∣∣∂ξ̃k(y)
∂x1

∧ . . . ∧ ∂ξ̃k(y)

∂xm
∧ ξ̃k(y)

∣∣∣dy.

Next we claim that the wedge product ∂ξ̃k(y)
∂x1

∧ . . . ∂ξ̃k(y)
∂xm

converges weakly to the constant
m-vector e1 ∧ . . . ∧ em, where the ej are the corresponding basis vectors of L0 (the vector
space parallel to L∞), in the sense that for each small product Q of intervals (with faces
parallel to the axes) in L∞,

(9.53) lim
k→+∞

ˆ

Q

∂ξ̃k(y)

∂x1
∧ . . . ∧ ∂ξ̃k(y)

∂xm
dy = |Q|e1 ∧ . . . ∧ em.

This last follows from integrating coordinate by coordinate, and using the fact that the ξ̃k(y)

converge uniformly to y. Also, we have uniform bounds on ∇ξ̃k, by (9.27), which allows
one to pass from the dense class of linear combinations of characteristic functions 1Q to the
vector-valued function y 1Zρ , so

(9.54) lim
k→+∞

1

d

ˆ

y∈Zρ

∣∣∣∂ξ̃k(y)
∂x1

∧ . . . ∧ ∂ξ̃k(y)

∂xm
∧ y

∣∣∣ = 1

d

ˆ

y∈Zρ

∣∣∣e1 ∧ . . . ∧ em ∧ y
∣∣∣.

We can replace y by ξ̃k(y) in the right-hand side of (9.54) because the ξ̃k are uniformly
Lipschitz, and converge uniformly to the identity; we get that

(9.55) lim sup
k→+∞

Hd(L♯
k(t)) ≤

1

d

ˆ

y∈Zρ

∣∣∣e1 ∧ . . . ∧ em ∧ y
∣∣∣ = Hd(L♯

∞(ρ)),

where the last part comes from the same computations as above, i.e., applying the area
formula to

(9.56) L♯
∞(ρ) =

{
λz ; λ ∈ [0, 1] and y ∈ L∞ ∩B(0, ρ)

}

(this time, our parameterization is injective). We let ρ tend to t from above and get that

(9.57) lim sup
k→+∞

mk(t) = lim sup
k→+∞

Hd(L♯
k(t)) ≤ Hd(L♯

∞(t)) = m∞(t)

by (7.7). We may now concentrate on the other inequality in (9.49), which we shall obtain
by topology.
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For ρ < 1, still set Zρ = L∞ ∩ B(0, ρ), and set Tρ =
{
λy ; λ ∈ [0, 1] and y ∈ Zρ

}
. The

Tρ are homothetic cones in a fixed space V of dimension d; let πV denote the orthogonal
projection on that space.

Let t ∈ (0, 1) be given, and pick ρ < t. For k large, Zρ ⊂ Zk(t), so

(9.58) L♯
k(t) ⊃

{
λξ̃k(y) ; (λ, y) ∈ [0, 1]× Zρ

}
,

by (9.50). We can even define a continuous mapping hk : Tρ → L♯
k(t), by setting h(z) =

λξ̃k(y) when z = λy for some λ ∈ [0, 1] and y ∈ Zρ (notice that y can be computed from z,
since it is its radial projection on L∞).

Next let ρ1 < ρ and ξ ∈ Tρ1 be given. Notice that for k large and z ∈ ∂Tρ (the boundary
of Tρ in the space V ),

(9.59) dist(πV (hk(z)), ξ) ≥ dist(πV (hk(z)), Tρ1) ≥
1

2
dist(∂Tρ, Tρ1) > 0

because πV ◦hk(z) tends to z uniformly on Tρ (since h̃k(y) tends to y uniformly on Zρ). The
same argument also shows that

(9.60) dist(w, ξ) ≥ 1

2
dist(∂Tρ, Tρ1) > 0

for w ∈ [z, πV (hk(z))] (and z as above). This means that there is a homotopy, from the
identity on ∂Tρ to the mapping πV ◦ hk on ∂Tρ, among continuous mappings with values in
V and that do not take the value ξ.

Denote by πξ the radial projection, centered at ξ, that maps any point v ∈ V \ {ξ} to
the point πξ ∈ ∂Tρ that lies on the half line from ξ through v. The mapping πξ ◦ πV ◦ hk
is continuous, from ∂Tρ to itself, and had degree 1 (when we identify ∂Tρ with a (d − 1)-
sphere) because it is homotopic to the identity. This implies that it cannot be extended
to a continuous mapping from Tρ to ∂Tρ, and in turns this implies that ξ ∈ πV ◦ hk(Tρ)
(otherwise, πξ ◦ πV ◦ hk would be a continuous extension).

We proved that for k large, πV ◦ hk(Tρ) contains Tρ1 , hence, by (9.58) πV (L
♯
k(t)) contains

Tρ1 . Then

(9.61) mk(t) = Hd(L♯
k(t)) ≥ Hd(πV (L

♯
k(t))) ≥ Hd(Tρ1)

by (7.7) and because πV is 1-Lipschitz. This is true for all choices of ρ1 < ρ < t; when ρ1
tends to t, the right-hand side of (9.61) tends to Hd(Tt) = m∞(t) (by (7.7) again). Thus

(9.62) lim inf
k→+∞

mk(t) ≥ m∞(t),

which gives the second half of (9.49).
Notice that (by the proof of (9.57)) the mk are uniformly bounded on [0, r], r < 1.

They also vanish on [0, τ), because since the Lk satisfy (9.26), B(0, τ) does not meet Lk and
L♯
k(t) = ∅ for t < τ ; see below (9.46). Our conclusion (9.48) now follows from the dominated

convergence theorem, the definition (9.46), (9.49), and (7.7) (for H∞).
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By Lemma 9.4, (9.44), and the definitions (7.9) and its analogue for F∞, we get (9.47).
We then proceed as in the proof of (9.17). We first apply Theorem 7.1 to E∞ with the gauge
function h0 (of course L∞ satisfies the conditions of Section 7, and Remark 7.2 still allows
us not to check (7.10)); then Theorem 7.1 says that F∞ is nondecreasing on (0, 1) and the
argument of (9.18) yields that F∞ is constant on (0, 1).

Now let us apply Theorem 1.3, with R1 = 1 and R0 arbitrarily small. The main assump-
tion is satisfied because F∞ is constant on (0, 1). Notice that

(9.63) dist(0, L∞) ≥ τ

because dist(0, Lk) ≥ τ by (9.26), ξ̃k(L∞) = Lk by (9.41), and the ξ̃k converge pointwise to
the identity (see below (9.41)).

Set A = B(0, 1) \ B(0, R0), and denote by X∞ the cone over A ∩ E∞ (as in (1.13));
we take R0 < τ , and then we know that X∞ is a coral minimal cone (with no boundary
condition). Set A′ = B(0, 1) \B(0, R0), and let us check that

(9.64) A′ ∩ E∞ = A′ ∩X∞ \ S∞,

where S∞ is the shade of L∞ seen from the origin (as in (7.12)). By (1.12), Hd(A′ ∩ E∞ ∩
S∞) = 0; then each x ∈ E∞ ∩A′ is the limit of a sequence {xj} in E∞ \ S∞ (recall that E∞

is coral). Obviously, xj ∈ A′ for j large, hence, by definition of X∞, xj ∈ X∞; it follows that

x ∈ A′ ∩X∞ \ S∞. Conversely, if x ∈ A′ ∩X∞ \S∞, (1.14) says that x ∈ E∞; (9.64) follows.
Since (9.64) and (9.63) say that E∞ = X∞ on B(0, τ) \ B(0, R0), and X∞ is a cone, we

see that it does not depend on R0 (provided that we take R0 < τ), and then (letting R0 tend
to 0),

(9.65) B(0, 1) ∩ E∞ = B(0, 1) ∩X∞ \ S∞.

Here we took the intersection with B(0, 1), but we do not really need to: all our sets are
initially defined as subsets of B(0, 1). We still need to modify the sets X∞ and E∞ =
X∞ \ S∞ a little to get the desiredX0 and E0, because E∞ is minimal with a sliding boundary
condition defined by L∞, while we promised in (9.31) that E0 = E0,k would be sliding minimal
with respect to an affine d-plane L′ = L′

k through y0,k.
So we replace X∞ and E∞ with slightly different sets. Recall from (9.37) that L∞ =

L0 + y0,∞ and that y0,∞ is the limit of the y0,k; also, |y0,∞| = dist(0, L∞) ≥ τ because
|y0,k| = dist(0, Lk), by (9.41), and by (9.63). Then we can find numbers ρk, that tend to 1,
and linear isometries Ik, that converge to the identity, so that y0,k = ρkIk(y0,∞). We set

(9.66) X0 = X0,k = Ik(X∞), E0 = E0,k = ρkIk(E∞) and L′ = L′
k = ρkIk(L∞).

Notice that L′
k is a m-dimensional affine subspace that contains y0,k, because L∞ contains

y0,∞ (by (9.37)). We want to show that for k large, these set satisfy the properties announced
in Corollary 9.3.

For the special case of Corollary 9.3 where L is an affine space, we can assume that the
Lk are affine subspaces, all of the same dimension and parallel to the same vector space L0.
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For this case, we announced that we would take L′
k = Lk, so let us check that we can choose

ρk and Ik so that this is the case. Recall that y0,k is the orthogonal projection of 0 on Lk,
and hence, since the Lk converge to L∞, y0,∞ is the projection of 0 on L∞. We need to set
ρk = |y0,k|/|y0,∞|. If y0,k is collinear to y0,∞, we just take Ik to be the identity. Otherwise,
let us first define Ik on the 2-plane Pk that contains y0,k and y0,∞, so that it preserves Pk

and maps y0,∞ to y0,k|y0,∞|/|y0,k|. Then set Ik(z) = z on P⊥
k . It is easy to see that Ik is an

isometry; since it preserves L0 ⊂ P⊥
k , the mapping ρkIk sends L∞ to Lk, as needed.

The fact that X∞ and X0 are coral minimal cones (no boundary condition) comes from
our application of Theorem 1.3 (see below (9.63)).

For (9.29), we need to check that if m = d− 1, L′
k ∩ B(0, 99/100) ⊂ X0, or equivalently

(by (9.66)),

(9.67) L∞ ∩B(0, 99ρ−1
k /100) ⊂ I−1

k (X0) = X∞.

Recall from above (9.63) that we were able to apply Theorem 1.3 to E∞, with R1 = 1 and
R0 arbitrarily small; then (1.15) holds, which says that Hd(S∞ ∩ B(0, 1) \ X∞) = 0; since
S∞ is a d-dimensional set (because L∞ does not contain the origin), we deduce from this
that X0 contains L∞ ∩B(0, 1) (recall that X∞ is closed too); (9.67) (for k large) follows. So
(9.29) holds.

The next condition (9.31) is equivalent to the fact that E∞ is a coral minimal set in
B(0, (1− τ)ρ−1

k ), with boundary condition given by L∞ = ρ−1
k I−1

k (L′), and this follows from
(9.38) as soon as k is so large that (1− τ)ρ−1

k < 1− τ/2.
The next conditions (9.32) and (9.33) come from the fact that E∞ is the limit, locally in

B(0, 1), of the Ek, and that ρkIk tends to the identity. We are thus left with (9.34) to check.
That is, we need to show that for k large,

(9.68) |Hd(B ∩ Ek)−Hd(B ∩ E0,k)| ≤ τ

for every ball B = B(y, t) such that B ⊂ B(0, (1−τ)). We intend to proceed as in Lemma 9.2,
and the main step is the following small lemma.

Lemma 9.5. Denote by H the set of pairs (y, t), with y ∈ B(0, (1− τ/2)) and t ≥ 0, such
that B(y, t) ⊂ B(0, (1− τ/2)). We include t = 0 (and set B(x, 0) = ∅) to make sure that H
is compact. Set

(9.69) h(y, t) = Hd(E∞ ∩ B(y, t)) for (y, t) ∈ H.

Then h is a continuous function on H.

Proof. We prove the continuity of h at the point (y, t) ∈ H . Suppose {(yj, tj)} is a sequence
in H that tends to (y, t), and denote by ∆j the symmetric difference

(9.70) ∆j = [B(yj, tj) \B(y, t)] ∪ [B(y, t) \B(yj , tj)];

then

(9.71) lim sup
j→∞

|h(y, t)− h(yj, tj)| ≤ lim sup
j→∞

Hd(E∞ ∩∆j) ≤ Hd(E∞ ∩ ∂B(y, t))
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because if V is any open neighborhood of ∂B(y, t), ∆j is contained in V for j large (when
t = 0, we replace ∂B(y, t) by {y} to make this work).

But Lemma 7.34 in [D2] implies, as for (9.24) above, that

(9.72) Hd(E∞ ∩ ∂B(y, t)) = 0;

thus h(y, t)− h(yj, tj) tends to 0 and the lemma follows.

Let us return to the proof of (9.34), fix a point (y, t) ∈ H , and prove that

(9.73) lim
k→+∞

Hd(B(y, t) ∩ Ek) = Hd(B(y, t) ∩ E∞) = lim
k→+∞

Hd(B(y, t) ∩ E0,k).

The first part follows from (9.42), (9.43), and the fact that Hd(E∞ ∩ ∂B(y, t)) = 0 exactly
as for (9.44) or (9.14). For the second part, we use the definition (9.66) and get that

(9.74) B(y, t) ∩ E0,k = B(y, t) ∩ ρkIk(E∞) = ρkIk(B(yk, tk) ∩ E∞),

with yk = ρ−1
k I−1

k (y) and tk = ρ−1
k t. Then

(9.75) Hd(B(y, t) ∩ E0,k) = ρdkHd(B(yk, tk) ∩ E∞),

which tends to Hd(B(y, t) ∩ E∞) by Lemma 9.5. So (9.73) holds.
Next let τ > 0 be given (as in the statement). Since H is compact and h is continuous

on H , there is a constant η > 0 such that

(9.76) |h(y, t)− h(y′, t′)| ≤ τ/10 for (y, t), (y′, t′) ∈ H such that |y − y′|+ |t− t′| ≤ 5η.

We may assume that 10η < τ . Then let Y be a finite subset of B(0, 1) which is η-dense in
B(0, 1), and T a finite subset of [0, 1] which is η dense. Let us include t = 0 in T . Then let
H0 denote the set of pairs (y, t) ∈ H such that y ∈ Y and t ∈ T . By (9.73), we get that for
k large

(9.77) |Hd(B(y, t)∩Ek)−Hd(B(y, t)∩E∞)|+|Hd(B(y, t)∩E∞)−Hd(B(y, t)∩E0,k)| ≤ τ/10

for (y, t) ∈ H0. For (9.68), we want a similar estimate for every pair (y, t) such that B(y, t) ⊂
B(0, 1− τ). Let us fix such a pair and first try to choose pairs (y′, t1), (y

′, t2) ∈ H0, so that
if we set B = B(y, t), B1 = B(y′, t1), and B2 = B(y′, t2), then

(9.78) B1 ⊂ B ⊂ B2 and t2 − t1 ≤ 4η.

Let us take y′ ∈ Y such that |y′ − y| ≤ η. If t > η, take t1 ∈ T ∩ [t − 2η, t− η]; otherwise,
take t1 = 0. In both cases, take t2 ∈ T ∩ [t + η, t + 2η]. With these choices, we get (9.78),
and also both (y′, tj) lie in H0. Then for instance

(9.79) Hd(B1 ∩ Ek) ≤ Hd(B ∩ Ek) ≤ Hd(B2 ∩ Ek),
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which by (9.77) yields

(9.80) Hd(B1 ∩ E∞)− τ/10 ≤ Hd(B ∩ Ek) ≤ Hd(B2 ∩ E∞) + τ/10

for k large, and since

(9.81) Hd(B1 ∩ E∞) ≤ Hd(B ∩ E∞) ≤ Hd(B2 ∩ E∞) ≤ Hd(B1 ∩ E∞) + τ/10

by (9.78) and (9.76), we get that

(9.82) |Hd(B ∩ Ek)−Hd(B ∩ E∞)| ≤ τ/5

for k large. The same proof also yields

(9.83) |Hd(B ∩ E0,k)−Hd(B ∩ E∞)| ≤ τ/5,

and (9.68) follows. This completes our proof that for k large, the sets X0,k and E0,k satisfy
all the properties (9.29)-(9.34) (relative to Ek and Lk) that were required in the state-
ment of Corollary 9.3. This contradicts the initial definitions, and completes our proof of
Corollary 9.3. The additional statement below the corollary (concerning the case of affine
subspaces) was checked below (9.66).

Remark 9.6. We could try to prove an analogue of Corollary 9.3 when the origin lies
very close to the boundary set L, but if L is (d − 1)-dimensional and without more precise
assumptions on L (for instance, uniform C1 estimates, rather than bilipschitz, that say that
L is close to an affine subspace), we will not get a good convergence of the functions Hk to
their analogue for L∞, as in Lemma 9.4 above, and then we shall not be able to show that
F∞ is constant and apply Theorem 1.3 as above.

Even if we do (for instance, if L is assumed to be an affine subspace), we do not get the
same conclusion as before, because we may get that y0,∞ = 0 and L∞ = L0, and then we
cannot take R0 < dist(0, L∞) to prove that X0 is a minimal cone. Instead, we only get the
approximation of Ek by a sliding minimal cone, with boundary condition given by L0.

We shall not try to pursue this here, because it seems as convenient, when 0 is very close
to L, to consider balls centered at a point x0 ∈ L, try to deduce some interesting information
on the density θx0

(r) from the assumption (9.28), and then apply Proposition 30.3 in [D6]
to show that E is well approximated by a sliding minimal cone, with boundary condition
given by an affine subspace of the same dimension as the L0 from (9.27). See the argument
below (11.42) and the proof of Proposition 12.7 for illustrations of this scheme.

Generally speaking, if we we have sets Lj that are not necessarily a single m-plane, and
we still want an analogue of Theorem 9.1 where ε depends only on n and d, and not on
the specific choices of Lj or r1, we can always try to mimic the proof of Theorem 9.1 or
Corollary 9.3, but we will need to understand how the function H depends on the specific
Lj , and this seems easier to do on a case by case basis. Notice that when each Lk in the
proof above is composed of two planes that both tend to the same plane L∞, Lemma 9.4
fails in general.
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We relax a little and end this section with the variant of Theorem 9.1 that corresponds
to an annulus.

Theorem 9.7. Let U and the Lj be as in Section 7, and in particular, assume (2.1), (2.2),
and (3.4). Let r0, r1 be such that 0 < r0 < r1 and B(0, r1) ⊂ U , and assume that almost
every r ∈ (r0, r1) admits a local retraction (as in Definition 3.1). For each small τ > 0 we
can find ε > 0, which depends only on τ , n, d, U , the Lj, r0, and r1, with the following
property. Let E be a coral sliding almost minimal set in U , with sliding condition defined by
L and some nondecreasing gauge function h. Suppose that

(9.84) B(0, r1) ⊂ U and h(r1) < ε,

and

(9.85) F (r1) ≤ F (r0) + ε < +∞.

Then there is a coral minimal set E0 in B(0, r1), with sliding condition defined by L, such
that

the analogue of F for the set E0 is constant on (r0, r1),(9.86)

(9.87) the conclusions of Theorem 8.1 hold for E0, with the radii R0 = r0 and R1 = r1,

(9.88) dist(y, E0) ≤ τr1 for y ∈ E ∩ B(0, r1),

(9.89) dist(y, E) ≤ τr1 for y ∈ E0 ∩ B(0, r1),

and
∣∣Hd(E ∩ B(y, t))−Hd(E0 ∩B(y, t))

∣∣ ≤ τrd1 for all

y ∈ R
n and t > 0 such that B(y, t) ⊂ B(0, (1− τ)r1) \B(0, (1 + τ)r0).(9.90)

There would probably be a way to state Theorem 9.7 so that ε does not depend on r0,
but we shall not do it. Also, we shall not try to generalize Corollary 9.3 to the case of an
annulus.

The proof is almost the same as for Theorem 9.1. We change nothing up to (9.18), which
we replace with

F∞(r1) = r−d
1 Hd(E0 ∩B(0, r1)) + r−d

1 H(r1) ≤ lim inf
k→+∞

Hd(Ek ∩ B(0, r1)) + r−d
1 H(r1)

= lim inf
k→+∞

Fk(r1) ≤ lim inf
k→+∞

(Fk(r0) + 2−k) = lim inf
k→+∞

Fk(r0)

= r−d
0 H(r0) + r−d

0 lim inf
k→+∞

Hd(Ek ∩ B(0, r0))(9.91)
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by (9.11) and (9.85). But for r0 < r, H(r0) ≤ H(r) and

lim inf
k→+∞

Hd(Ek ∩ B(0, r0)) ≤ lim sup
k→+∞

Hd(Ek ∩ B(0, r0)) ≤ Hd(E0 ∩ B(0, r0))

≤ Hd(E0 ∩B(0, r)),(9.92)

by (9.12), so F∞(r1) ≤ F∞(r) for r0 < r < r1. The fact that F∞ is nondecreasing on (r0, r1)
is proved as before, so we get that F∞ is constant on (r0, r1), as in (9.17). The rest of the
argument is as before; we only prove (9.90) for balls that do not meet B(0, (1+τ)r0), because
we use the fact that in the annulus A, E is contained in the cone X .

10 Simple properties of minimal cones

Before we start proving the application mentioned in the introduction, we shall introduce
some properties of minimal cones (even, without sliding boundary condition), that will be
used in the proofs.

Let us denote by MC = MC(n, d) the set of coral minimal sets of dimension d in R
n,

which are also cones centered at the origin.
The set MC(n, d) is only known explicitly when d = 1 (and then MC is composed of

lines and sets Y ∈ Y0(n, 1); see the definition above (1.28)), and when d = 2 and n = 3,
where MC(3, 2) is composed of 2-planes, sets Y ∈ Y0(3, 2), and cones of type T (our name
for a cone over the union of the edges of a regular tetrahedron centered at the origin); see
for instance [Mo]. Even MC(4, 2) is not known explicitly, but at least we have a rough
description of the minimal cones of MC(n, 2) for all n > 3.

For X ∈MC(n, d), the density of X is

(10.1) d(X) = Hd(X ∩ B(0, 1)).

Notice that by the monotonicity of density (see near (1.8)), we get that for X ∈ MC(n, d),
x ∈ R

n and r > 0,

r−dHd(X ∩B(x, r)) ≤ lim
ρ→+∞

r−dHd(X ∩B(x, r)) ≤ lim
ρ→+∞

r−dHd(X ∩B(0, r + |x|))

= lim
ρ→+∞

r−d(r + |x|)dd(X) = d(X).(10.2)

Denote by

(10.3) ωd = Hd(Rd ∩B(0, 1))

the Hd-measure of the unit ball in R
d. Since we know that the minimal sets are rectifiable,

and also that

(10.4) lim
r→0

r−dHd(X ∩B(x, r)) = ωd
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for Hd-almost every point x of a rectifiable set X (see for instance the easy part of Theo-
rem 16.2 in [M]), we get that d(X) ≥ ωd for X ∈MC(n, d). We can then try to classify the
minimal cones by their density. The beginning is easy. To prove that

(10.5) if X ∈MC(n, d) and d(X) ≤ ωd, then X is a d-plane,

one observes that if d(X) = ωd, then (10.2) is an identity for almost-every point x ∈ X .
A close look at the proof of the monotonicity of density then shows (with some effort but
no surprise) that X is also a cone centered at x, and it is then easy to conclude. Here is a
quantitative (but not explicit) version of this.

Lemma 10.1. For each choice of integers 0 < d < n, there is a constant d(n, d) > ωd such
that d(X) ≥ d(n, d) for X ∈ MC(n, d) \ P0(n, d).

Proof. We prove this by contradiction and compactness. Suppose that for each integer k ≥ 0
we can find Xk ∈ MC(n, d) \ P0(n, d) such that d(X) ≤ ωd + 2−k. We may replace {Xk}
with a subsequence for which the Xk converge to a limit X∞, i.e., that d0,N(Xk, X∞) tends
to 0 for each integer N (see the definition (1.29)). Since all the Xk are cones, X∞ is a
cone too. By Theorem 4.1 in [D1] (with Ω = R

n, M = 1 and δ = +∞), X∞ is a coral
minimal set in R

n. By the lowersemicontinuity of Hd along that sequence (for instance
Theorem 3.4 in [D1]), d(X∞) ≤ lim infk→+∞ d(Xk) = ωd. Since d(X∞) ≥ ωd anyway, (10.5)
says that X∞ ∈ P0(n, d). Since d0,2(Xk, X∞) tends to 0, Xk is arbitrarily close to a plane
in B(0, 1). In addition, by assumption Hd(Xk ∩ B(0, 1)) ≤ ωd + 2−k. We may now apply
either Almgren’s regularity result for almost minimal sets [A3], or Allard’s regularity result
for stationary varifolds [All] (whichever the reader finds easiest), and get that for k large,
Xk is C1 near the origin. But Xk is a cone, and this means that Xk is a plane. This proves
the lemma.

The following consequence of Lemma 10.1 will be used in the next section.

Corollary 10.2. Let L be a vector space of dimension m < d in R
n, and let E be a coral

sliding minimal cone, with boundary condition given by L. Suppose that Hd(E ∩ B(0, 1)) ≤
ωd

2
. Then m = d− 1 and E is a half d-plane bounded by L.

Proof. Of course we assume that E 6= ∅. Then, since E is coral and rectifiable (by (2.11)),
we can find x ∈ E \ L such that (10.4) holds. Let us apply Theorems 1.2 and 1.3 to the set
Ex = E − x, which is sliding minimal with a boundary condition coming from Lx = L− x.
We take U = R

n, R0 = 0, and R1 = +∞ (or arbitrarily large). Theorem 1.2 says that the
function F defined by (1.10) is nondecreasing. But

(10.6) lim
r→0

F (r) = lim
r→0

r−dHd(Ex ∩B(0, r)) = lim
r→0

r−dHd(E ∩B(x, r)) = ωd

by (1.10), because dist(0, Lx) = dist(x, L) > 0, and by (10.4), while

lim
r→+∞

F (r) = lim
r→+∞

r−d[Hd(S ∩B(0, r)) +Hd(Ex ∩ B(0, r))]

=
ωd

2
+ lim

r→0
r−dHd(Ex ∩ B(0, r))

≤ ωd

2
+ lim

r→0
r−dHd(E ∩ B(0, r + |x|)) ≤ ωd(10.7)
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by (1.10), where S is the shade of Lx as in (1.9), because B(x, r) ⊂ B(0, r + |x|), and by
assumption.

So F is constant on (0,+∞), and Theorem 1.3 applies to any interval. Notice that
dist(0, Lx) > 0; so we get a coral minimal cone X (no boundary condition) such that X \S ⊂
Ex (as in (1.14)). Then

d(X) = lim
r→+∞

r−dHd(X ∩ B(0, r))

≤ lim inf
r→+∞

r−d[Hd(Ex ∩B(0, r)) +Hd(S ∩ B(0, r))] = lim
r→+∞

F (r) = ωd,(10.8)

and by (10.5), X is a d-plane. Notice that if m < d − 1 (the dimension of L), the proof of
(10.8) even gives that d(X) ≤ ωd

2
, which is impossible.

In addition, (1.15) tells us that Hd(S \ X) = 0, which implies that S ⊂ X (because
X is closed and S is d-dimensional). So X is the d-plane that contains S. We know from
(1.14) that X \ S ⊂ Ex, and the definition (1.13) says that Ex ⊂ X . Since in addition
Hd(Ex ∩S) = 0 by (1.12), we get that Ex = (X \ S)∪Lx, and E is a half plane bounded by
L, as announced.

For Section 12 we will need to restrict to dimensions n and d such that

(10.9) d(X) >
3ωd

2
for X ∈ MC(n, d) \ [P0(n, d) ∪ Y0(n, d)],

i.e., when X ∈MC(n, d) is neither a vector d-plane nor a cone of type Y (see the definitions
above (1.28)).

The author does not know for which values of n and d this assumption is satisfied. When
d = 1, (10.9) holds trivially because MC(n, 1) = P0 ∪Y0. When d = 2 and n = 3, it follows
from the explicit description of MC(3, 2) as the union of P0, Y0, and the cones of type T.
When d = 2 and n > 3 we also get in Proposition 14.1 of [D2] a description of the minimal
cones that implies (10.9). In all these cases, there is even a constant dn,d >

3ωd

2
such that

(10.10) d(X) ≥ dn,d when X ∈MC(n, d) \ (P0 ∪ Y0).

See Lemma 14.2 in [D2] for the last case when n > 3.
Finally, we claim that (10.9) probably holds when d = n − 1 and n ≤ 6. The proof

is written in Lemmas 2.2 and 2.3 of [Lu1], in the special case of d = 3, n = 4, and Luu
uses a result of Almgren [A1] that says that the only minimal cones of dimension 3 in R

4

whose restriction to the unit sphere are smooth hypersurfaces are the 3-planes. The same
proof should work in codimension 1 when n ≤ 6, with a dimension reduction argument, and
starting from the generalization of Almgren’s result by Simons [Si]. But even when d = 3
and n = 4, it does not seem to be known whether the analogue of (10.10) holds for some
constant dn,d >

3ωd

2
.

Let us check that the assumption (10.9) implies an apparently slightly stronger one.
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Lemma 10.3. If n and d are such that (10.9) holds, then for for each small τ > 0 we can
find η > 0 such that if X ∈ MC(n, d) is such that d(X) ≤ 3ωd

2
+ η, then either X ∈ P0 or

else there is a cone Y ∈ Y0 such that d0,1(X, Y ) ≤ τ (where d0,1 is as in (1.29)).

Proof. The standard proof is the same as for the first part of Lemma 10.1. We suppose that
this fails for some τ > 0, and take a sequence {Xk} inMC(n, d) such that d(Xk) ≤ 3ωd

2
+2−k,

but Xk /∈ P0 and there is no cone Y ∈ Y0 as in the statement. By (10.9), d(Xk) ≥ 3ωd

2
.

Then extract a subsequence that converges to a limit X∞. Observe that X∞ ∈ MC(n, d)
by Theorem 4.1 in [D1], that X∞ is a coral cone (as a limit of coral cones), and that
d(X∞) = limk→+∞ d(Xk) = 3ωd

2
by Theorem 3.4 in [D1] (for the lowersemicontinuity in-

equality) and Lemma 3.12 in [D2] (for the uppersemicontinuity, which unfortunately was
not already included in [D1]). By (10.9), X∞ ∈ Y0, this contradicts the definition of the Xk

or the fact that they tend to X∞, and this proves the lemma.

11 Sliding almost minimal sets that look like a half

plane

In this section we use the main results of the previous sections to prove Corollary 1.7.
Let L and E be as in the statement. In particular, E is a coral sliding almost minimal

set in B(0, 3), associated to a unique boundary piece L, which is a (d−1)-plane through the
origin. We may choose the type of almost minimality as we wish (that is, A, A′, or A+ in
Definition 2.1).

We assume that h is sufficiently small, as in (1.30), and that E is sufficiently close in
B(0, 3) to a half-plane H ∈ H(L), as in (1.31), and we want to approximate E by planes
and half planes, in the Reifenberg way.

Recall that H(L) is the set of d-dimensional half planes bounded by L, and let P be the
set of (affine) d-planes. The proof below will also follow known tracks. See for instance
Section 16 of [D2]. We first check that E does not have too much mass in a slightly smaller
ball.

Lemma 11.1. Set r1 =
28
10

and B1 = B(0, r1). There is a constant C ≥ 0, that depends only
on n and d, such that

(11.1) Hd(E ∩B) ≤ Hd(H ∩ B) + C
√
ε

for each ball B centered on E and such that B ⊂ B1.

Proof. We are shall use the local Ahlfors regularity of E (see (2.9)). First observe that

(11.2) h(r1) ≤ C

ˆ 3

r1

h(t)dt

t
≤ Cε

because h is nondecreasing and by (1.30). Then for x ∈ E ∩B1 and ρ ≤ 10−2, the pair (x, ρ)
satisfies (2.10) if ε is small enough, hence by (2.9)

(11.3) Hd(E ∩ B(y, ρ)) ≤ Cρd.
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Here and in the next lines, C is a constant that depends only on n and d.
Next let B = B(x, r) be as in the statement. If rd ≤ √

ε, then r ≤ 10−2 too (if ε is small
enough), and (11.1) follows brutally from (11.3). So let us assume that rd ≥ √

ε. Define a
cut-off function α by

(11.4)

α(y) = 0 when |y − x| ≥ r,

α(y) = 1 when |y − x| ≤ r − 6ε,

α(y) = (6ε)−1(r − |y − x|) otherwise.

Denote by π the smallest distance projection on the convex setH ; notice that π is 1-Lipschitz.
We set

(11.5) ϕ(y) = α(y)π(y) + (1− α(y))y

for y ∈ R
n, and then ϕt(y) = tϕ(y) + (1 − t)y for 0 ≤ t ≤ 1. Notice that the ϕt define an

acceptable deformation (see near (1.2)), in particular because π(y) = y on L ⊂ H , and that

Ŵ is compactly contained in B1, by (11.4) and because B ⊂ B1, π(y) ∈ B1 when y ∈ B1,
and B1 is convex. Let us assume for the moment that E is an almost minimal set of type
A′. We deduce from (2.6) that

(11.6) Hd(E \ ϕ(E)) ≤ Hd(ϕ(E) \ E) + rd1h(r1) ≤ Hd(ϕ(E) \ E) + Cε.

Notice that if x ∈ E ∩ B, then either x ∈ E \ ϕ(E), or else x ∈ E ∩ ϕ(E). In the last case,
x ∈ ϕ(E ∩ B), because ϕ(y) = y on R

n \B. Thus

(11.7) Hd(E ∩ B) ≤ Hd(E \ ϕ(E)) +Hd(E ∩ ϕ(E ∩ B)).

By (11.6) this yields

(11.8) Hd(E ∩B) ≤ Hd(ϕ(E) \ E) +Hd(E ∩ ϕ(E ∩ B)) + Cε = Hd(ϕ(E ∩ B)) + Cε,

where the last part holds because ϕ(E)\E = ϕ(E∩B)\E (since ϕ(y) = y when y ∈ R
n\B).

Set B′ = B(x, r − 6ε), and let us check that

(11.9) ϕ(y) ∈ H ∩ B for y ∈ E ∩B′.

First recall from (1.31) and the definition (1.29) that

(11.10) dist(y,H) ≤ 3ε for y ∈ E ∩B(0, 3),

hence

(11.11) |π(y)− y| ≤ 6ε for y ∈ E ∩B(0, 3)

(pick z ∈ H such that |z − y| ≤ 3ε, then use the fact that π is 1-Lipschitz and π(z) = z). If
furthermore y ∈ E ∩B′, then π(y) ∈ H ∩B and, since ϕ(x) = π(x) by (11.5), we get (11.9).
This takes care of the major part of ϕ(E ∩ B).
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We are left with the contribution of A = B \B′. Let P0 denote the d-plane that contains
H , and let P denote the d-plane through x parallel to P . By (11.10), dist(P, P0) ≤ 3ε, and
every point of E ∩ A lies within 3ε of P0, hence within 6ε of P and within 12ε of P ∩ ∂B.
If we cover P ∩ ∂B by balls Bj of radius 20ε, the double balls 2Bj will then cover E ∩ A.
We can do this with less than C(r/ε)d−1 balls Bj , and Hd(E ∩ 2Bj) ≤ Cεd by (2.9) (maybe
applied to a twice larger ball centered on E, if 2Bj meets E but is not centered on E). Thus

(11.12) Hd(E ∩ A) ≤ C(r/ε)d−1εd ≤ Cεrd−1.

Also, we claim that ϕ is C-Lipschitz on E ∩ A. This is because α is (6ε)−1-Lipschitz, but
|π(y)− y| ≤ 6ε on E ∩ A; the verification is the same as for (4.11), so we skip it. Thus

(11.13) Hd(ϕ(E ∩ A)) ≤ CHd(E ∩ A) ≤ Cεrd−1.

We put things together and get that

Hd(E ∩B) ≤ Hd(ϕ(E ∩ B)) + Cε ≤ Hd(ϕ(E ∩B′)) +Hd(ϕ(E ∩ A)) + Cε

≤ Hd(H ∩B) + Cεrd−1 + Cε(11.14)

by (11.8), (11.9), and (11.13). But we are in the case when rd ≥ √
ε, so

√
εrd−1 ≤ r2d−1 ≤ Crd

and (11.1) follows from (11.14).
We still need to say how we proceed when E is of type A or A+. Of course we could say

that in both cases, E is also an A′-almost minimal set, but the long proof can be avoided
with a small trick. Choose a possibly different d-dimensional half plane H1, with the same
boundary L as H , so that

(11.15) dist(y,H1) ≤ 4ε for y ∈ E ∩B(0, 3).

We have uncountably many choices of H1, all disjoint except for the set L of vanishing Hd-
measure, so we can choose H1 so that Hd(E∩B1∩H1) = 0. Then we repeat the construction
above, with 3ε replaced by 4ε. Since the points of B′ are now sent to H1, we get that Hd-
almost every point of E ∩B′ lies in W1 =

{
x ∈ E ; ϕ(x) 6= x

}
. Suppose that E is of type A;

then

(11.16) Hd(E ∩ B′) ≤ Hd(W1) ≤ Hd(ϕ(W1)) + h(r1)r
d
1 ≤ Hd(ϕ(W1)) + Cε

by the discussion above and (2.5), and in turn

Hd(ϕ(W1)) ≤ Hd(ϕ(E ∩B)) ≤ Hd(ϕ(E ∩B′)) +Hd(ϕ(E ∩ A))
≤ Hd(H ∩ B) + Cεrd−1(11.17)

because ϕ(y) = y on R
n \ B, and by (11.9) and (11.13). Therefore Hd(E ∩ B′) ≤ Hd(H ∩

B) + Cεrd−1 + Cε, and we can conclude as before.
The case when E is of type A+ is as simple; just observe that the error term in (11.16)

is replaced by h(r1)Hd(W1) ≤ h(r1)Hd(E ∩ B) ≤ Cε.
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For each x ∈ E ∩ B(0, 2), we define a shade Sx and a functional Fx as we did in the
introduction, but with the center x. That is,

(11.18) Sx =
{
y ∈ R

n ; x+ λ(y − x) ∈ L for some λ ∈ [0, 1]
}

(see (1.9) and (7.12)), then

(11.19) θx(r) = r−dHd(E ∩B(x, r))

and

(11.20) Fx(r) = θx(r) + r−dHd(Sx ∩ B(x, r))

for r > 0 (compare with (1.10)). Here and below, densities will often be compared to the
Hd-measure of the unit d-disk, i.e.,

(11.21) ωd = Hd(Rd ∩ B(0, 1)).

Lemma 11.2. Set

(11.22) r2 =
7

10
and B2 = B(0, 21/10).

There is a constant C ≥ 0, that depends only on n and d, such that

(11.23) Fx(r2) ≤ ωd + C
√
ε for x ∈ E ∩B2.

Proof. First assume that dist(x, L) ≤ √
ε and choose z ∈ L such that |z − x| ≤ √

ε. Then

Hd(E ∩ B(x, r2)) ≤ Hd(H ∩B(x, r2)) + C
√
ε

≤ Hd(H ∩ B(z, r2 +
√
ε)) + C

√
ε

≤ ωd(r2 +
√
ε)d

2
+ C

√
ε ≤ ωdr

d
2

2
+ C

√
ε(11.24)

by Lemma 11.1 and because B(x, r2) ⊂ B(z, r2 +
√
ε). Since Hd(Sx ∩ B(x, r2)) ≤ ωdr

d
2

2

because Sx is contained in a half plane centered at x, we add and get (11.23).
If instead dist(x, L) ≥ √

ε, (11.10) says that dist(x,H) ≤ 3ε, hence the two half planes
H and Sx make an angle α ≥ π −C

√
ε along L. Let Px denote the d-plane that contains x,

L, and hence Sx, and let π be the orthogonal projection on Px; since π(B(x, r2)) ⊂ B(x, r2),
we get that π(H ∩B(x, r2)) ⊂ Px ∩B(x, r2). Also, π(H ∩B(x, r2))∩Sx ⊂ L (because of the
small angle), and hence

rd2Fx(r2) = Hd(Sx ∩B(x, r2)) +Hd(E ∩B(x, r2))

≤ Hd(Sx ∩B(x, r2)) +Hd(H ∩ B(x, r2)) + C
√
ε

≤ Hd(Sx ∩B(x, r2)) +
1

cos(π − α)
Hd(π(H ∩B(x, r2))) + C

√
ε(11.25)

≤ Hd(Sx ∩B(x, r2)) +Hd(π(H ∩B(x, r2))) + C
√
ε

= Hd(Px ∩B(x, r2)) + C
√
ε ≤ ωdr

d
2 + C

√
ε

by Lemma 11.1 and because cos(π − α) ≥ 1− Cε; Lemma 11.2 follows.
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Let a > 0 denote the constant in Theorem 1.5, and choose ε so small that (11.2) implies
that h(r2) ≤ h(r1) ≤ τ , where τ is the small constant in Theorem 1.5. We deduce from
Theorem 1.5 (applied to a translation of E by −x) that for x ∈ E ∩B2 and 0 < r < s ≤ r2,

(11.26) Fx(r) ≤ ea(A(s)−A(r))Fx(s) ≤ eaεFx(s) ≤ e2aεFx(r2) ≤ ωd + C
√
ε

by (1.21), (1.20), (11.2) or (1.30), a second application of the same inequalities, and (11.23).
Because of the first inequality (or directly (1.21)), there exists a limit

(11.27) Fx(0) = lim
r→0

Fx(r),

and (11.26) implies that

(11.28) Fx(0)e
−aε ≤ Fx(s) ≤ ωd + C

√
ε for 0 < s ≤ r2.

Let us restrict our attention to x ∈ E \ L. Then

(11.29) Fx(r) = θx(r) for 0 < r ≤ dist(x, L)

by (11.20), and there exists

(11.30) θx(0) = lim
r→0

θx(r) = Fx(0).

In fact, we already knew this, just from the almost monotonicity of θx for almost minimal
sets with no sliding condition (see for instance Proposition 5.24 in [D2]). We claim that for
Hd-almost every x ∈ E ∩ B2,

(11.31) Fx(0) = θx(0) = ωd.

Since Hd(L) = 0, we may restrict to x ∈ E \ L. But we know that E \ L is rectifiable; since
we are far from the boundary set L, we can even use the result of Almgren [A3] instead of
(2.11)). Now (11.31) follows directly from this and known density properties of rectifiable
sets (see for instance Theorem 16.2 in [M]) or because E has an approximate tangent d-plane
at almost every point (by (2.9), we could even say that this is a real tangent plane); indeed,
at such a point, every blow-up limit of E is a plane, and then (11.31) follows for instance
from Proposition 7.31 in [D2]. From (11.28) and (11.31) (when it holds), we deduce that

(11.32) ωde
−aε ≤ Fx(s) ≤ ωd + C

√
ε for 0 < s ≤ r2 ;

that is, Fx is nearly constant on (0, r2], and this will allow us to show that E look like a
minimal cone at the corresponding scales.

Lemma 11.3. For each τ > 0, there is a constant ε0 > 0, that depends only on n, d, and
τ , such that following property holds as soon as L and E are as above and ε < ε0. Let
x ∈ E ∩ B2 \ L be such that (11.31) holds, and let r ∈ (0, r2) be given.

78



If 0 < r < dist(x, L), there a plane X = X(x, r) through x such that

(11.33) dx,3r/4(E,X) ≤ 4τ/3

and
∣∣Hd(E ∩ B(y, t))−Hd(X ∩B(y, t))

∣∣ ≤ τrd

for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(x, (1− τ)r).(11.34)

If 1
2
dist(x, L) < r < τ−1 dist(x, L), let X denote the affine d-plane that contains x and

L, and set X ′ = X \ Sx. Then

(11.35) dx,3r/4(E,X
′) ≤ τ

and
∣∣Hd(E ∩ B(y, t))−Hd(X ′ ∩ B(y, t))

∣∣ ≤ τrd

for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(x, (1− τ)r).(11.36)

Proof. See (1.29) for the definition of dx,r. Let τ , x and r be as in the statement, and set
B = B(x, r). We start with the case when r < dist(x, L); then E is a (plain) almost minimal
set in B, and we want to apply Proposition 7.24 in [D2] to the set E in the ball B. The
fact that E is almost minimal in B follows at once from our assumptions (since L∩B = ∅),
we can use the same gauge function h as here, and the assumption that h(2r) ≤ ε (for the
small ε of [D2]) follows from (1.30) if ε0 is small enough. Then there is the assumption that

(11.37) θx(r) ≤ inf
0<t<r/100

θx(t) + ε,

where again ε comes from Proposition 7.24 in [D2], with the same τ as here. This follows
from (11.32), because Fx(t) = θx(t) for t ≤ r < dist(x, L), and if ε0 is small enough. Then
Proposition 7.24 in [D2] says that there is a minimal cone X , centered at x, that satisfies
our two conditions (11.33) and (11.34). In addition, (11.34) with the ball B(x, r/2) yields

∣∣Hd(X ∩ B(x, 1))− ωd

∣∣ =
(r
2

)−d∣∣Hd
(
X ∩B

(
x,
r

2

))
−
(r
2

)d
ωd

∣∣

≤
(r
2

)−d∣∣Hd
(
X ∩B

(
x,
r

2

))
−Hd

(
E ∩B

(
x,
r

2

))∣∣+ |θx
(r
2

)
− ωd|

≤ 2dτ + C
√
ε(11.38)

by (11.32). We may assume that τ was chosen smaller than 1
2
(d(n, d) − ωd), where d(n, d)

is as in Lemma 10.1; then, if ε0 is small enough, Lemma 10.1 and (11.38) imply that X is a
plane, and this completes our proof when r < dist(x, L).

Next we assume that 10
9
dist(x, L) < r < τ−1 dist(x, L). In this case we want to apply

Corollary 9.3 to Ex = r−1(E − x), Lx = r−1(E − x), and some small constant τ1 < τ that
will be chosen soon. Set t = dist(0, Lx) = r−1 dist(x, L); our assumption says that

(11.39) τ ≤ t ≤ 9

10
,
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and so the first assumption (9.26) is satisfied as soon as τ1 ≤ τ . Here Lx is a (d− 1)-plane,
which takes care of (9.27), and (9.28) holds (if ε0 is small enough), by (1.30) and (11.32).
Thus we get a minimal cone X0, which satisfies (9.29)-(9.34) with the constant τ1 (and with
respect to Ex), and with L′ = Lx (by the comment after the statement of Corollary 9.3).

By (11.39) we can apply (9.34) to B(0, t); since E0 = X0 on B(0, t) we get that

Hd(X0 ∩ B(0, t)) = Hd(E0 ∩B(0, t)) ≤ Hd(Ex ∩ B(0, t)) + τ1

= r−dHd(E ∩ B(x, tr)) + τ1 = tdθx(tr) + τ1

= tdFx(tr) + τ1 ≤ tdωd + Ctd
√
ε0 + τ1(11.40)

because Ex = r−1(E − x) and B(x, tr) does not meet L, then by (11.32). With the notation
(10.1),

(11.41) d(X0) = Hd(X0 ∩B(0, 1)) ≤ ωd +
√
ε0 + t−dτ1;

since t ≥ τ by (11.39), we see that if τ1 is chosen small enough, and ε0 is small enough,
(11.41) and lemma 10.1 imply that X0 is a plane.

By (9.29) and because L′ = Lx really meets B(0, 99/100) (by (11.39) again), X0 contains
Lx. That is, X0 is the only vector d-plane that contains Lx, and X = x+rX0 = x+X0 is the
affine d-plane that contains x and L. We are now ready co conclude; the set X ′ = X \ Sx is
the same as x+ rX0 \ S = x+ rE0, where E0 is as in Corollary 9.3, so (11.35) follows from
(9.32) and (9.33), and (11.36) follows from (9.34) (if τ1 is small enough, as before).

We are left with the intermediate case when 1
2
dist(x, L) ≤ r ≤ 10

9
dist(x, L). If 3r ≤ r2,

we simply observe that we can apply the proof above to the radius 3r, and with choices
of τ and τ1, and get the desired result for r. When r ≥ r2/3 but r ≤ 10

9
dist(x, L), we

deduce (11.35) directly from (1.31), because since x itself lies close to H and far from L, H
is quite close to X ′ at the unit scale. As for (11.36), we can easily deduce it from the same
result with X ′ replaced by H , and this last is itself easy to deduce from (1.31) and the same
compactness argument as for Lemma 9.2 (also see near Lemma 9.5). We skip the details;
anyway, the case when r ≥ r2/3 is far from being the most interesting. This completes our
proof of Lemma 11.3.

Let us now check (1.32). Let z ∈ L ∩ B(0, 2) be given, suppose that z /∈ E, and set
d = dist(z, E) > 0. By (11.10), d ≤ 3ε. Let x ∈ E be such that |x − z| = d ≤ 3ε. Then
x ∈ B2, and we can apply Lemma 11.3 with r = 3d. We get that if X denotes the plane
through x that contains L, then X ′ = X \ Sx is very close to E in B(x, 2r/3) = B(x, 2d)
(see (11.34)). But X ′ meets B(z, d/20), and all the points of X ′ ∩B(z, d/20) lie in B(x, 2d),
hence very close to E; thus E meets B(z, d/10); this contradiction with the definition of d
proves (1.32).

Next we check that Lemma 11.3 gives the existence of the desired sets Z = Z(x, r),
x ∈ E∩B(0, 2), as long as r ≤ τ−1 dist(x, L) and x satisfies (11.31). When r ≤ dist(x, L)/2,
we take Z = X(x, 4r/3), where the d-plane X(x, 4r/3) is obtained by applying Lemma 11.3,
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with the slightly smaller constant 3τ/4; observe that 4r/3 ≤ r2 = 7/10 when r ≤ 1/2 (see
(11.22)). Then (1.33) holds by definition and (1.36) and (1.37) follow from (11.33) and
(11.34).

When dist(x, L)/2 ≤ r < τ−1 dist(x, L), we apply the second case of Lemma 11.3 to the
pair (x, 4r/3) and with the constant τ/4. We get that E is well approximated in B(x, r) by
X ′ = X \ Sx, where X is the d-plane that contains x and L; thus X ′ is the same half plane
as Z(x, r) in (1.34), and (1.36) and (1.37) follow from (11.35) and (11.36).

In fact, by applying Lemma 11.3 with a much smaller τ1, we even get the desired set
Z(x, r) ∈ H(L) for τ−1 dist(x, L) ≤ r ≤ (2τ1)

−1 dist(x, L); we even get a better approxi-
mation and the extra information that Z(x, r) goes through x (which was not required in
(1.35)).

Also, our constraint that x satisfy (11.31) can be lifted, because if x ∈ E∩B(0, 2)\L does
not satisfy (11.31), we can write x as a limit of points xk ∈ E ∩ B(0, 2) that satisfy (11.31)
(because (11.31) holds almost everywhere on E), apply the result to these xk and a slightly
larger radius r′, and get the desired Z(x, r) as a minor modification of some Z(xk, r

′).

We are thus left with the case when

(11.42) (2τ1)
−1 dist(x, L) ≤ r ≤ 1/2,

where τ1 is as small as we want (we shall choose it soon, depending on τ). As before, it is
enough to find Z(x, r) when x ∈ E \ L and x satisfies (11.31), which is useful because then
(11.32) holds.

Since we declined to prove an analogue for Corollary 9.3 for points that lie too close to
the boundary L, we’ll have to apply Proposition 30.3 in [D6], which provides a similar result
for balls centered on the boundary.

Let z denote the point of L that lies closest to x; thus

(11.43) |z − x| = dist(x, L) ≤ 2τ1r.

We want to use (11.32) to find good bounds on the density θz. We start with the radius
r3 =

√
τ1r; set r

′
3 = r3 − |z − x| and notice that

θz(r3) = r−d
3 Hd(E ∩B(z, r3)) ≥ r−d

3 Hd(E ∩B(x, r′3)) = (r′3/r3)
d θx(r

′
3)

= (r′3/r3)
dFz(r

′
3)− r−d

3 Hd(Sx ∩ B(z, r′3)) ≥ (r′3/r3)
dFz(r3)−

ωd

2
− C|z − x|r−1

3

≥ (1− |z − x|r−1
3 )de−aεωd −

ωd

2
− C|z − x|r−1

3 ≥ ωd

2
− C

√
τ1(11.44)

by (11.20), (11.32), a brutal estimate on Hd(Sx ∩B(z, r′3)) that uses the fact that |z − x| =
dist(x, L) ≤ 2τ1r = 2

√
τ1r3, and if ε is small enough.

We also want an upper bound on θz(4r/3). Set r4 = 4r/3 and r′4 = r4 + |z − x| < r2;
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then

θz(r4) = r−d
4 Hd(E ∩B(z, r4)) ≤ r−d

4 Hd(E ∩B(x, r′4)) = (r′4/r4)
d θx(r

′)

= (r′4/r4)
d
[
Fz(r

′
1)− (r′4)

−dHd(Sx ∩B(z, r′4))
]

≤ (r′4/r4)
d
[
Fz(r

′
1)−

ωd

2
+
C|z − x|

r′4

]
(11.45)

≤
(
1 +

|z − x|
r

)d([
ωd + C

√
ε
]
− ωd

2
+
C|z − x|

r

)
≤ ωd

2
+ Cτ1

by the same sort of estimates as above, including (11.32) and (11.43).
We want to apply Proposition 30.3 in [D6], with τ replaced by a small constant η > 0

that will be chosen soon (depending on our τ), x0 = z, the same r1, and r0 = r2 = r4. The
main assumption (30.6) (the fact that θz(4r/3) is at most barely larger than θz(r1)) follows
from (11.44) and (11.45), if τ1 is small enough (depending on η). The other assumptions are
that L be sufficiently close to a d-plane through z (in the bilipschitz sense), and that E is
a sliding quasiminimal set with small enough constants, and these are satisfied if ε is small
enough. We get a coral sliding minimal cone T centered at z, and which is sufficiently close
to E. In particular,

(11.46) dist(y, T ) ≤ ηr4 for y ∈ E ∩ B(z, (1− η)r4) \B(z, r3 + ηr4)

and

(11.47) dist(y, E) ≤ ηr4 for y ∈ T ∩B(z, (1 − η)r4) \B(z, r3 + ηr4).

Notice that this is not exactly the same as in (30.7) and (30.8) [D6], where ηr4 is replaced
by η. So in fact we apply Proposition 30.3 to a dilation of E by a factor r−1

4 , and then we
get (11.46) and (11.47). The dilation does not matter here; we did not do it in [D6] because
we were also authorizing boundaries L0

j that were not planes, and the Lipschitz assumptions
on those have less dilation invariance.

We also get, from (30.10) in the proposition, that

(11.48)
∣∣Hd(E ∩B(z, r))−Hd(T ∩ B(z, r))

∣∣ ≤ ηrd4.

Since we also have that |θz(r)− ωd

2
| ≤ C

√
τ1 by the proof of (11.44) and (11.45), we get that

(11.49) |Hd(T ∩B(z, 1))− ωd

2
| = r−d|Hd(T ∩ B(z, r))− ωd r

d

2
| ≤ C

√
τ1 + 2dη.

Let τ2 > 0 be small, to be chosen soon (depending on τ); we claim that if τ1 and η are
small enough, depending on τ2, there is a half plane Z ∈ H(L) such that

(11.50) dz,1(T, Z) ≤ τ2.

In fact, we even claim the following apparently stronger result: there is a constant η1 > 0
such that, if H is a (nonempty) coral sliding minimal cone centered at the origin, relative to
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a boundary which is a vector space L0 of dimension d− 1, and if Hd(H ∩B(0, 1)) ≤ ωd

2
+ η1,

then there is a half plane Z ∈ H(L0) such that d0,1(H,Z) ≤ τ2.
Let us prove this (stronger) claim by compactness. The proof is essentially the same as

for Lemma 10.1, to which we refer for details. By rotation invariance, we may assume that
L0 is a given vector (d − 1)-plane. If the claim fails, then for each k ≥ 0 we can find a
coral sliding minimal cone Hk centered at the origin, with Hd(Hk ∩B(0, 1)) ≤ ωd

2
+2−k, and

which is τ2-far from all Z ∈ H(L0). We extract a subsequence for which Hk tends to a limit
H∞, we observe that H∞ is also a coral sliding minimal cone (by Theorem 4.1 in [D6]), and
Hd(H∞∩B(0, 1)) ≤ ωd

2
by Theorem 3.4 in [D6]. Then Corollary 10.2 says that H∞ ∈ H(L0),

which contradicts the definition of the Hk or the fact that they tend to H∞. This proves our
two claims.

Return to E. If η and τ1 are small enough, depending on τ2, it follows from (11.46),
(11.47), and (11.50) that

(11.51) dz,9r4/10(E,Z) ≤ 2τ2;

we do not need to worry about what happens in the hole created by B(z, r3 + ηr4), because
r3 + ηr4 =

√
τ1r + ηr4 is much smaller than τ2r4, and z lies on both sets E (by (1.32)) and

Z.
Clearly Z satisfies (1.35) and (11.51) implies (1.36) if τ2 < τ/2. We still need to check

that (1.37) holds, and again it follows from (11.51) if τ2 is chosen small enough, depending
on τ . Otherwise, we could find a sequence that contradicts Lemma 9.2.

Let us summarize. Given τ > 0 and τ1 << τ , we used the almost constant density
property (11.32) and Corollary 9.3 or its simpler variant with no boundary to prove (1.32)
and establish the existence of Z(x, r) for r ≤ τ−1

1 dist(x, L) (provided ε ≤ ε0 is small enough).
Now we just checked that we can find constants τ2, then η and τ1, so that if ε is small enough
(depending on these constants too), we can find Z(x, r) also when r ≥ τ−1

1 dist(x, L). This
completes the proof of Corollary 1.7.

Remark 11.4. The author claims that Corollary 1.7 can be extended to the case when L
is a smooth embedded variety of dimension (d− 1) through the origin, which is flat enough
in B(0, 1).

The main ingredients, namely Corollary 9.3 and Proposition 30.3 in [D6], both work in
this context (and even for bilipschitz images with enough control); then it should only be a
matter of checking that the other estimates, such as Lemmas 11.1 and 11.2, only bring small
additional error terms.

But the author was a little to lazy to write down the argument. An excuse is that
probably the right result is stronger, and says that E is a C1+α version of a half plane
locally, with a proof that looks more like those of [D3] when d = 2. The main advantage of
Corollary 1.7 is that it is relatively simple.
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12 Sliding almost minimal sets that look like a V

In this section we prove Corollary 1.8, in a slightly more general setting than stated in the
introduction. That is, we replace the precise assumption that d = 2 or d = 3 and n = 4 with
the assumption that (10.9) holds.

We thus consider sliding almost minimal sets with respect to a single boundary set L,
which we assume to be a vector space of dimension d − 1. As in the introduction, denote
by V(L) the set of unions V = H1 ∪ H2 of two half d-planes Hi, both bounded by L, and
which make an angle at least equal to 2π/3 along L; see above (1.28). We may call such a
V a cone of type V. Notice that V is allowed to be a d-plane that contain L.

In this section we prove the following slight extension of Corollary 1.8.

Proposition 12.1. The statement of Corollary 1.8 is valid for all the integers d and n such
that (10.9) holds.

Let us start the proof. Let L, E, and x ∈ E ∩ B(0, 1) \ L be as in the statement. We
want to apply Theorem 1.5 to the set Ex = E − x and the boundary Lx = L − x. Let Sx

denote the shade of L seen from x, as in (1.45), and notice that S = Sx − x is the usual
shade of Lx (seen from the origin). We are interested in the functional Fx defined by

Fx(r) = r−dHd(E ∩B(x, r)) + r−dHd(Sx ∩B(x, r)).(12.1)

Note that Fx(r) = r−dHd(Ex ∩ B(0, r)) + r−dHd(S ∩ B(0, r)), by (1.9) and (1.10); this is
the same thing as F (r) relative to Ex and Lx. If ε is small enough, the assumptions of
Theorem 1.5 are satisfied (with U = B(0, 2) and R1 = 2), and (1.21) says that

(12.2) Fx(r)e
aA(r) is nondecreasing on (0, 2),

where a > 0 is a constant that depends on n and d, and A is the same function as in (1.20).
Our next task is to evaluate Fx(r) for some large r. Let τ1 > 0 be small, to be chosen

later.

Lemma 12.2. If ε is small enough (depending on τ1), then

(12.3) Fx(r) ≤
3ωd

2
+ 2τ1 for x ∈ E ∩B(0, 1) \ L and 0 < r ≤ 19

10
.

Proof. Because of (12.2) and the fact that A(3) is as small as we want (by (1.42)), it is
enough to show that

(12.4) Fx(19/10) ≤
3ωd

2
+ τ1.

Suppose the lemma fails for some τ1 > 0; this means that if we take ε = 2−k, we can find
Lk, Ek and hk as above, and then xk ∈ Ek ∩ B(0, 1) \ Lk such that (12.4) fails (for Ek and
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xk). By rotation invariance, we may even assume that Lk = L for some fixed vector space
L. Let us also replace {Ek} by a subsequence which converges locally in B(0, 3) to a limit
E∞, and for which xk has a limit x∞ ∈ E∞ ∩ B(0, 1).

Since Ek satisfies (1.43) with the constant ε = 2−k, we see that E∞ ∈ V(L), i.e., is the
union of two half d-planes H1 and H2, that are bounded by L and make an angle at least
2π/3 along L. The following sublemma will help us with measure estimates.

Lemma 12.3. If E∞ ∈ V(L), then

(12.5) r−dHd(E∞ ∩B(x∞, r)) + r−dHd(Sx∞
∩B(x∞, r)) ≤

3ω2

2

for all x∞ ∈ E∞ \ L and r > 0.

We shall prove this lemma soon, but let us first see why it implies Lemma 12.2. First
assume that x∞ /∈ L. Then

(12.6) lim
k→+∞

Hd(Sxk
∩ B(xk, 19/10)) = Hd(Sx∞

∩ B(x∞, 19/10))

(because xk too stays far from L).
Denote by Fxk

the functional associated to Ek and xk as in (12.1), and pick any r1 ∈
(19/10, 2). Then set ℓ = lim supk→+∞ Fxk

(19/10), and observe that

ℓ = (19/10)−d lim sup
k→+∞

[
Hd(Sxk

∩ B(xk, 19/10)) +Hd(Ek ∩ B(xk, 19/10))
]

≤ (19/10)−dHd(Sx∞
∩B(x∞, 19/10)) + (19/10)−d lim sup

k→+∞
Hd(Ek ∩ B(x∞, r1))

≤ (19/10)−dHd(Sx∞
∩B(x∞, 19/10)) + (19/10)−dHd(E∞ ∩B(x∞, r1))(12.7)

≤ (19/10)−d 3ω2r
d
1

2

by (12.6) and Lemma 22.3 in [D6], applied to the compact set B(x∞, r1) as we did for (9.12),
and then (12.5). If we choose r1 close enough to 19/10, we deduce (12.4) for Ek and xk (and
if k is large enough) from (12.7), and this contradiction with the definition of Ek proves the
lemma.

If x∞ ∈ L, we simply notice that Hd(Sxk
∩ B(xk, 19/10)) ≤ (19/10)d ωd

2
, and Hd(E∞ ∩

B(xk, r1)) = rd1ωd, so

ℓ = (19/10)−d lim sup
k→+∞

[
Hd(Sxk

∩ B(xk, 19/10)) +Hd(Ek ∩B(xk, 19/10))
]

≤ ωd

2
+ (19/10)−d lim sup

k→+∞
Hd(Ek ∩ B(x∞, r1))

≤ ωd

2
+ (19/10)−dHd(E∞ ∩ B(x∞, r1)) ≤

ωd

2
+ (19/10)−d ω2r

d
1

2
,(12.8)
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again by Lemma 22.3 in [D6]. We can let r1 tend to 19/10 and get (12.4) as above, so
Lemma 12.2 follows from Lemma 12.3.

Proof of Lemma 12.3. We start with the case of a set V of dimension 1 in a 2-plane P . That
is, let the points y, ℓ ∈ P be given, with y 6= ℓ, and let v denote the union of two half lines
h1, h2 in P , that both start at ℓ and make an angle at least 2π

3
; also denote by s the shade

of ℓ seen from y, i.e., the set of points w ∈ P such that y + λ(w− y) = ℓ for some λ ∈ [0, 1].
See Figure 12.1 for an illustration. We want to check that for ρ > 0,

(12.9) H1(v ∩B(y, ρ)) +H1(s ∩ B(y, ρ)) ≤ 3ρ.

By rotation and dilation invariance, it is enough to prove this when P = R
2, y = 0, ρ = 1,

and ℓ lies on the positive real axis.
When ℓ ≥ 1, H1(s ∩ B(y, 1)) = 0; the result is clear when H1(h1 ∩ B(y, ρ)) ≤ 1 because

H1(h2 ∩B(y, ρ)) ≤ 2; otherwise, h1 makes an angle at least 2π/3 with the positive real axis
(see Figures 12.1 and 12.2); that, is h1 lies in the shaded region of Figure 12.3, and our angle
condition forces h2 to make an angle at most 2π/3 with the positive real axis, hence to lie on
the right of the dotted half line of Figure 12.3, so that H1(h2 ∩B(y, ρ)) ≤ 1, and the desired
inequality follows.

y=0

h1

l

h2

s

B(0,1)∂
y=0

h1

l y

h
1

l

Figure 12.1(left). General position with ℓ > 1.
Figure 12.2 (center). The limiting case for H1(h1 ∩ B(y, ρ)) ≥ 1.
Figure 12.3 (right). h1 lies on the shaded region; then h2 lies on the right of the dotted
line.

So we may assume that 0 < ℓ ≤ 1. For i = 1, 2, let θi ∈ [0, π] denote the angle between
hi and the positive real axis; we may assume that θ1 ≤ θ2. Also denote by θ the angle
between h1 and h2. If h1 and h2 lie on the same side of the real axis, our constraint that
θ ≥ 2π/3 implies that θ1 ≤ π/3 (see Figure 12.4). Then H1(h1 ∩ B(y, ρ)) < 1, while
H1(h2 ∩B(y, ρ)) +H1(s ∩B(y, ρ)) ≤ 2 (corresponding to θ2 = π, look at Figure 12.4 again,
and recall that θ2 ≥ 2π/3); then (12.9) holds.

So we may assume that h1 and h2 lie on different sides of the real axis; then θ1+θ2+θ = 2π,
our constraint that θ ≥ 2π/3 yields θ1 + θ2 ≤ 4π/3, and since H1(hi ∩B(y, ρ)) is easily seen
to be an increasing function of θi, we may assume that θ1 + θ2 = 4π/3 and θ = 2π. Let h3
denote the half line in P that makes an angle of 2π/3 with h1 and h2, and set Y = h1∪h2∪h3
(See Figure 12.5).
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y

h2

l

h1

ϴ1 y

h2

l

h1

h
✆

Figure 12.4(left). General position when ℓ ≤ 1 and h1 and h2 lie above the axis.
Figure 12.5 (right). The case when h1 and h2 lie on different sides, and the set Y =
h1 ∪ h2 ∪ h3.

Notice that s ∩ B(0, 1) is the shortest line segment from ℓ to ∂B(0, 1), hence H1(s ∩
B(y, 1)) ≤ H1(h3 ∩ B(y, 1)), and (12.9) will follow as soon as we prove that

(12.10) H1(Y ∩ B(0, 1)) ≤ 3.

This would probably not be so hard to compute, but it is simpler to notice that, for ℓ fixed,
r−1H1(Y ∩B(0, r)) is a nondecreasing function of r, either by Proposition 5.16 in [D2] (the
lazy way; notice that 0 does not need to lie on the minimal set Y ), or (repeating the proof
of monotonicity) because

(12.11)
∂

∂r
(H1(Y ∩B(0, r)) ≥ ♯(Y ∩ ∂B(0, r)) = 3 ≥ r−1H1(Y ∩B(0, r))

for r > ℓ, and where the last inequality comes from the minimality of Y (compare Y with
the cone over Y ∩ ∂B(0, r)).

This proves (12.9), and now we deduce (12.5) from (12.9) and a slicing argument. Let
L, E∞, x∞, and r be as in Lemma 12.3. Recall that since E∞ ∈ V(L), it is the union of
two half d-planes H1 and H2 ∈ H(L) bounded by L. For i = 1, 2, let ei be the unit vector
such that ei ∈ Hi and ei ⊥ L, and let hi denote the half line hi =

{
tei, ; t ≥ 0

}
; notice that

Hi = hi × L (an orthogonal product), and that h1 makes an angle at least 2π/3 with h2, by
definition of V(L). See Figure 12.4.

z

P2

L

(w,z)

x∞

1w

} z-(x  -y)∞

y

H1

h

h

Figure 12.6. Notation for the slicing argument (h2 is not orthogonal to h1).
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Denote by P the 2-plane that contains e1 and e2 and by y the orthogonal projection of
x∞ on P . If e2 = −e1, pick any plane that contains e1, or notice that (12.5) is easy to prove
directly (since E∞ is a d-plane through L). Then fix i ∈ {1, 2}, and write the current point
of Hi as (w, z), with w ∈ hi and z ∈ L. For z ∈ L, the slice of Hi ∩ B(x∞, r) at height z is
the possibly empty set

(12.12) Wi(z) =
{
w ∈ hi ; (w, z) ∈ B(x∞, r)

}
.

Write (w, z)− x∞ as the sum of w − y ∈ P and z − x∞ + y ∈ P⊥ (recall that z ∈ L ⊂ P⊥);
then |(w, z)− x∞|2 = |w − y|2 + |z − (x∞ − y)|2, the condition |(w, z)− x∞|2 < r2 becomes
|w − y|2 < r2z , with

(12.13) r2z = max(0, r2 − |z − (x∞ − y)|2),
and then

(12.14) Wi(z) = hi ∩ B(y, rz).

Then we apply Fubini’s theorem on the d-plane that contains Hi and get that

(12.15) Hd(Hi ∩ B(x∞, r)) =

ˆ

z∈L

H1(Wi(z))dz =

ˆ

z∈L

H1(hi ∩B(y, rz))dz

where for this computation we have assumed that the various Hausdorff measures were
normalized so that they coincide with the corresponding Lebesgue measures on vector spaces.
(After this, even if we chose different normalizations, (12.5) will follow because the result of
the computation is exact when E∞ is a plane through x∞.)

Denote by s the shade of y seen from 0; the same computation, with Hi replaced by the
half d-space Sx∞

, shows that

(12.16) Hd(Sx∞
∩ B(x∞, r)) =

ˆ

z∈L

H1(s ∩B(y, rz))dz.

Thus, setting I = Hd(E∞ ∩B(x∞, r)) +Hd(Sx∞
∩B(x, r)), (12.15) and (12.16) yield

I =

ˆ

z∈L

[
H1(h1 ∩B(y, rz)) +H1(h2 ∩ B(y, rz)) +H1(s ∩ B(y, rz))

]
dz

=

ˆ

z∈L

[
H1(v ∩B(y, rz)) +H1(s ∩B(y, rz))

]
dz ≤

ˆ

z∈L

3rzdz(12.17)

by (12.9) and because the angle of h1 and h2 is the same as the (smallest) angle of H1 and
H2. Denote by z0 the orthogonal projection of x∞ on L; then |z − (x∞ − y)|2 ≥ |z − z0|2
(because z0 is also the orthogonal projection of x∞−y), and hence r2z ≤ max(0, r2−|z−z0|2).
Thus (12.17) yields

(12.18) I ≤ 3

ˆ

z∈L∩B(z0,r)

(
r2 − |z − z0|2

)1/2
dz = 3

ˆ

w∈Rd−1∩B(0,r)

(
r2 − |w|2

)1/2
dw =

3ωdr
d

2
,

because we recognize the way to compute the measure of a (half) ball of Rd by vertical slicing
and induction. This completes our proof of (12.5); Lemmas 12.3 and 12.2 follow.
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Let x ∈ E∩B(0, 1)\L be given. Since Fx(r) = r−dHd(E∩B(x, r)) for r small, Lemma 12.2
implies that

(12.19) θx(0) = lim
r→0

r−dHd(E ∩B(x, r)) ≤ 3ωd

2
+ 2τ1 ≤

3ωd

2
+ τ

if we choose 2τ1 ≤ τ , and so (1.44) holds.

From now on, we assume in addition that θx(0) > ωd, and set δ(x) = dist(x, L) > 0, as
in the statement of Corollary 1.8. Let X be any blow-up limit of E at x; standard arguments
show that such things exist. By Proposition 7.31 in [D2] (for instance), X is a minimal cone
with constant density d(X) = θx(0) (see the notation (10.1)). We assumed that θx(0) > ωd,
so d(X) > ωd and X is not a plane. By (10.9), d(X) ≥ 3ωd

2
(because d(X) = 3ωd

2
when

X ∈ Y0(n, d)). Hence

(12.20) lim
r→0

Fx(r) = θx(0) ≥
3ωd

2
,

by the definitions (12.1) and (1.44), and because x ∈ E \ L. We now deduce from (12.2)
that for 0 < r ≤ 19/10,

(12.21) Fx(r) ≥ e−aA(r)θx(0) ≥ e−aεθx(0) ≥
3ωd

2
− τ1

by (1.42) and if ε is small enough (depending on τ1). Because of (12.3), we thus get that

(12.22)
3ωd

2
− τ1 ≤ Fx(r) ≤

3ωd

2
+ 2τ1 for 0 < r ≤ 19

10
.

Our next task is to use (12.22), in conjunction with Corollary 9.3, to get a local control
of E in balls B(x, r), where x ∈ E \ L is as above. We start with the small radii, for which
the boundary L does not really interfere.

Lemma 12.4. Let n, d, E, and L satisfy the assumptions of Corollary 1.8 and let x ∈
E ∩ B(0, 1) \ L be such that θx(0) > ωd. In particular, suppose that ε in (1.42) and (1.43)
is small enough, depending on n, d, and τ > 0. Then for 0 < r < 1

2
dist(y, L) there is a

minimal cone Y ∈ Yx(n, d) (i.e., of type Y and centered at x) such that

(12.23) dx,r(E, Y ) ≤ τ

and

∣∣Hd(E ∩ B(y, t))−Hd(Y ∩ B(y, t))
∣∣ ≤ τrd

for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(x, r).(12.24)

Proof. First observe that r < 1
2
dist(y, L) ≤ 1

2
because x ∈ B(0, 1), so E is almost minimal

in B(x, 2r), with no boundary condition, and we may try to apply Proposition 7.24 in [D2]
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in B(x, 2r), and with some constant τ2 that will be chosen soon, to find an approximating
cone. The condition that h(4r) be small enough comes from (1.42), and the almost constant
density condition (7.25), which requires that θx(2r) ≤

´

0<t<r/50
θx(t) + ε′, for some small ε′

that depends on τ2, is a consequence of (12.22) (choose τ1 small, depending on τ2, and then
ε even smaller), because θx(t) = Fx(t) for t <

1
2
dist(y, L). So Proposition 7.24 in [D2] yields

the existence of a coral minimal cone X , centered at x, such that

(12.25) dist(y,X) ≤ 2τ2r for y ∈ E ∩B(x, 2(1− τ2)r),

(12.26) dist(y, E) ≤ 2τ2r for y ∈ X ∩B(x, 2(1− τ2)r),

and

∣∣Hd(E ∩ B(y, t))−Hd(X ∩B(y, t))
∣∣ ≤ 2dτ2r

d

for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(x, 2(1− τ2)r).(12.27)

Let us first apply (12.27) with B(y, t) = B(x, r); we get that

(12.28) |d(X)− θx(r)| = r−d
∣∣Hd(X ∩ B(x, r))−Hd(E ∩ B(x, r))

∣∣ ≤ 2dτ2.

Since θx(r) = Fx(r) because B(x, r) does not meet L, we deduce from (12.22) that

(12.29)
∣∣d(X)− 3ωd

2

∣∣ ≤ 2dτ2 + 2τ1.

Now we use our assumption (10.9), and its consequence in Lemma 10.3, which we apply with
some small constant τ3 that will be chosen soon. We get that if τ1 and τ2 are small enough,
depending on τ3, we can find a minimal cone Y ∈ Yx(n, d) such that

(12.30) dx,1(X, Y ) ≤ τ3

(the case when X is a plane is excluded by (12.29)). We just need to check that if τ3 is
chosen small enough, Y satisfies our conditions (12.23) and (12.24).

For (12.23), this is a simple consequence of (12.25), (12.26), (12.30), and the triangle
inequality, so we skip the details. For (12.24) we proceed, as usual, by contradiction and
compactness: we suppose that (12.25), (12.26), and (12.30) do not imply (12.23) and (12.24)
(for a same Y ), take a sequence {Ek} for which they are satisfied with ε + τ1 + τ3 < 2−k

(some center xk, and some radius rk), but (12.24) fails whenever (12.23) holds. By (12.25)
and (12.26), the sets E ′

k = r−1
k (Ek − xx) converge, modulo extraction of a subsequence, to a

cone Y0 ∈ Y0(n, d), and then we apply Lemma 9.2 (with 2−d−1τ , say) in B(0, 3/2), and get
that (12.24) holds for k large, because of (9.22). Notice that we can take the cone x + Y0
to check this, and then (12.23) still holds with the cone x + Y0; then we get the desired
contradiction. This completes the proof of Lemma 12.4.
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Let N be the large number that shows up in the statement of Corollary 1.8. A simple
consequence of Lemma 12.4 (applied with a small enough τ) is that, if x is as in Corollary 1.8
or Lemma 12.4, then

(12.31) dist(x, L) ≤ 10N−1,

because otherwise the good approximation of E by a cone of type Y in B(x, 1
3
dist(L)) would

contradict its good approximation in B(0, 3) by a set of type V, given by (1.43). Notice that
(12.31) is slightly better than what we announced in Corollary 1.8.

We continue our local description of E in balls B(x, r) with the case of intermediate radii
r, for which we shall combine (12.22) with Corollary 9.3.

Lemma 12.5. Let n, d, E, and L satisfy the assumptions of Corollary 1.8 and let x ∈
E ∩B(0, 1) \L be such that θx(0) > ωd. In particular, suppose that ε in (1.42) and (1.43) is
small enough, depending on n, d, and τ > 0. Then let r > 0 be such that

(12.32) δ(x) ≤ r ≤ 10Nδ(x),

where δ(x) = dist(x, L) as before. Let Y be the (unique) minimal cone Y ∈ Yx(n, d) such
that

(12.33) L ⊂ Y,

denote by Sx the shade of L seen from x and set W = Y \ Sx (as in (1.45)); then

(12.34) dx,r(E,W ) ≤ τ

and

∣∣Hd(E ∩B(y, t))−Hd(W ∩ B(y, t))
∣∣ ≤ τrd

for all y ∈ R
n and t > 0 such that B(y, t) ⊂ B(x, r).(12.35)

Proof. We want to apply Corollary 9.3, with a small constant τ4 that will be chosen later, to
control E in B(x, r). Set r1 =

10r
9

to have some room to play. Because of the normalization
in the corollary, we apply it to the set Ex = r−1

1 (E − x), which is sliding almost minimal
in an open set that contains B(0, 1) (because B(x, r1) ⊂ B(0, 3) since x ∈ B(0, 1) and
r ≤ 10Nδ(x) ≤ 1 by (12.32) and (12.31)), and with a boundary condition that comes from
the set Lx = r−1

1 (L− x).
The distance requirement (9.26) is that τ4 ≤ dist(0, Lx) ≤ 9

10
, and since

(12.36) dist(0, Lx) = r−1
1 δ(x) =

9δ(x)

10r

we see that (9.26) follows from (12.32) as soon as we take τ4 <
9

100N
.
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The bilipschitz condition on Lx is trivially satisfied, because Lx is an affine subspace;
the first half of (9.28) (i.e., the fact that h(r) is very small) follows from (1.42) if ε is small
enough; and the more important second half follows from (12.22).

Then Corollary 9.3 yields the existence of a coral minimal cone X0, centered at the origin
and with no boundary condition, with the following properties. First,

(12.37) Lx ∩ B(x, 99/100) ⊂ X0,

by (9.29) and because the comment below Corollary 9.3 says that we can take L′ = Lx. Next
denote by S the shade of Lx seen from the origin, and set E0 = X0 \ S; then by (9.31) E0

is a coral minimal set in B(0, 1− τ4), with sliding boundary condition defined by Lx, and is
τ4-close to Ex in B(0, 1− τ4), in the sense of (9.32)-(9.34). By (9.32) and (9.33),

(12.38) d0,1−τ4(Ex, E0) ≤ τ4.

Let us also apply (9.34) to the ball B = B(0, t), with t = (20N)−1. Notice that t ≤ δ(x)
2r

<
dist(0, Lx) by (12.32) and (12.36), so B does not meet Lx; then

d(X0) = Hd(X0 ∩B(0, 1)) = t−dHd(X0 ∩ B) = t−dHd(X0 \ S ∩B) = t−dHd(E0 ∩B)

≤ t−dHd(Ex ∩ B) + t−dτ4 = t−dr−d
1 Hd(E ∩B(x, tr1)) + (20N)dτ4

= F (tr1) + (20N)dτ4 ≤
3ωd

2
+ 2τ1 + (20N)dτ4(12.39)

by the definition (10.1) of d(X0), where S still denotes the shade of Lx, because S ∩ B =
∅, by definition of E0, by (9.34) and because t = (20N)−1, then by (12.1) and because
B(x, tr1) ∩ Sx = ∅, and finally by (12.22). Thus d(X0) is as close to 3ωd

2
as we want.

When d = 2, and more generally when there is a constant dn,d >
3ωd

2
such that (10.10)

holds, we can deduce from this that X0 ∈ Y0(n, d), and this will simplify our life. In the
general case when we only have (10.9), we can still use Lemma 10.3, as for (12.30) above, to
show that if τ1 and τ4 are small enough, we can find a minimal cone Y0 ∈ Y0(n, d) such that

(12.40) d0,1(X0, Y0) ≤ τ5

where τ5 > 0 is a new small constant, that will be chosen soon, depending on τ .
Pick a point z0 ∈ Lx ∩ B(0, 9/10); such a point exists because dist(0, Lx) =

9δ(x)
10r

≤ 9
10
.

Set D = z0+[L∩B(0, 1/20)]; notice that D ⊂ Lx∩B(99/100) ⊂ X0 because L is the vector
space parallel to Lx, and by (12.37). By (12.40),

(12.41) dist(z, Y0) ≤ τ5 for z ∈ D.

Also set D′ = z0 + [L ∩ B(0, 1/40)]; if τ5 is small enough, it follows from (12.41) and the
elementary geometry of Y0 ∈ Y0(n, d) that there is a single face F of Y0 such that

(12.42) dist(z, F ) ≤ τ5 for z ∈ D′.
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Finally denote by Y1 the cone of Y0(n, d) that contains Lx (or equivalently D′). The face of
Y1 that contains Lx is quite close to F , by (12.42), and hence

(12.43) d0,1(Y1, Y0) ≤ Cτ5

where C depends only on n and d. For the record, let us mention that we can take Y1 =
Y0 = X0 when (10.10) holds for some dn,d >

3ωd

2
, rather than the weaker (10.9).

Now set Y = x + Y1 ∈ Yx(n, d), notice that L ⊂ Y because Lx ⊂ Y1; we just need to
check that Y satisfies the conditions (12.34) and (12.35). For the general case we will need
the following lemma.

Lemma 12.6. Recall from below (12.37) that S is the shade of Lx seen from the origin, and
that E0 = X0 \ S. Also set E1 = Y1 \ S. For each small τ6 > 0, we can choose τ5 so small
that in the present situation,

(12.44) d0,95/100(E0, E1) ≤ τ6

and
∣∣Hd(E0 ∩ B(y, t))−Hd(E1 ∩B(y, t))

∣∣ ≤ τ6

for y ∈ R
n and t > 0 such that B(y, t) ⊂ B(0, 96/100).(12.45)

Before we prove this, let us mention that in the simpler situation when we have (10.10),
the lemma holds trivially because Y1 = X0. Also, let us first see how Lemma 12.5 follows
from Lemma 12.6, and prove Lemma 12.6 afterwards.

Recall that we just need to check that Y = x + Y1 satisfies (12.34) and (12.35). We
deduce from (12.38) and (12.44) that d0,94/100(Ex, E1) ≤ 2τ4 + 2τ6. Since E = x+ r1Ex and

W = Y \ Sx = x+ r1E1 (see above (12.34)), we also get that

(12.46) dx,94r1/100(E,W ) ≤ 2τ4 + 2τ6 ;

(12.34) follows, because 94r1/100 = 94r/90 > r, and if τ4 and τ6 are small enough. As for
(12.34), let B = B(y, t) ⊂ B(x, r) be given, set B′ = r−1

1 (B − x); then B′ ⊂ B(0, 95/100)
and

(12.47)

∣∣Hd(E ∩B)−Hd(W ∩ B)
∣∣ = rd1

∣∣Hd(Ex ∩B′)−Hd(E1 ∩B′)
∣∣

= rd1
∣∣Hd(Ex ∩ B′)−Hd(E0 ∩ B′)

∣∣+ rd1
∣∣Hd(E0 ∩B′)−Hd(E1 ∩ B′)

∣∣
≤ τ4r

d
1 + τ6r

d
1 = (τ4 + τ6)(10r/9)

d

by (9.34) (for Ex and with the constant τ4; see below (12.37)) and (12.45) (recall that
E0 = X0 \ S and E1 = Y1 \ S). This proves (12.35); thus Lemma 12.5 will follow as soon as
we prove Lemma 12.6.

Proof of Lemma 12.6. The reason why we need to prove something is that although

(12.48) d0,1(Y1, X0) ≤ Cτ5
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by (12.40) and (12.43), removing S could change the situation. At least, both cones
contain Lx ∩ B(0, 99/100) by (12.37) and the definition of Y1, hence they both contain
S ∩ B(0, 99/100). Even that way, we still need to check that X0 does not contain a piece
that lies close to S ∩B(0, 99/100) (hence, to Y1), but not close to E1, and similarly with X0

and Y1 exchanged.
Set ρ = 98/100 and B = B(0, ρ); we want to evaluate the size of E0 ∩ S ∩ B. In

fact, because of the way E0 was obtained in the proof of Corollary 9.3, it is such that the
functional F is constant on (0, 1) (see below (9.64)), and we could deduce from (1.12) that
Hd(E0∩B(0, 1)∩S) = 0. But let us pretend we did not notice and check that Hd(E0∩B∩S)
is small in a way which is more complicated, but easier to track. As we just said,

(12.49) S ∩B ⊂ X0,

because X0 is a cone that contains Lx ∩B (by (12.37)). Let us check that

(12.50) S ∩B \ E0 = X0 ∩ B \ E0.

The direct inclusion follows from (12.49), and the converse from the fact that E0 = X0 \ S ⊃
X0 \ S. Then

Hd(X0 ∩ B) = Hd(E0 ∩ B) +Hd(X0 ∩B \ E0) = Hd(E0 ∩B) +Hd(S ∩ B \ E0)

= Hd(E0 ∩ B) +Hd(S ∩ B)−Hd(S ∩ B ∩ E0).(12.51)

But Hd(E0 ∩B) ≤ Hd(Ex ∩B) + τ4 by (9.34) and Hd(X0 ∩B) = ρdd(X0) ≥ 3ωdρ
d

2
by (10.9)

and because X0 is not a plane, so

Hd(S ∩B ∩ E0) ≤ Hd(Ex ∩B) + τ4 +Hd(S ∩B)− 3ωdρ
d

2

= r−d
1 Hd(E ∩B(x, ρr1)) + τ4 + r−d

1 Hd(Sx ∩B(x, ρr1))−
3ωdρ

d

2

= ρdFx(ρr1) + τ4 −
3ωdρ

d

2
≤ τ4 + 2ρdτ1 ≤ τ4 + 2τ1(12.52)

by (12.1) (and because Ex = r−1
1 (E − x) and Lx = r−1

1 (L− x)), then by (12.22).
For B′ = B(y, t) ⊂ B, the proof of (12.51) also yields

(12.53) Hd(X0 ∩B′) = Hd(E0 ∩ B′) +Hd(S ∩B′)−Hd(S ∩B′ ∩ E0),

which implies that

(12.54) |Hd(X0 ∩ B′)−Hd(E0 ∩ B′)−Hd(S ∩ B′)| ≤ Hd(S ∩B ∩ E0) ≤ τ4 + 2τ1.

For the other cone Y1, we have the simpler formula

(12.55) Hd(Y1 ∩ B′) = Hd(Y1 \ S ∩B′) +Hd(S ∩ B′) = Hd(E1 ∩B′) +Hd(S ∩ B′)
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because Y1 is a cone in Y0(n, d) that contains Lx, and hence S.
By (12.48) and the same compactess argument using Lemma 9.2 as below (11.51) or

(12.30),

(12.56) |Hd(X0 ∩B′)−Hd(Y1 ∩ B′)| ≤ τ6
2

for every B′ as above, where τ6 is the small constant that is given for Lemma 12.6, provided
that we take τ5 accordingly small. Thus

|Hd(E0 ∩B′)−Hd(E1 ∩B′)| ≤
∣∣[Hd(X0 ∩ B′)−Hd(S ∩ B′)]−Hd(E1 ∩ B′)

∣∣ + τ4 + 2τ1

=
∣∣Hd(X0 ∩ B′)−Hd(Y1 ∩B′)

∣∣+ τ4 + 2τ1 ≤
τ6
2
+ τ4 + 2τ1,(12.57)

by (12.54), (12.55), and (12.56); this implies (12.45) if τ1 and τ4 are small enough.
Now we check (12.44). First we show that

(12.58) dist(y, E0) ≤ Cτ5 for y ∈ B(0, 96/100) ∩ E1.

Let y ∈ B(0, 96/100) ∩ E1 be given; since y ∈ Y1, (12.48) says that we can find z ∈ X0 such
that |z − y| ≤ Cτ5. If z ∈ X0 \ S, then z ∈ E0 and dist(y, E0) ≤ |z − y| ≤ Cτ5, as needed.
So we may assume that z ∈ S.

Notice that dist(y, S) = dist(y, Lx) by elementary geometry (because y ∈ E1 = Y1 \ S
and Y1 is the cone of Y0(n, d) that contains Lx). Then

(12.59) dist(y, Lx) = dist(y, S) ≤ |y − z| ≤ Cτ5,

and then dist(y, E0) ≤ Cτ5 too, because X0 is a cone that contains B ∩ Lx, and then the
points λξ, ξ ∈ B ∩ Lx and λ ∈ (0, 1), lie in E0. This completes our proof of (12.58).

Now we want to show that

(12.60) dist(y, E1) ≤ τ7 for y ∈ E0 ∩B(0, 95/100),

with a constant τ7 that is as small as we want; (12.44) will follow at once from this and
(12.58), except that formally we would need to replace τ6 with τ7 in the statement. Suppose
this fails; then of course

(12.61) Hd(E1 ∩ B(z, τ7)) = 0.

Recall from the lines below (12.37) that E0 is a coral minimal set in B(0, 1− τ4); hence, by
the local Ahlfors-regularity property (2.9),

(12.62) Hd(E0 ∩ B(z, τ7)) ≥ C−1τd7 ,

where C depends only on n and d. But B(z, τ7) ⊂ B(0, 96/100), and (12.45) says that
|Hd(E0 ∩ B(z, τ7))−Hd(E1 ∩ B(z, τ7))| ≤ τ6. We can prove this with any τ6 > 0, and if we

95



choose τ6 small enough, we get a contradiction with (12.62) or (12.61) which proves (12.60).
This concludes our proof of (12.44); Lemma 12.6 follows, and as was checked earlier, so does
Lemma 12.5. �

We easily deduce Proposition 12.1 and Corollary 1.8 from Lemma 12.5: the assumptions
(for the more general Proposition 12.1) are the same, the fact that δ(x) ≤ N−1 follows from
(12.31), and the description of E and W in (1.45)-(1.47) follows by applying Lemma 12.5
with r = 3δ(x) and the constant 3−dτ .

We complete this section with a rapid description of E at the large scales that are not
covered by Corollary 1.8.

Proposition 12.7. Let the dimensions n and d satisfy (10.9) (thus d = 2, or d = n − 1
and n ≤ 6 work). For each choice of constants τ > 0 and A ≥ 10, we can find ε > 0 and
N ≥ 100 + τ−1, with the following properties. Let L be a vector (d − 1)-plane and let E be
a coral sliding almost minimal set in B(0, 3), with boundary condition coming from L and
a gauge function h that satisfies (1.42), such that d0,3(E, V ) ≤ ε (as in (1.43)) for some
V ∈ V(L). Then let x ∈ E ∩ B(0, 1) \ L be a singular point, in the sense that θx(0) > ωd

(see the definition in (1.44)), and denote by y the orthogonal projection of x on L. Then

(12.63) dist(x, L) ≤ N−1

and, for every radius r such that

(12.64) N dist(x, L) ≤ r ≤ (2A)−1

there is a cone X centered at y, which is a coral sliding minimal set in R
n, with the boundary

condition coming from L, such that

(12.65) dist(z,X) ≤ τr for z ∈ E ∩ B(y, Ar) \B(y, r),

(12.66) dist(z, E) ≤ τr for z ∈ X ∩ B(y, Ar) \B(y, r),

∣∣Hd(E ∩B(z, t))−Hd(X ∩ B(z, t))
∣∣ ≤ τrd

for z ∈ R
n and t > 0 such that B(z, t) ⊂ B(y, Ar) \B(y, r),(12.67)

and

(12.68) |Hd(E ∩ B(y, t))−Hd(X ∩B(y, t))| ≤ τrd for r ≤ t ≤ Ar.

Moreover,

(12.69) |Hd(X ∩B(y, 1))− ωd| ≤ 2τ.
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Notice that since N is larger than τ−1 (maybe much larger), (12.65)-(12.67) do not give
information at the scale of dist(x, L); this is fair, because E does not look like a cone at that
scale.

Our measure estimate (12.67) only works outside of B(y, r), which is why we needed to
add (12.68).

In the good cases, (12.69) should help us determine the type of X , but we shall not try
to do this here. See Remark 12.8.

Proof. Let E and x be as in the statement. Notice that the assumptions of Proposition 12.1
are satisfied (if ε is small enough, depending on N), so we may use the previous results of
this section.

Set δ(x) = dist(x, L); the fact that δ(x) ≤ N−1 (i.e., that (12.63) holds) as soon as ε is
small enough follows from Proposition 11.1, or directly (12.31). The main point is thus the
existence of X .

Again we shall use (12.22), but since we want to apply a near monotonicity result for
balls centered at y, we will translate it in terms of the functional Fy defined as Fx in (12.1),
but with x replaced by y. Notice that for r > 2|y − x| = 2δ(x),

(12.70) θy(r) = r−dHd(E∩B(y, r)) ≥ r−dHd(E∩B(y, r−δ(x))) =
(r − δ(x)

r

)d

θx(r−δ(x)).

Similarly,

(12.71) θy(r) ≤
(r + δ(x)

r

)d

θx(r + δ(x)).

We also deduce from the definition of Sx (see (1.45)) that

(12.72)
ωd

2
− C

δ(x)

r
≤ ρ−dHd(Sx ∩B(x, ρ)) ≤ ωd

2

for ρ ≥ δ(x). Let us use this to show that

(12.73) |θy(r)− ωd| ≤ C
δ(x)

r
+ 3τ1 for 2δ(x) < r <

18

10
.

We first apply (12.70), set ρ = r − δ(x), and then apply (12.1), (12.72) and (12.22) to get
that

θy(r) ≥ ρdr−dθx(ρ) = ρdr−d
(
Fx(ρ)− ρ−dHd(Sx ∩ B(x, ρ))

)

≥ ρdr−d
(
Fx(ρ)−

ωd

2

)
≥ ρdr−d

(
ωd − τ1

)

≥
(
1− C

δ(x)

r

)(
ωd − τ1

)
≥ ωd − Cωd

δ(x)

r
− τ1,(12.74)
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which gives the lower bound in (12.73). Similarly, we apply (12.71), set ρ = r + δ(x), and
continue as above to get that

θy(r) ≤ ρdr−dθx(ρ) = ρdr−d
(
Fx(ρ)− ρ−dHd(Sx ∩ B(x, ρ))

)

≤ ρdr−d
(
Fx(ρ)−

ωd

2
+ C

δ(x)

r

)
≥ ρdr−d

(
ωd + C

δ(x)

r
+ 2τ1

)

≤
(
1 + C

δ(x)

r

)(
ωd + C

δ(x)

r
+ 2τ1

)
≤ ωd + C

δ(x)

r
+ 3τ1;(12.75)

(12.73) follows, and now we are ready to apply an almost-constant density result from [D6].
Now let r satisfy (12.64). We want to apply Proposition 30.3 of [D6] to the set E, with

the radii r1 = r/2, r0 = r2 =
3Ar
2
, and the small constant τ8 = (3A/2)−dτ . So we check the

various assumptions.
We take U = B(y, r0), a single Lj equal to L, and we do not need to straighten things

here, i.e., we can take the bilipschitz mapping ξ of (30.2) to be the identity. Since we took
r ≤ (2A)−1 in (12.64), we get that 2r0 ≤ 3

2
and E is almost minimal in B(y, 2r0), with h(2r0)

as small as we want (by (1.42)). This takes care of (30.5) in [D6] (where the small ε depends
on τ8, but this is all right); similarly, (12.73) says that

(12.76) |θy(r2)− θy(r1)| ≤ Cr−1
1 δ(x) + 6τ1 ≤ CN−1 + 6τ1

because 2δ(x) < r1 < r2 < 18
10

and by (12.64). If N−1 and τ1 are small enough, this
implies (30.6) in [D6], and we can apply Proposition 30.3 there. We get the existence
of a coral minimal cone X (with a boundary condition coming from L), which satisfies
(12.65) and (12.66) (by (30.7) and (30.8) there), and (12.67) and (12.68) (by (30.9) and
(30.10) there). Finally, (12.69) follows from (12.68) (applied with t = r) and the fact that
|θy(r)−ωd| ≤ τ , by (12.73) (and if N−1 and τ1 are small enough). This completes our proof
of Proposition 12.7.

Remark 12.8. When d = 2, the author believes that any sliding minimal cone X that
satisfies (12.69) must lie in V(L). The proof would follow, for instance, the proof of the
description of the minimal cones that was given in [D2], and show that X ∩ ∂B(y, 1) is
composed of arcs of great circles with constraints on how they meet L or each other. But he
did not check the details. Possibly this is also true in some higher dimensions too. Then the
description in Proposition 12.7 becomes a little better. The author also expects that when
d = 2, we should be able to get a better local description of E, possibly even with a local
C1 parameterization.

Remark 12.9. We did not try to state Corollary 1.8 or the results of this section when L is a
smooth (d− 1)-dimensional surface. The main ingredients, namely the almost monotonicity
formula (Theorem 7.1), and the approximation results (Corollary 9.3 and its earlier analogues
in [D2] and [D6]) are valid in this context, but the author did not check that the rest of the
proofs in this section goes through too.

98



References

[All] W. K. Allard, On the first variation of a varifold. Ann. of Math. (2) 95 (1972),
417-491.

[A1] F. J. Almgren, Some interior regularity theorems for minimal surfaces and an exten-
sion of Bernstein’s Theorem, Ann. of Math (2), Vol. 84, 1966 pp. 277-292.

[A2] F. J. Almgren, Existence and regularity almost everywhere of solutions to ellip-
tic variational problems among surfaces of varying topological type and singularity
structure, Annals of Mathematics, Second Series, Vol. 87, No. 2 (1968), 321–391.

[A3] F. J. Almgren, Existence and regularity almost everywhere of solutions to elliptic
variational problems with constraints, Memoirs of the Amer. Math. Soc. 165, volume
4 (1976), i-199.

[B] K. A. Brakke, Minimal surfaces, corners, and wires, J. of Geom. Analysis 2 (1992),
11–36.

[D1] G. David, Limits of Almgren-quasiminimal sets, Proceedings of the conference on
Harmonic Analysis, Mount Holyoke, A.M.S. Contemporary Mathematics series, Vol.
320 (2003), 119-145.
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la Faculté des Sciences de Toulouse, Vol 22, no 3, 2013.

[Lu2] T. D. Luu, C1 regularity of three-dimensional minimal cones in R
n, preprint.

[M] P. Mattila, Geometry of sets and measures in Euclidean space, Cambridge Studies
in Advanced Mathematics 44, Cambridge University Press l995.

[Mo] F. Morgan, Geometric measure theory. A beginner’s guide. Fourth edition. Else-
vier/Academic Press, Amsterdam, 2009. viii+249 pp.

[R] E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of
varying topological type, Acta Math. 104, 1960, 1–92.

[Si] James Simons, 3, Ann. of Math, (2), Vol. 88 (1968), 62–105.

[Ta] J. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal
surfaces, Ann. of Math. (2) 103 (1976), no. 3, 489–539.

Guy David,
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Université de Paris-Sud,
91405 Orsay Cedex, France
guy.david@math.u-psud.fr
http://www.math.u-psud.fr/∼gdavid/

100


	Introduction
	Three types of sliding almost minimal sets
	Specific assumptions on L; local retractions
	The main competitor for monotonicity
	We take a first limit and get an integral estimate
	The second limit and a differential inequality
	The almost monotonicity formula
	E is contained in a cone when F is constant.
	Nearly constant F and approximation by a cone
	Simple properties of minimal cones
	Sliding almost minimal sets that look like a half plane
	Sliding almost minimal sets that look like a V

