N
N

N

HAL

open science

PREESM: A Dataflow-Based Rapid Prototyping
Framework for Simplifying Multicore DSP Programming

Maxime Pelcat, Karol Desnos, Julien Heulot, Clément Guy, Jean Francois
Nezan, Slaheddine Aridhi

» To cite this version:

Maxime Pelcat, Karol Desnos, Julien Heulot, Clément Guy, Jean Francois Nezan, et al.. PREESM: A
Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP Programming. EDERC,

Sep 2014, Italy. pp.36. hal-01059313

HAL Id: hal-01059313
https://hal.science/hal-01059313
Submitted on 29 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01059313
https://hal.archives-ouvertes.fr

PREESM: A DATAFLOW-BASED RAPID PROTOTYPING FRAMEWORK FOR
SIMPLIFYING MULTICORE DSP PROGRAMMING

Maxime Pelcat*, Karol Desnos*, Julien Heulot*,
Clément Guy*, Jean-Frangois Nezan*, Slaheddine Aridhi**

* JETR, INSA Rennes, UMR CNRS 6164

20 Avenue des Buttes de Coésmes, 35708, Rennes, France
email: mpelcat, kdesnos, jheulot, cguy, jnezan @insa-rennes.fr

web: www.ietr.fr

ABSTRACT

The high performance Digital Signal Processors (DSPs)
currently manufactured by Texas Instruments are heteroge-
neous multiprocessor architectures. Programming these ar-
chitectures is a complex task often reserved to specialized
engineers because the bottlenecks of both the algorithm and
the architecture need to be deeply understood in order to ob-
tain a fairly parallel execution.

The PREESM framework objective is to simplify the pro-
gramming of multicore DSP systems by building on dataflow
programming methods. The current functionalities of this
scalable framework cover memory and time analysis, as well
as automatic deadlock-free code generation. Several tutori-
als are provided with the tool for fast initiation of C program-
mers to multicore DSP programming. This paper demon-
strates PREESM capabilities by comparing simulation and
execution performances on a stereo matching algorithm pro-
totyped on the TMS320C6678 8-core DSP device.

1. INTRODUCTION

The currently available high performance signal processing
systems manufactured by Texas Instruments, including the
Keystone I [17] and Keystone II [16] architectures, as well
as the TDA2x with Embedded Vision Engine (EVE) [15], are
heterogeneous multiprocessor architectures. These architec-
tures currently embed up to 12 heterogeneous cores and this
number is likely to increase in the next generations in order
to cope with the ever more complex applications.

In this context, training engineers to program DSP archi-
tectures is a challenging task because the impact of applica-
tion and architecture bottlenecks on system performance is
high and difficult to predict. The main challenges to over-
come when designing a multicore signal processing system
are:

e to exploit enough algorithm parallelism (task, data and
pipeline parallelisms) to minimize latency in general,

e to choose the right core for each application subtask,

e to provide data where and when needed so as to avoid
stalling cores and underusing the hardware, hence maxi-
mizing the usage efficiency.

PREESM is an Eclipse-based framework that provides
dataflow-based methods to study a multicore DSP system.
The framework is open-source and provided with extensive
tutorials for easy initiation of C/C++ programmers to mul-
ticore DSP programming. PREESM provides a system de-
signer with high level rapid prototyping information on al-
gorithm parallelism and latency, as well as on system mem-
ory requirements. Moreover, a code generation is provided

** Texas Instruments France
5 Chemin Des Presses, Cagnes-Sur-Mer
email: saridhi @ti.com
web: www.ti.com

to transform the dataflow representation into a compilable
code. Parallel processes called actors are manually imple-
mented by the system designer in the language supported
by the architecture compiler (e.g. C or C++ code for the
Texas Instruments TMS320C6678 DSP) with the restriction
that no memory should be shared between actors. The exe-
cutable resulting from compiling together the generated and
the manual code constitutes a multicore system prototype
that is guaranteed deadlock-free and can be retargeted to a
different number of cores within a few minutes.

Dataflow Models of Computation (MoC) are a promising
solution to the limitation of imperative languages (C, C++...)
to represent application parallelism. The Parameterized and
Interfaced Synchronous Dataflow (PiSDF) [7] MoC tested
within the PREESM framework Version 2 divides an appli-
cation into actors. These actors communicate through data
First In, First Out data queues (FIFOs) and their data pro-
duction and consumption rates on these FIFOs can be modi-
fied by parameters.

The paper is organized as follows: after a presentation
of related works in Section 2, an overview of the PREESM
framework is given in Section 3. A focus is put on the al-
gorithm and architecture models in Section 4 and the most
important rapid prototyping tasks are explained in 5. Ex-
perimental results of the PREESM rapid prototyping process
are discussed in Section 6. The chosen use case is a stereo
matching algorithm running on an 8-core TMS320C6678
DSP.

2. RELATED WORKS

OpenMP [5] is becoming the defacto standard for multipro-
cessor programming. Most C-based toolchains, including the
Texas Instruments toolchain for multi-C66x core DSPs, sup-
port OpenMP. OpenMP is a set of pragmas for parallelizing
loops or sections of an imperative (e.g. C) code. Current
OpenMP implementations are oriented towards the dynamic
creation of tasks by a runtime support based on pragma in-
formation. In this context, no rapid prototyping is available
to check the system conformance to performance constraints.

The creation of the PREESM rapid prototyping frame-
work has been inspired by the Algorithm-Architecture
Matching methodology (AAM, also sometimes called
AAA) [10]. AAM consists in simultaneously searching the
best software and hardware configurations for respecting the
system constraints. The SynDEXx tool [9] is also based on
the AAM methodology but it differs from PREESM on sev-
eral ways: SynDEX is not open source, has a unique dataflow
Model of Computation that does not support schedulability

analysis and the function of code generation is possible but
not provided with the tool. Schedulability analysis is an im-
portant feature of PREESM because it ensures deadlock free-
ness in the generated code.

The Open RVC-CAL Compiler (Orcc) [18] is an open-
source tool that generates different types of hardware and
software code from a unique dataflow-based language named
RVC-CAL. The recent TURNUS tool [4] is an exploration
tool that complements the Orcc compiler by offering RVC-
CAL design space exploration. An important difference be-
tween Orcc, TURNUS and PREESM is the MoC of the al-
gorithm description. While PREESM uses the decidable [3]
PiSDF MoC, the MoC implemented in RVC-CAL is not de-
cidable and thus, in the general case, no guarantee can be
given in Orcc and TURNUS on the deadlock-freeness and
memory boundedness of the generated code.

SDF3 [14] is an open-source dataflow analysis tool
that supports the Synchronous Dataflow (SDF), Cyclo-Static
Dataflow (CSDF) and Scenario-Aware Dataflow (SADF)
MoC. SDF3 is oriented towards model analysis and simula-
tion while PREESM aims at both simulating the system and
generating an executable prototype.

The features that differentiate PREESM from the related
works and similar tools are:

e the tool is open source and accessible online [1];

e the algorithm description is based on a single well-known
and predictable model of computation;

e the scheduling is totally automatic;

e the functional code for heterogeneous multi-core embed-
ded systems is generated automatically;

e rapid prototyping metrics are generated to help the sys-
tem designer to take decisions;

o the PiSDF algorithm model provides a helpful hierarchi-
cal encapsulation and parameterization, thus simplifying
the scheduling;

o the System-Level Architecture Model (S-LAM) architec-
ture model provides a high-level architecture description
to study system bottlenecks.

Next Sections cover these features through a presentation
of the rapid prototyping tool chain of PREESM.

3. RAPID PROTOTYPING OVERVIEW

Figure 1 shows a PREESM typical rapid prototyping process
described in the PREESM tool by a graphical workflow. A
PREESM workflow is a graph connecting rapid prototyping
tasks such as scheduling and simulation. Each task is imple-
mented in a different Eclipse plug-in, providing a high scal-
ability to the tool. Workflow support is a feature that makes
PREESM scalable and adaptable to designer’s needs. A de-
veloper tutorial [2] provides all necessary information to cre-
ate new workflow tasks and adapt PREESM to a designer’s
needs (e.g. for exporting a graph in a custom syntax or for
experimenting new scheduling methods).

An algorithm graph description (in PiSDF), an architec-
ture graph description (in S-LAM), and a scenario are re-
trieved from XML files (left hand side of Figure 1). Graphic
editors are provided within PREESM for all the rapid proto-
typing inputs. These editors ease manipulation and edition of
algorithms and architectures and thus the exploration of the
design space.

A scenario is a database providing all information to link

PiSDF L G i
Algo. go. T emory . .
? > Transfo. optim. /,;S'm""at'o"
S-LAM ' _=®
Archi. \ PREESM
;’,l/ > Archi. Static C Code
Scenario __--|-> Transfo. ->Scheduling , >Generation
S .- /
Tl Code TMS320C6678
oo il
€ Code Studio

Figure 1: PREESM Rapid Prototyping Process: An Example
of a Workflow

an algorithm and an architecture. It enables a clear separa-
tion of concerns between algorithm and architecture design.
For instance, the scenario contains the deterministic execu-
tion time of each actor on each type of cores.

Algorithm and architecture models undergo several
transformations (including a graph flattening, equivalent to
loop unwinding in a compilation process) to expose paral-
lelism to the scheduling process. They are then passed to
a static scheduling and a memory optimization tasks. The
static scheduling transformation generates a periodic multi-
core schedule that will be repeated indefinitely to process the
input data stream. At the end of each iteration of the peri-
odic multicore schedule, the FIFO queues are back in their
initial state, ensuring deadlock freeness. The memory opti-
mization task computes a memory exclusion graph in order
to authorize memory reuse between FIFOs in the intermedi-
ate representation used for code generation.

Finally, the simulation and the code generation tasks pro-
vide respectively metrics for system design and a prototype
for testing the multicore execution of the system. Next Sec-
tion presents in more details the algorithm and architecture
models used in PREESM.

4. RAPID PROTOTYPING INPUT MODELS

4.1 The Parameterized and Interfaced Synchronous
Dataflow (PiSDF) Model of Computation

The PiSDF dataflow model [7] used to describe algorithms
aims at providing coarse grain parallel descriptions of algo-
rithms specifying precisely the data flowing between actors
and offering a tradeoff between dynamic behavior and pre-
dictability.

An example of a PiSDF model is shown in Figure 2. This
example corresponds to a filter that takes a fixed size number
of data tokens (indivisible unit of data) as inputs and inter-
nally distributes these tokens to N kernels that effectively ex-
ecute the filtering. This example can for instance be used to
execute the filtering of an image by slice (without overlap-
ping between slices) so as to provide data parallelism.

The internal behavior of actors is programmed in plain C
code. Actors are authorized to access their input and output
data tokens in any order. This construction automates the
computation of the number of executions (or firings) of the
actors per invocation of the graph. This computation is based
on the production and consumption of data and can ensure
deadlock-freeness at compile-time.

4

EI Actor
/ FIFO

O 0O Data port
1 andrate

>

[}
[}
[y

Py

size Filtersiz

[

N
0O
Jo
7N
DI,

/ Delay and

number of tokens
~/ Parameter

” dependency

~—
~~

Configuration '

Aad R <|
port size/N 'S8

@ Parameter Siz size

Communication
Node

/ Data
Link

Figure 3: An Example of a S-LAM Model

Actors are stateless and the only possibility for an actor
to keep a state information between two executions is to send
information to its future iterations. The feedback loop of the
actor Filter with a delay of size tokens provides the Kernel
actor with the corresponding slice of the preceding processed
image.

Production and consumption rates of PiSDF actors, as
delays of FIFOs between actors, can be parameterized de-
pending on the need of the application. In our example, size
and N are two parameters enabling to vary the number of
tokens filtered and the number of kernels executing the filter-
ing. The value of these parameters can be modified at run-
time, in which case we talk about dynamic parameters.

4.2 The System-Level Architecture Model (S-LAM)

With the convergence of hardware and software languages,
the reconfigurable architectures and the High-Level Synthe-
sis (HLS), the distinction between hardware and software is
becoming unclear. S-LAM describes architectures in a graph
as a set of cooperative processing elements offering process-
ing capabilities to dataflow actors and a set of communi-
cation features offering communication services to dataflow
FIFOs [12]. This definition authorizes the use of S-LAM for
describing parallel architectures at different levels of granu-
larity: a set of PCs communicating through ethernet, a set of
cores communicating through shared memory, etc.

An example of an S-LAM model is shown in Figure 3.
It describes a TMS320C6678 architecture by describing the
8 C66x cores and the capacity of each core to communi-
cate with any other core through two parallel communication
nodes: an internal shared memory (Multicore Shared Mem-
ory Controller (MSMC)) and an external shared memory (
Double Data Rate SDRAM (DDR3)). The graph does not
represent the architecture itself but the services it provides to
the dataflow algorithm. The same hardware architecture can

thus be represented in several ways depending on the mod-
eled communication capacities.

The black dots represent Time Division Multiple Access
(TDMA) for the data transfers on the communication nodes
and for the actor executions on the processing elements. The
absence of a black dot on the MSMC node means that sim-
ulation will consider it as capable of managing any number
of communication simultaneously. The motivation for this
representation is that MSMC controller has an independent
link for each core at 16 GB/s while the external DDR3 has
a unique link to the processor at 10.6 GB/s. More advanced
features are representable in S-LAM such as the delegation of
communications to a Direct Memory Access (DMA). Next
section describes the main PREESM workflow tasks which
process PiSDF algorithm models and S-LAM architecture
models.

5. RAPID PROTOTYPING TASKS

Rapid prototyping consists in exploring the design space of a
target system in order to minimize its cost and guarantee the
respect of different constraints, the most common ones be-
ing: latency, throughput, memory, and energy consumption.
Other constraints may exist, such as jitter or signal simultane-
ity. The diversity of constraints invalidates a unique approach
targeting all types of signal processing systems. However, it
fosters frameworks such as PREESM with plugged-in func-
tionalities that adapt to different targets.

The PREESM multicore scheduler implements the List
and Fast scheduling methods described by Kwok [11]. The
current PREESM plug-ins are focusing on latency dominated
systems. A latency dominated system is a system where the
respect of the latency constraints of the processing assures
the respect of its throughput constraints [8]. In this case, the
main processing iteration does not need to be pipelined (i.e.
only one iteration of the processing is alive at any moment)
but it may need to be parallelized if the work to execute is
longer in time than the latency constraint. In the current
PREESM code generation, all cores are synchronized with
a barrier between two application iterations. It is important
to note that while inter-iteration pipelining is not supported,
intra-iteration pipelining of actors is already available. This
constraint may be relaxed in the future, at the cost of a more
complex memory and time analysis.

Bounded memory execution is an important property of
decidable MoC [3]. Without this property, unexpected dead-
locks can appear when a FIFO becomes out of memory.
PREESM currently generates guaranteed deadlock-free code
for PiSDF algorithms with purely static parameters. An ex-
tension to more dynamic parameters is foreseen in the short
term. An advanced memory optimization mechanism based
on a memory exclusion graph [6] is available in PREESM to
avoid preserving fifo memory spaces that are useless for the
correct system execution.

The PREESM simulation offers to the system designer a
simulated Gantt chart of the code execution on the parallel
architecture, a speedup assessment chart that draws the ex-
pected algorithm execution speedup depending on the num-
ber of cores, and an evaluation of the memory necessary for
the execution. The code generation produces a self-timed
code [13], i.e. a static code for each core with automatic
inter-core communication, cache management and synchro-
nization. This code necessitates communication libraries,

which are provided for the TMS320C6678 processor.

A more complete description of PREESM rapid proto-
typing tasks can be found in [12]. Next Section will provide
some experimental results using the tasks described above.

6. EXPERIMENTAL RESULTS

Through the example of a state-of-the-art computer vision
application, this Section presents how PREESM can be used
to develop an application and automatically deploy a proto-
type implementation on a multicore Keystone architecture.

6.1 Use Case: Stereo Matching Algorithm

The application studied is a stereo matching algorithm. The
purpose of stereo matching algorithm is to process a pair of
images taken by two cameras in order to produce a dispar-
ity map that corresponds to the 3" dimension (the depth)
of the captured scene. The large computation and mem-
ory requirements of stereo matching algorithms, as well as
their promising use in Advanced Driver Assistance Systems
(ADAS) [15], make them interesting case studies to illustrate
the efficiency of the PREESM rapid prototyping framework.

Figure 4 presents the top-level PiSDF graph of a stereo-
matching algorithm. Two parameters are used to configure
this PiSDF graph: size, which corresponds to the number of
pixels of each image of the input stereo pair processed by the
algorithm; and nbDisparity, which represents the number of
distinct values that can be found in the output disparity map.

The stereo matching PiSDF graph presented in Figure 4
contains 7 actors:

e Read produces the 2 input frames by reading a stream or
a file.

e PreProcess converts an RGB image into its grayscale
equivalent. This actor also produces an 8-bit signature,
called census, for each pixel of an input image. This sig-
nature results from the comparison of each pixel with its
8 neighbors.

e Duplicate produces a configurable number of copies of
the data received on its input ports.

e CostComputation computes the matching cost of each
pixel for a given disparity. This actor is called as many
times as the number of tested disparities.

¢ DisparitySelect produces a disparity map by selecting
the disparity of the input cost map with the lowest match-
ing cost for each pixel.

e MedianFilter applies a 3x3 pixels median filter to the
input disparity map to smooth the results.

e Display displays the result of the algorithm or writes it in
a file.

Below each actor is a repetition factor which indicates
the number of executions of this actor for each iteration of
the graph. This number of executions is computed from the
data production and consumption rates of actors. The PiSDF
description of the algorithm provides a high degree of data
and task parallelism since it is possible to execute in parallel
the repetitions of the most computationally intensive actors,
namely PreProcess and CostComputation. In addition to the
parallelism expressed in this top-level graphs, several actors
can be refined with hierarchical subgraphs also containing
parallelism. For example, the PreProcess and Median actors
can both be implemented in such a way that several parts of
their input images are processed simultaneously in parallel.

fps
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

ND of cores
0.10 >

1 2 3 4 5 6 7 8

Figure 5: Throughput of the stereo matching application de-
pending on the number of targeted C6x cores.

6.2 PREESM results

The results presented in this section are obtained by apply-
ing the PiSDF graph of Figure 4 to stereo pairs of size =
450 = 375 pixels, with nbDisparity = 60. In this configura-
tion, 300 actor firings must be scheduled for each iteration of
the complete PiSDF graph, and 987 FIFOs must be allocated
in shared memory.

The time taken by the PREESM framework to automat-
ically deploy the stereo matching application on the eight
cores of a TMS320C6678 chip is 45 seconds. The schedul-
ing process is responsible for 53% of this time, memory op-
timization for 36%, graph transformations for 9%, and code
generation for 2%. The execution time of the rapid proto-
typing process remains relatively low compared to the 140
seconds needed to compile the application for the multicore
DSP. The fast execution of the PREESM framework is a
key feature to accelerate the testing of different deployment
scenarios and ease the design space exploration on different
multicore architectures.

Figure 5 shows the performance obtained by deploying
the stereo matching algorithm on a variable number of cores
of the TMS320C6678 multicore DSP chip. On eight cores, a
throughput of 0.33 frames per second (fps) is reached. This
throughput corresponds to a speed-up by a factor 3.3 com-
pared to the execution of the application on one DSP core.

Figure 5 also plots the theoretical greedy scheduling
throughputs [12] computed by PREESM for the stereo
matching application. The computation of this theoretical
throughput does not take into account communication costs.
It could be considered as an upper bound for the achiev-
able throughput. Consequently, the actual throughput of the
stereo matching algorithm appears to be inferior to the theo-
retical throughput.

Figure 6 shows the data memory footprint allocated for
the execution of the stereo matching algorithm on a variable
number of cores of the TMS320C6678 multicore DSP chip.
The smallest memory footprint of 68.4 MBytes is obtained
when the application is executed on a single core of the archi-
tecture. When the number of cores executing the application
is increased, more parallelism of the application is preserved,
and the allocated memory footprint is increased. As illus-
trated in Figure 6, the memory optimization techniques used
in PREESM [6] limit this increase of the memory footprint
allocated for the application, and only 79.7 MBytes of mem-
ory are needed to execute the application on 3 to 8 cores.

H
\Y4 \V4 : :
A A -
Read |, |[PreProcess|. . Duplicate
frames2 Size _size rgb grayi:iz 5*252 gray gray

x1 census L} Ccensus __census

X
Median

Disparity facla

Select

i costs

x2 xT 2*size*nbDisparity!

x nbDisparity

(size*anisparity x1

Figure 4: PiSDF graph of the stereo matching application

Memory
80 MB
78 MB
76 MB
74 MB
72 MB
70 MB

NbD of cores
68 MB »

1 2 3 4 5 6 7 8

Figure 6: Memory footprint of the stereo matching applica-
tion depending on the number of targeted C6x cores.

Without the memory optimization techniques of PREESM,
more than 1.4 GBytes would be needed to store the applica-
tion FIFOs, which is far more than the 512 MBytes available
on the EVMC6678.

These experimental results show that the PREESM
framework can be used to deploy and optimize real appli-
cations on multicore architectures within minutes. Several
tutorials [2] are available online to demonstrate the frame-
work functionalities.

7. CONCLUSION AND FUTURE WORK

PREESM provides a complete rapid prototyping framework
for multicore DSP system design. As a C-based open-source
framework distributed with complete tutorials, it aims at
initiating C programmers and system designers to dataflow
methods. Furthermore, the PREESM framework has demon-
strated capabilities for developing an optimized real world
application (e.g. the stereo matching algorithm) for multi-
core DSP architectures.

In the future, we plan to improve the framework to pro-
vide support for dynamic parameters from modeling to code
generation. We will also improve the scheduler so as to take
into account memory optimizations in scheduling decisions.

REFERENCES

[1] PREESM framework, available online. URL http:
//preesm.sourceforge.net/website

[2] PREESM tutorials, available online.
http://preesm.sourceforge.net/
website/tutorials

URL

[3] Bhattacharyya, S.S., Levine, W.S.: Optimization of sig-
nal processing software for control system implementa-
tion. In: IEEE ISIC (2006)

[4] Brunei, S.C., Mattavelli, M., Janneck, J.W.: TURNUS:
a design exploration framework for dataflow system de-
sign. In: ISCAS 2013

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

Chapman, B., Jost, G., Van Der Pas, R.: Using
OpenMP: portable shared memory parallel program-
ming, vol. 10. MIT press (2008)

Desnos, K., Pelcat, M., Nezan, J.F., Aridhi, S.: Pre-and
post-scheduling memory allocation strategies on MP-
SoCs. In: ESLsyn 2013. IEEE (2013)

Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya,
S.S., Aridhi, S.: Pimm: Parameterized and interfaced
dataflow meta-model for MPSoCs runtime reconfigura-
tion. In: SAMOS XIII (2013)

Ghamarian, A.H., Geilen, M.C.W., Stuijk, S., Bas-
ten, T., Moonen, A.J.M., Bekooij, M.J., Theelen, B.D.,
Mousavi, M.: Throughput analysis of synchronous data
flow graphs. In: ACSD 2006 (2006)

Grandpierre, T., Lavarenne, C., Sorel, Y.: Optimized
rapid prototyping for real-time embedded heteroge-
neous multiprocessors. In: CODES. ACM (1999)

Grandpierre, T., Sorel, Y.: From algorithm and archi-
tecture specifications to automatic generation of dis-
tributed real-time executives: a seamless flow of graphs
transformations. In: MEMOCODE (2003)

Kwok, Y.K.: High-performance algorithms for
compile-time scheduling of parallel processors (1997)

Pelcat, M., Aridhi, S., Piat, J., Nezan, J.F.: Physical
Layer Multi-Core Prototyping: A Dataflow-Based Ap-
proach for LTE eNodeB, vol. 171. Springer (2012)

Sriram, S., Bhattacharyya, S.S.: Embedded multipro-
cessors: Scheduling and synchronization. CRC press
(2012)

Stuijk, S., Geilen, M., Basten, T.: SDF?: SDF For Free.
In: ACSD 2006 (2006)

Texas Instruments: Empowering automotive Vvi-
sion with TIs Vision AccelerationPac - SPRY251.
URL http://www.ti.com/lit/pdf/
spry251 (accessed05/2014)

Texas Instruments: Multicore DSP+ARM Key-
Stone II System-on-Chip (SoC) - SPRS866E.
URL http://www.ti.com/lit/pdf/
sprs866e (accessed05/2014)

Texas Instruments: Multicore Fixed and Floating-
Point Digital Signal Processor - SPRS69I1E.
URL http://www.ti.com/lit/pdf/

sprs69le (accessed04/2014)
Wipliez, M.: Compilation infrastructure for dataflow

programs. Ph.D. thesis, Ph. D. thesis, INSA de Rennes
(2010)

