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Abstract Gravity gliding implies rigid translation of a body down a slope where displacements are parallel
to a tilted detachment plane. Although large-scale gravity gliding is commonly observed offshore, under
conditions of high fluid overpressure and abundant upslope sedimentary supply, its occurrence on land is
debated. We investigate the mechanical feasibility of such a process as well as the role of fluvial incision and
sedimentation down the slope in the initiation of the gliding. We use a two-dimensional (2-D) finite element
model combined with a 2-D failure analysis approach. The numerical models simulate the deformation and
provide quantitative estimates of the failure criteria at the head and toe of the overburden. Analytical
solutions approximate the numerical results by taking into account the fluvial incision and sedimentation, the
internal friction angle, and the thickness and length of the overburden. Our models are based on a field
example in the Andean foothills of Argentina, where gravity gliding of a 1000 m thick section is suspected
above a crustal-scale anticline. The incision and sedimentation reduce and strengthen, respectively, the
downslope resistance to contractional failure. The critical slope at which the gliding is initiated is reduced by
fluvial incision and increased by sedimentation. We show that tectonic uplift may lead to large-scale gravity
gliding on land where the overburden thickness is less than 2000 m. Incision facilitates and localizes the
frontal shortening. Incision greater than 1000 mmay trigger gliding for overburden up to 4000 m thick, while
sedimentation thicker than 1000 m inhibits gliding. These results show that thin-skinned onland gravity
gliding could be common in tectonically active regions where incision is important.

1. Introduction

In the last decades, increasing exploration of passive continental margins by the oil industry has provided a
large set of 2-D and 3-D seismic data which have improved our understanding of postsalt structures such as
diapirs and tectonic rafts [e.g., Burollet, 1975]. Halokinetic structures have been widely observed along the
passive margins of West Africa [e.g., Evamy et al., 1978; Duval et al., 1992; Lundin, 1992; Damuth, 1994; Cohen
and McClay, 1996; Mauduit and Brun, 1998; Cobbold et al., 2009], Brazil [e.g., Cobbold and Szatmari, 1991;
Demercian et al., 1993; Mohriak et al., 1995; Szatmari et al., 1996; Cobbold et al., 2004], and in the North Sea
[e.g., Duval et al., 1992; Lundin, 1992; Penge et al., 1993; Bishop et al., 1995], the Mediterranean Sea [Loncke
et al., 2006; Sellier et al., 2013], and the Gulf of Mexico [Worral and Snelson, 1989;Wu et al., 1990; Rowan et al.,
2000]. Diapirs and rafts have been commonly interpreted as the result of gravity-driven processes where
large slides of sediment move seaward, generating upslope extension and downslope contraction [e.g.,
Schultz-Ela, 2001]. Two different types of dynamic models are presently invoked to explain gravity-driven
tectonics at passive margins: (i) gravity spreading driven only by differential sedimentary loading and
(ii) gravity gliding primarily due to margin tilt that allows the semirigid translation of a body downslope.
The displacements take place parallel to a buried seaward dipping detachment layer made of salt or
overpressured sediments [Cobbold and Szatmari, 1991; Mauduit et al., 1997a, 1997b].

Mechanical conditions conducive to gravity-driven slides have been studied through the application of
analytical theories, as well as by analogue and numerical modeling [e.g., Mandl and Crans, 1981; Mourgues
and Cobbold, 2006; Gemmer et al., 2005; Brun and Fort, 2011]. In the case of pure gravity spreading, the
continental sediment discharge creates a surficial slope, producing a seaward directed pressure gradient that
drives downslope movement. Dominant gravity gliding requires the tilting of the basement, which can be
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triggered by the thermal subsidence of young passive margins or by tectonic activity due to rifting or margin
uplift [e.g., Duval et al., 1992; Penge et al., 1993; Bishop et al., 1995] or basement fault activity [Sellier et al.,
2013]. The thickness (T) of the decoupled cover must be small with respect to its length (L) (T/L< 0.1)
[e.g., Messager et al., 2014]. In both gravity gliding and spreading, a high rate of sedimentation fosters the
displacement [e.g.,Worral and Snelson, 1989; Cobbold and Szatmari, 1991;Mauduit et al., 1997a; Gemmer et al.,
2004, 2005], and the presence of fluids increases the solid and fluid pressure in the sediments, which in turn
reduces the failure criterion [e.g., Gemmer et al., 2005; Mourgues et al., 2009, 2014].

Gravity collapses are now widely recognized on land, more particularly in the core of orogens. In the French
Alps, normal faults have been interpreted as resulting from 150 km long radial sliding above Triassic
evaporites in the Provençal Basin of Southeast France [Rangin et al., 2010] or from crustal flow of the internal
zones of the orogen toward the Mediterranean margin [Larroque et al., 2009]. At a smaller scale, multiple
detachment layers may allow the decoupling of the sedimentary cover of foreland basins, regardless of the
regional stress regime. Examples of such thin-skinned slides involve lower volumes of sediments (<100 km3)
than at crustal scale and are often associated with catastrophic events such as heavy rains or earthquakes.
The most famous examples were described in Tsergo Ri (Nepal) [Ibetsberger, 1996] or in Golbi-Altay
(Mongolia) [Philip and Ritz, 1999]. Other examples illustrate the role of surface processes in such thin-skinned
slides. Schultz-Ela and Walsh [2002] showed that the gravitational collapse in Canyonlands National Park
produced sliding toward the “downslope free edge” formed by the canyon of the Colorado River (Utah)
[McGill and Stromquist, 1979].Mège et al. [2013] made similar observations in the western Ogaden in Ethiopia.

Considering that differential sedimentary loading is negligible in the inner domain of the orogens, it is
uncertain if gravity spreading could mechanically occur on land. However, most of the onland examples have
been interpreted as gravity spreading [Philip and Ritz, 1999; Schultz-Ela and Walsh, 2002; Lacoste et al., 2009;
Rangin et al., 2010] and are often associated with fluid overpressure [Lacoste et al., 2009] or a nonindurated
rock body [Philip and Ritz, 1999]. Dominant gravity gliding has been rarely observed on land. Recently,
Messager et al. [2014] described coeval thin-skinned stretching and shortening above the crustal front flexure
of the southern Andean fold belts, interpreting these structures as the potential downslope slide of a ~30 km
long and 1000 m thick raft of indurated and undeformed sediments. However, Messager et al. [2014] show
that stretching on top of the slope may also result from the stress developed by flexure as inferred from
mechanical analysis [e.g., Friedman et al., 1976] and natural examples [e.g., Emami et al., 2010]. The occurrence
of dominant gravity gliding on land is not intuitive. Compared to the offshore settings, the rheological and
geometrical (higher T/L) configurations would mechanically strengthen the overburden to failure. In addition,
few natural examples support the model on land.

In this study, we investigate the mechanisms that could lead to dominant gravity gliding on land. We assume
that tectonic uplift generates sufficiently steep slopes to initiate such instabilities. In addition, high basement
uplift rates disturb mass transfers at the surface, leading to the deposition of large sediment volumes for
periods of thousands to millions of years upstream of the uplifted area and to incision downstream due to
regressive erosion or to river deflections [e.g., Suppe et al., 1992; Jackson et al., 1996; Einsele and Hinderer, 1997;
Horton and DeCelles, 1997; Humphrey and Konrad, 2000; Sobel et al., 2003; Garcia-Castellanos, 2006]. Such
sedimentation and incision could alter the downslope resistance to contractional failure, and thus interact
with the critical conditions required for the initiation and maintenance of gravity gliding [Schultz-Ela and
Walsh, 2002; Lacoste et al., 2011].

We argue that this process may occur in the Central Andes where Tertiary to Present inversion of Mesozoic rift
basins has led to the segmentation of the foreland into broad crustal uplifted blocks and temporary
intramountain basins [e.g., Giambiagi et al., 2001; Hilley and Strecker, 2005; Messager et al., 2010] and where
tensional strain is encountered at the outer hinge of the uplifted blocks [Ramos, 1981; Narciso et al., 2000;
Galland et al., 2007; Folguera et al., 2008; Messager et al., 2014]. We test here the onland gravity gliding model
described by Messager et al. [2014]. We use the two-dimensional (2-D) finite element code ADELI associated
with the dynamic relaxation method and realistic constitutive models [Hassani et al., 1997] to estimate the
critical slope required for failure at the top and toe of a frictional-plastic sedimentary cover (model 1). We then
test the influence of incision (model 2) and sedimentation (model 3) downslope of the uplifted area. Based on
these results, we propose a 2-D analytical failure approach to assess realistic configurations under which gravity
gliding could occur on land. This approach yields an approximation of the numerical result that takes into
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account various values of incision, sedimentation, internal friction angle, and thickness of overburden. The
solutions so obtained may also be applied to explain gravity-driven processes occurring at various scales.

2. Geological Case Study

Our models attempt to approximate the geometrical and rheological parameters of the Chihuido North anticline
along the front flexure of the southern Andean fold-and-thrust belts of Argentina (Figure 1) [Mosquera and
Ramos, 2006; Messager et al., 2010, 2014]. This crustal-scale asymmetric anticline is N170° trending and 70 km
long, with its western limb shorter and steeper (15 km, 15°W) than the eastern limb (30 km, 4°E). Fold activity
initiated during the Late Cretaceous [Cobbold and Rossello, 2003] and continued episodically during the Miocene
[Mosquera and Ramos, 2006] and Plio-Pleistocene [Messager et al., 2010]. The anticline involves the Jurassic to
Cretaceous sedimentary cover (Figure 2). Multiple décollement layers are made up of black shales belonging to
the Los Molles Formation (Lower Jurassic) and the evaporites of the Auquilco Formation (Oxfordian) and the
Huitrín Formation (Lower Cretaceous) [e.g., Howell et al., 2005]. In the Chihuido North area, these formations are
hundreds of meters thick and lie at depths of 4200, 3200, and 1000m, respectively (Figure 2). Gypsumdominates
the Auquilco evaporites, while halite predominates within the Huitrín Formation [e.g., de Brodtkorb et al., 1982]. In
the area of the Chihuido North anticline, the salt of the Huitrín Formation is ~150m thick and is composed of 96–
98% halite, interbedded with minor layers of anhydrite, gypsum, clays, and celestite [Tezón et al., 1969; Lyons,
1980; de Brodtkorb et al., 1982].

From structural and geomorphic observations, Ramos [1981] and Messager et al. [2014] found evidence for
recent thin-skinned extensional and compressional structures trending N-S above the Chihuido North
anticline (Figure 1). Extension developed at the outer hinge of the flexure, being expressed at the surface by a
set of elongated and parallel valleys, 10–15 km long and 500 m wide. The valleys form endorheic basins filled
by unconsolidated deposits. Normal faults bounding these elongated valleys reflect the presence at depth
of rollovers and turtle back anticlines built above Cretaceous evaporites [Messager et al., 2014]. These
structures indicate the stretching and eastward displacement of a thin sheet of sedimentary cover. At the
eastern toe of the anticline, the 30 km long and 5 kmwide Cerro Parva anticline, which reaches 75 m in height
and distorts the present-day drainage network, expresses thin-skinned shortening. The morphological
imprint of the thin-skinned stretching and shortening domains suggests that their deformation is potentially
coeval with the Plio-Pleistocene uplift of the Chihuido North anticline [Messager et al., 2014]. Field and seismic
surveys fail to reveal any internal deformation between these different domains. To reconcile the stretching and

Figure 1. Gravity gliding on the Chihuido North anticline and its boundary conditions [modified from Messager et al., 2014]. (a) Three-dimensional view of the Chihuido
North anticline and interpretation of the thin-skinned structural pattern (Shuttle Radar Topography Mission Digital Elevation Model and Advanced Spaceborne Thermal
Emission and Reflection Radiometer image). (b) Synthetic structural cross section through the gravity slide. Gliding occurs along the long limb of the Chihuido North anticline.
River valley at the toe of the long limb may favor and control the position of the downslope contractional failure. On the contrary, sedimentation may inhibit the gliding.
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shortening deformation styles, Messager
et al. [2014] assumed that rigid translation
of the sedimentary cover took place
down the long limb of the ChihuidoNorth
anticline according to a gravity gliding
process. After reaching a thickness of
around 1 km and a length of 30 km, the
overburden mass slides above the 4–5°E
dipping Cretaceous evaporites
(Figure 1). The tilt of the basal
décollement may have generated a
sufficient slope to allow gravity gliding.
However, the décollement occurs along
the long limb of the Chihuido North
anticline, where the structural slope is at
a minimum (Figure 1). Schultz-Ela and
Walsh [2002] and Lacoste et al. [2011]
emphasized the importance of river
incision and sedimentation in the
initiation and localization of gravity
gliding. At the eastern toe of the
Chihuido North anticline, a 4 km wide
and 200 m deep valley might have
created a weak zone controlling the
location of the downslope contractional
failure. On the other hand, a 1000 m thick
Cretaceous to Neogene depocenter is
located on the Agua Amarga Pampa to
the west of the Chihuido North anticline,
along its short limb [Leanza and Hugo,
1999; Zapata et al., 2003; Cobbold and
Rossello, 2003]. The depocenter was
incised during the Quaternary [Messager
et al., 2010]. This sedimentation might
have increased the downslope failure

resistance by thickening the overburden at the toe of the short limb, thus preventing gliding to the west where
the slope is steepest.

In this study, we test numerically the roles of tectonic tilt, river incision, and sedimentation in controlling the
initiation and location of onland large-scale gravity gliding.

3. Modeling Method and Parameters
3.1. Physical Problem

We consider a viscous décollement level overlain by a frictional-plastic overburden (sedimentary cover) of
laterally uniform thickness (Figure 3). When the slope is sufficient, gravity drives the overburden downward,
causing upslope extension and downslope contraction. The physical problem has been previously been
addressed for gravity spreading in two dimensions by Gemmer et al. [2005] and for pure gravity gliding in three
dimensions by Mourgues and Cobbold [2003]. These models considered a marine environment where the
presence of water increases the solid and fluid pressure in sediments, thus reducing critically the effective
stresses and the critical slope angle required to trigger instabilities. In addition, lateral friction hinders gliding
dynamics and increases the critical slope. Our models assume continental environments without any effects of
water loading, pore fluid pressure, or lateral friction. We consider upper and lateral surfaces to be stress free. We
focus here on the critical conditions of slope instability as well as the location and intensity of deformation.

Figure 2. Stratigraphic column of the southern Neuquén Basin. After
Holmberg [1964, 1976], Zöllner and Amos [1973], Ramos [1981], and
Leanza and Hugo [1999] [modified from Messager et al., 2010]. In bold are
the potential décollement layers made of the evaporites of the Huitrín
Fm. (~1000 m depth) and Auquilco Fm. (~3200 m depth), and the shales
of the Los Molles Fm. (~4200 m depth). Fm, Formation and Gp, Group.
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The weight of the overburden (F
→

w ) and

the upslope tension (F
→

u) are the driving
forces of the slide, while the

contractional force (F
→

d) offers resistance
to the downslope failure (Figure 3).
When the overburden fails and moves
downslope, Couette flow gives rise to a

basal resistive force (F
→

b) in the viscous
layer. In addition, the pressure-driven
Poiseuille flow in the viscous layer
produces shear traction on the base of
the overburden, resulting in an increase

of the slope-parallel force (F
→

p).

Fu and Fd can be estimated by making
the following assumptions: (1) far away
from the tilted layer, the principal stress
directions are horizontal and vertical in

the upslope and downslope domains, respectively; (2) stress rotations are negligible, so these far-field
stresses can be used in the expression of F u and Fd; and (3) at the threshold slope angle θc at which the
overburden starts gliding downward, the upslope region reaches the plastic yield point in an extensional
regime, whereas the downslope reaches the plastic yield point in a compressional regime.

According to these assumptions and using the Mohr-Coulomb criterion which can be written as follows for a
material at yield point:

σ1 1� sinϕð Þ � σ3 1þ sinϕð Þ ¼ 2c cosϕ (1)

where c is the cohesion. The stress state in the upslope domain is given by

σ1 ¼ ρgz; σ3 ¼ k ρgz � 2cα (2)

while, in the downslope domain, the stress state is

σ3 ¼ ρgz; σ1 ¼ 1
k
ρgz þ 2cβ (3)

where k= (1� sinϕ)/(1 + sinϕ), α= cosϕ/(1 + sinϕ) and β = cosϕ/(1� sinϕ).

The resulting net forces (per unit length) Fu and Fd are then approximated by

Fu ¼ 1
2
kρgh21 � 2cαh1; (4)

Fd ¼ 1
2
k�1ρgh2

2 þ 2cβh2 (5)

where h1 and h2 are the upslope and downslope thicknesses of the overburden. Moreover, approximating
the tilted domain by a parallelogram of length L and height h, the weight Fw (per unit length) can be roughly
estimated by

Fw ¼ ρgLh: (6)

By assuming that surface processes cause lateral changes in overburden thickness, the thin-sheet
approximation [Lobkovsky and Kerchman, 1991] leads to an estimation of the Poiseuille flow in the viscous
layer which is independent of viscosity and slope length [e.g., Gemmer et al., 2005]:

Fp ¼ 1
2
ρghs h1 � h2ð Þ (7)

The basal friction associated with Couette flow is independent from the slope angle and the overburden
thickness [e.g. Gemmer et al., 2005]:

Fb ¼ η
Vc
hs

L (8)

Figure 3. Analytical approach to solve the physical problem. Overburden is
light grey and underlying décollement is dark grey. Geometrical and
physical parameters: hs: décollement thickness, h1 and h2: upslope and
downslope overburden thicknesses, θ: slope angle, L: length of slide, ΔH:
difference in elevation between the upslope and downslope of the raft, ρ:
overburden density, and g: acceleration due to gravity. Forces acting on the
overburden gliding zone: Fw : overburden weight, F

→

u : upslope tension, F
→

d :
downslope contraction, F

→

p : pressure-driven Poiseuille flow, F
→

b : basal resis-
tive force, R

→

N: normal reaction force, σ1: maximum compressive stress, and
σ3: minimum compressive stress. Note that F

→

p is directed upward if h1< h2
or downward if h1> h2.
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where η is the viscosity, hs the décollement thickness, and Vc the velocity of the slide.

F
→

w increases with the length (L), thickness (h), and slope angle (θ) of the overburden (equation (6)), while F
→

u and

F
→

d increase with the internal angle of friction (ϕ) and the thickness (h) (equations (4) and (5)). Other important
parameters are the pore fluid pressure, which reduces the effective normal stress on the faults planes, and the

resistive force F
→

b due to sliding. This latter parameter increases with the viscosity (η) and length (L) of the

ductile layer but decreases as its thickness (hs) increases (equation (8)). Thinning of the ductile layer increased
its strength, thus leading to increase coupling between the overburden and the basal detachment. The

resistive force F
→

b controls the kinematics of the slide; the velocity and the force are set to zero when the

overburden does not move (equation (8)). F
→

p is directed toward the thinnest part of the overburden layer

(h1≠ h2), and the force is set to zero if there is no variation in the overburden thickness, i.e., no lateral pressure
gradient (h1 = h2; equation (7) and Figure 3).

3.2. Numerical Formulation

To compute stress, strain, and velocity fields in the overburden layer, we use the Lagrangian finite element
code ADELI to obtain thermomechanical modeling solutions. This code has been used in numerous
geodynamical applications, both at crustal [e.g., Vanbrabant et al., 1997; Huc et al., 1998; Berger et al., 2004;
Got et al., 2008] and lithospheric scales [e.g., Lesne et al., 2000; Bonnardot et al., 2008; Neves et al., 2008].
Belonging to the same family as the FLAC [Fast Lagrangian Analysis of Continua; Cundall and Board, 1988] and
Parovoz codes [Poliakov and Podladchikov, 1992; Gerbault et al., 2009], ADELI is based on an explicit temporal
finite difference approach associated with the dynamic relaxation method [Underwood, 1983]. Numerical and
mechanical aspects of this code in a 2-D or 3-D context can be found in Hassani et al. [1997] and Chéry et al.
[2001].

3.3. Constitutive Laws

In this study, we use realistic rheologies and boundary conditions of the sedimentary cover to model the
steady state deformation, motion velocities, and the state of stress of the overburden layer. In elastic
domains, we assume a classical linear relation between the strain rate (d) and the stress rate tensor (Dσ/Dt),
where D/Dt is the Jaumann time derivative (Hooke’s law):

Dσ
Dt

¼ 2Gd þ λtr dð ÞI (9)

where λ and G are the Lamé parameters which express the relationship between the Young’s modulus and the
Poisson’s ratio, tr the trace of the tensor, and I is the identity tensor [Chéry et al., 2001]. Brittle deformation is
approximated by the Drucker-Prager failure criterion, which involves pressure-dependent plastic yield stress:

f σð Þ ¼ J2 σð Þ � 6 sinϕ
3� sinϕ

σ þ c cotϕð Þ < 0 (10)

where J2(σ) is the deviatoric stress intensity, σ is the mean pressure, c is the cohesion, and ϕ is the internal
friction angle [Chéry et al., 2001]. Moreover, to model the viscous behavior of the décollement level in a
sufficiently simple way, the linear Maxwell model is adopted:

Dσ
Dt

¼ 2Gd þ λtr dð ÞI � G
η
dev σð Þ (11)

where dev is the deviatoric component of a tensor and η is the viscosity.

Table 1. Physical Parameters of the Numerical Models

Parameters Elastoplastic Viscoelastic

ρ Density 2600 kg m�3 2330 kg m�3

E Young’s modulus 25 GPa 40 GPa
ν Poisson’s ratio 0.25 0.33
c Cohesion 1 MPa -
ϕ Friction angle 26° -
η Effective viscosity - 1018 Pa s
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3.4. Rock Properties

Rheological parameters are summarized in Table 1. The shallow rocks involved in the Chihuido North anticline
are made up of sandstones, shales, and limestones, which exhibit a brittle behavior according to an elastoplastic
law (equation (10)). We use approximate mean values for the properties of these rock types, namely a Young’s
modulus of 25 GPa, a Poisson’s ratio of 0.25 [Turcotte and Schubert, 1982], and a density (ρ) of 2600 kgm�3.
Experimental rock deformation showed that the cohesion (c) ranges from 0.3 MPa for shale to 36 MPa for
limestone [Hubbert and Rubey, 1959; Handin, 1966]. We adopt a value of 1 MPa since it is known to be a good
average for this mixture of rock types [Schultz-Ela and Walsh, 2002]. Typical friction angles are 15–30° for shales,
35–50° for limestones, and 26–56° for sands, which leads us to apply an average value of 26°. Marine gravity
models generally use lower values of sediment density (2300–2500 kgm�3) and friction angle (5 to 20°)
[Gemmer et al., 2005; Gradmann et al., 2009]. The impact of ϕ values is discussed further below.

The evaporites can be considered as a mixture of salt rocks (halite, gypsum, or anhydrite) and shales, along
with someminor limestones. We therefore choose an average density of 2330 kgm�3, which is slightly higher
than the value for pure gypsum. Over long time scales, typical rock salt deforms as a Newtonian fluid without
any yield strength, while its instantaneous response is elastic. Despite impurities of anhydrite, gypsum,
celestite, and clays within the salt layer, the role of a potential small finite yield strength that limits the
detachment acting along the base of the slide is considered negligible. It is assumed that the halite of the
Huitrín Formation has a purely viscous behavior and all potential décollement layers as purely viscous in
order to compare equally their role on the gliding. Thus, we use the viscoelastic law to model this material
(equation (11)). The effective viscosity of natural halite ranges from 1017 to 1018 Pa s [van Keken et al., 1993].
We choose the upper end of this range to take nonsalt components into account. Similarly, we chose
conservative values for the elastic bulk modulus of 40 GPa, as expected for gypsum rocks, while the Poisson’s
ratio is taken as equal to 0.33.

3.5. Model Geometry and Boundary Conditions

The models simulate a 15 km thick cross section of the upper crust capped by a 4.5 km thick sedimentary
cover (Figure 4a). The top of this cover is initially set at an elevation of 0 m. Displacements are horizontally
locked but vertically sliding freely along the two lateral edges. At the bottom of the model, displacements
are locked to the left of km point �15 and to the right of km point +30. We set a vertical displacement at

Figure 4. Numerical model settings: geometries and boundary conditions of the mechanical model. (a) Cross section at crustal scale. The crust is 10.6 km thick and
exhibits elastic behavior. The sedimentary cover is compartmentalized into two elastoplastic layers (overburden: 1000 and 3000 m thick) and two viscoelastic layers
(décollement), one at a depth of 1000 m (200 m thick) and the other at 4200 m (300 m thick). Displacement is locked along the two lateral edges. Along the basal
edge, vertical displacement is imposed in the central part but is free between kilometer points �15 and +30 and locked elsewhere. This displacement generates
an asymmetric anticline. (b) Lateral gradient of the vertical velocity at the base of the sedimentary cover. This induces a radial displacement field in the overburden.
(c) Geometries of the three models. The reference model (model 1) does not have any lateral variation in geometrical or rheological properties. In model 2, river
incision corresponds to a 4 km wide and 200 m deep trough at the toe of the long limb. In model 3, the upper elastoplastic is thickened to 200 m to simulate
sedimentation at the toe of the short limb.
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the bottom center of the model (Figure 4a). These settings generate a lateral gradient in the vertical
displacement, which reaches a maximum of 3 mmyr�1 at km 0 (Figure 4b). This value is unrealistically high
for the tectonic setting studied here. However, our goal is not to model the kinematics of deformation
and we only need to make sure that this value does not modify the critical slope required to trigger the
instability (θc). As a result, we obtain a crustal-scale and asymmetric bulge similar to the Chihuido North anticline.
The short limb is 15 km wide on the left, and the long limb is 22 km wide on the right, with a gently
dipping zone up to 8 km long at its apex. The lateral edges of the model are sufficiently far from the uplifted
domain (around 70 km) not to influence significantly the results.

To match the sedimentary column (Figure 2), we set up the sedimentary cover that consists of four layers,
including two décollements, with no lateral variations in geometry or rheology. The uppermost décollement
is 200m thick with its top at a depth of 1 km (Figure 4c). The second décollement is 300m thick and forms the
base of the sedimentary cover at 4.2–4.5 km in depth. We use a 2-D finite element mesh, which is finer in the
overburden than in the décollement layers, while also checking that the element mesh size is small enough
to provide a precise analysis.

Model 1 is the reference model, without any incision or sedimentation. Model 2 takes into account fluvial
incision at the toe of the long limb. In this way, we create a 4 km wide and 200 m deep trough in the
overburden at km +32 (see Figure 4c), as observed at the eastern toe of the Chihuido North anticline
(Figure 1). Model 3 investigates the role of sedimentation at the toe of the short limb. This latter model does
not attempt to represent the total thickness of the Agua Amarga depocenter, since it has subsequently been
eroded. We therefore thicken the upper elastoplastic layer to simulate a 200 m thick sedimentary basin on
the left side of the model. This value is of a similar order of magnitude as the incision, allowing us to compare
the impact of these two surface processes in gliding dynamics.

The simulations are run over 1.33Myrwith a total of 4.2×106 time steps using around 5×103 three-noded finite
elements per layer. At the end of the simulations, we analyze the cumulative shear strain corresponding to the
second invariant of the deviatoric strain, as well as the distribution of stress and cumulative displacements in the
overburden layers. We determine the displacement field by comparing the resulting geometries of the three
models with a model without décollement layers (viscoelastic layers), i.e., without gravity slides (model 0). Thus,
we can exclude displacements related to the uplift gradient, which is the same in both configurations, keeping
only the gliding component of the displacement field. We then derive the critical conditions of gliding by
plotting the displacements of two points along the short (S) and long (L) limbs (Figure 4c), between two time
stations and as a function of the slope. Gliding starts when the displacements are nonzero.

4. Numerical Results
4.1. Reference Model (Model 1): Without Any Incision or Sedimentation
4.1.1. Geometry
At the end of the simulation, the bulges in model 0 and model 1 differ only at their apices (Figure 5): the top
reaches 2640 m inmodel 0 and 2490 m inmodel 1. This results from the collapse of the top of the sedimentary
cover above the shallowest décollement layer in model 1. This collapse generates an 11 km wide and 150 m
deep trough (grey shading in Figure 5a). The topographic surface shows a set of scarps with an elevation of
25 to 150 m, which delimit subsidiary hills and troughs (inset in Figure 5b). The contact between the
shallowest elastoplastic and viscoelastic layers is also irregular at the hinge of the bulge, but the roughness
shows an amplitude of less than 25 m.
4.1.2. Cumulative Shear Strain Field
Figure 5 shows the cumulative shear strain field (second invariant of the deviatoric strain tensor), with blues and
reds indicating low and high strains, respectively, without reference to the strain regime (extensional
or compressional). Deformation is compartmentalized by the four layers of the model. Viscoelastic layers
concentrate high cumulative strain (0.3–1.0), as expected in the basal hinges of the deepest layer. The elastoplastic
layer shows high cumulative strain (0.3–1.0) in the collapsed area (km �1 to +7 in Figure 5b). In detail, the strain
field is segmented by a set of four steep conjugate strain zones that cut right through the layer (Figure 5b). These
zones link the topographic scarps to the highly deformed domains of the shallowest viscoelastic layer. Cumulative
strain exceeds 1.0 in the central part of the trough and decreases laterally. These conjugate zones delimit less
intensely deformed domains labeled B1 to B4 in Figure 5b. The flanks of the bulge are not deformed. Two areas
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of low cumulative strain are located at the toes of the bulge (Figure 5a). At the toe of the long limb,
deformation is mainly concentrated between km +30 and +42, where cumulative strain reaches only 0.051
in the elastoplastic layer (Figure 5c). At the toe of the short limb, cumulative strain is slightly higher (0.085) in a
15 km wide area (km �30 to �15; Figure 5d). The cumulative strain decreases outward and reaches 0.03 as
far as 15 km away from the downslope edge of the limbs (Figure 5a). The deep elastoplastic layer shows
mainly intermediate cumulative strain (<0.136) at the upper hinge of the bulge where strain is radial. Weakly
deformed areas (<0.068) are also recorded in the syncline hinges of the bulge (Figure 5a).
4.1.3. Stress Field
Figure 5 presents the magnitudes and orientations of the principal stresses σ1 and σ3. To a first order of
approximation, σ1 is vertical in the two elastoplastic layers above the uplifted area and is correlated with the
cumulative shear strain (Figures 5b–5d). In this domain, σ1 reaches a value of 5–20 MPa (Figure 5c). Near the
surface, the stress regime could be extensional, indicating minor tension, with stresses lower than 3 MPa.
In the areas of low cumulative strain at the toes of the bulge, σ1 is horizontal and ranges between 20 and
100 MPa from the top to the base of the elastoplastic layer (Figures 5c and 5d). Elsewhere in the elastoplastic
layers, the stress field is isotropic and corresponds to the lithostatic pressure. Although the stress field is
isotropic in the viscoelastic layers, its orientation is nevertheless oblique to the layers (Figures 5b–5d).
4.1.4. Displacement Field
Figure 6 illustrates the cumulative displacement field. Displacements of less than 15 m in the deep elastoplastic
layer are negligible and are related to numerical noise (Figure 6a). Displacements are concentrated in the
shallow elastoplastic layer between kilometers �40 and +60, being approximately parallel to the layers and
directed outward from the apex of the bulge (Figure 6a). Displacements are maximal at the apex of the bulge,

Figure 5. Model 1 without incision or sedimentation: (a) cumulative shear strain and deviatoric stress fields after 1.2 Myr at the scale of the sedimentary cover, with
zooms in (b) the upper elastoplastic layer at the apex of the bulge, and at the toes of the (c) long and (d) short limbs. B1 to B4: four individual collapsed blocks
accommodating the collapse at the top hinge of the bulge.
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where they range between 400 and 660 m and then decrease along the limbs (300–400 m) and in the syncline
hinges (300–450 m). Displacements gradually decrease away from the toe of the limbs to be null along the
lateral edges of the model indicating that the displacement is absorbed by the strain. The displacement vectors
display a variable orientation in space. At the apex of the bulge, the displacement field is radial outward:
displacement vectors are strongly oblique to the layers and directed downward, with a progressive flattening
away from the center (Figure 6b). Correlated with the trough, these vectors reflect the collapse and the lateral
escape of the cover on top of the bulge. Moreover, these displacements involve the top of the shallow
viscoelastic layer but not its base. Therefore, the collapse reaches only the shallow ductile layer (Figure 6b).
At the toes of the bulge, vectors tend to be oblique to the top of the elastoplastic layer (Figures 6c and 6d).
Although this could result from a slight uplift, such a process is not observed in the model.
4.1.5. Characterization of Gravity Gliding
The cumulative shear strain is correlated with the deviatoric stress regime, with the highest strain being
concentrated in the hinges of the bulge. The lack of displacements in the deep elastoplastic layer shows that
deformation is not related to the gliding component. The flexural bending due to uplift would produce this
shear strain, which has extensional and compressional components within the external and internal hinges of
the bends, respectively. Stretching is increased since the lateral edges of the model are laterally locked.

Model 1 shows that high cumulative strain is correlated with an irregular displacement field in the shallow
elastoplastic layer. This reflects thin-skinned tectonics related to extensional and/or compressional forcing.
Above the bulge, the stress regime is extensional (vertical σ1 and horizontal σ3). The cumulative strain
is maximal, and the displacement vectors express a collapse and a lateral escape. Stretching is accommodated
by a set of conjugate strain zones that act as conjugate normal faults. Four collapsed blocks (B1–B4) are
generated with increasing maturity toward the center of the hinge (Figure 5). These faults root in the shallow
viscoelastic layer. Along the limbs of the bulge, displacement vectors in the elastoplastic layer are oriented

Figure 6. Model 1 without incision or sedimentation: (a) cumulative shear strain and displacement fields after 1.2 Myr at the scale of the sedimentary cover, with
zooms in (b) the upper elastoplastic layer at the apex of the bulge, and at its (c) right and (d) left toes.
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parallel to the shallow viscoelastic layer,
and no strain is recorded. Hence, the
limbs correspond to undeformed rigid
rafts that slide down the slope and
transfer stretching from the apex of the
bulge to low-strain areas farther
downslope. In these areas, the
compressive stress regime coupled with
outward directed displacements reflects
a diffuse shortening that does not
generate uplift. This pattern shows that
the shallow viscoelastic layer acts as a
décollement and that gravity gliding
occurs above the bulge. Model 1 implies
that gravity gliding could occur on land
with realistic rheologies and no pore
fluid pressure.

Deformation in the shallow
elastoplastic layer results from flexural
and gravity-driven processes. At first,
crustal uplift generates flexural
stretching and contraction in the
sedimentary cover. Then, sliding of the
overburden is initiated when the basal

décollement layer reaches a critical slope. Tilting of the basal décollement in our model does not reach the
critical slope to allow gliding of the deep elastoplastic layer. Since both décollements have the same
rheological properties, these results highlight the role of overburden thickness. Strain related to the flexure is
negligible (~7 times less) compared to the strain generated by sliding. Thus, we argue the overburden at
either the top or bottom of the slope does not fail owing to the stress developed by flexure during the
uplift phase.
4.1.6. Critical Slopes and Amount of Displacement Related to Gravity Gliding

Several parameters play a role in the initiation of gravity gliding. The weight F
→

w of the overburden
increases with the length (L) and slope angle (θ) of the limb (equation (6)). Therefore, it is difficult to
predict which limb of the asymmetric bulge is more favorable for gliding. To address this point, we
compare the critical slope angle (θc) required to trigger the instability, the delay of initiation (Δt), the
velocity (V), and the cumulative displacement (D) of the slides occurring along both limbs. Since the
displacement and the strain intensity are negligible along the lateral edges the model, we argue that
the boundaries do not constrain the values of the critical slope, the intensity, and the kinematics of the
gravity gliding.

For this purpose, we estimate the displacements of two points located in the middle part of each limb (S and
L in Figure 6a). These undeformed domains, which are only translated down the slope, do not involve the
extensional and compressional components of the displacement. Sliding initiates when S and L start tomove.
Figure 7 shows the displacement of S (solid line) and L (dashed line) as a function of the slope angle. We
compute the cumulated displacements at each time step (δt) of the simulation. The slope angles of the short
and long limbs range from 0 to 10.4° and from 0 to 7.4°, respectively.

Gliding initiates for a lower slope along the long limb (4.4°) than along the short limb (6.1°) (Figure 7). Even if
the critical slope angle is lower for the long limb, gliding occurs at the same model run time (δt = 0.8 Myr) on

each limb (Δt = 0 Myr). This shows that F
→

w exceeds the resistive forces at the same time on both limbs.
Initiation of gliding requires a steeper slope along the shorter limb. The cumulative displacement is greater
along the shorter limb (Dsl= 386 m>Dll= 310 m) where the slide is faster (Figure 7). According to the
equation (8), the resistive force is around 1.25 times lower along the shorter limb (Fb in Figure 7). The shorter
limb thus facilitates the gliding.

Figure 7. Model 1 without incision or sedimentation: displacements every
66,590 years as a function of slope. Displacements are estimated for two
points S (short limb) and L (long limb) located in the middle of each limb of
the bulge (Figure 4), which cancels out the extensional and compressional
components of the gliding. We consider that the critical slope θc of the
gravity gliding is attained when the displacement is nonzero. The delay of
initiation of the slide is Δt, with its onset occurring at the same time above
both limbs. In blue are the values of Fb at each time step and in grey are Vsl
and Vll the velocities of gliding along the short and long limbs, respectively.
Dsl 1:2ð Þ andDll 1:2ð Þ are the cumulative displacements after 1.2Myr along the short
and long limbs, respectively: displacement is greater above the short limb.
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While simulated gravity gliding is concurrent above both limbs, it is more intense and faster along the short
limb. Although gliding would appear to be easier above the short limb, this is contradicted by field
observations (Figures 1 and 6). Indeed, gliding has been observed only along the long limb of the Chihuido
North anticline.

4.2. Interaction Among Incision,
Sedimentation, and Gravity Gliding

In this section, we investigate separately the
impact on gravity gliding of fluvial incision
(model 2) and sedimentation (model 3) at
the toes of the bulge. We focus our analysis
on the shallowest elastoplastic and
viscoelastic layers.
4.2.1. Impact of a River Valley at the Toe
of the Long Limb (Model 2)
Figure 8 shows the cumulative shear strain
and displacement fields obtained inmodel 2.
Cumulative strain along the short limb is the
same as obtained in model 1 (Figure 8a).
Stretching is more intense at the apex of the
bulge. In this case, stretching is
accommodated by five conjugate fault
systems (B1–B5; as against four in model 1;
Figure 6). The cumulative strain exceeds 1.0
and the magnitude of vertical collapse
increases to 175 m (Figure 8b; as against 150
m in model 1). At the toe of the long limb,
cumulative shear strain is mainly
concentrated between two conjugate zones,

Figure 9. Model 2with incision: displacements every 66,590 years as a
function of slope. Displacements are estimated for two points S (short
limb) and L (long limb) located in themiddle of each limb of the bulge
(Figure 4), which cancels out the extensional and compressional
components of the gliding. We consider that the critical slope θc of
the gravity gliding is attained when the displacement is nonzero. The
delay of initiation of the slide is Δt, with its onset occurring first along
the long limb. Dsl 1:2ð Þ and Dll(1.2) are the cumulative displacements
after 1.2 Myr along the short and long limbs, respectively: displace-
ments are greater along the long limb.

Figure 8. Model 2 with incision: (a) cumulative shear strain and displacement fields after 1.2 Myr at the scale of the sedimentary cover, with zooms in (b) the upper
elastoplastic layer at the apex of the bulge, and at its (c) right toe.
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located in a 3 km wide area in the valley (Figures 8a and 8c). These zones link the border of the valley to the
highly deformed area of the viscoelastic layer. The valley floor and the top of the viscoelastic layer are both
warped (Figure 8c). Beneath the valley, displacement vectors are oblique and face upward. To the right of the
valley, displacements are parallel to the shallow viscous layer and have lower vector magnitudes. The valley
floor is uplifted, and the strain zones may undergo reverse faulting rooted in the shallow décollement layer.
Thus, the valley concentrates most of the shortening. In this case, the critical slope angle is 3.9° above the long

limb (Figure 9). Gliding initiates earlier above
the long limb (time station δt = 0.73 Myr, as
against δt = 0.8 Myr) and the cumulative
displacement is greater at the end of the
simulation (Dll = 422 m > Dsl = 385 m).
4.2.2. Impact of Deposition at the Toe of
the Short Limb (Model 3)
In model 3, we thicken the upper
elastoplastic layer to 200 m at the toe of the
short limb (Figure 10). With respect tomodel
1, we do not observe any variation along the
long limb (Figure 10a). Stretching at the apex
of the bulge is narrower and displays only
three collapsed blocks (B2–B4; four in model
1). The collapse reaches only 110 m in height
(as against 150 m in model 1; Figure 5), and
cumulative shear strain is lower than 0.8
(Figure 10b). Cumulative displacement is
highly asymmetric and reaches a maximum
above the long limb. At the toe of the short
limb, strain is concentrated in the hinge of
the bend, with low values of cumulative
shear strain (<0.085) (Figure 10a). No
strain is recorded elsewhere (Figure 10c).

Figure 11. Model 3with sedimentation: displacements every 66,590 years
as a function of slope. Displacements are estimated for two points S
(short limb) and L (long limb) located in the middle of each limb of the
bulge (Figure 4), which cancels out the extensional and compressional
components of the gliding. We consider that the critical slope θc of
the gravity gliding is attained when the displacement is nonzero.
The delay of initiation of the slide is Δt, with its onset occurring first
along the long limb.Dsl 1:2ð Þ andDll 1:2ð Þ are the cumulative displacements
after 1.2 Myr along the short and long limbs: displacements are
greater along the long limb.

Figure 10. Model 3 with sedimentation: (a) cumulative shear strain and displacement fields after 1.2 Myr at the scale of the sedimentary cover, with zooms in (b) the
upper elastoplastic layer at the apex of the bulge, and at its (c) left toe.
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Gliding initiates later along the short limb (δt = 1.07 versus 0.8 Myr), with a critical slope angle 2 times
steeper (θc = 8.8°) than along the long limb (θc = 4.4°) (Figure 11). Cumulative displacement along the short
limb (Dsl = 64 m) is low in comparison with the long limb (Dll = 342 m).
4.2.3. Failure Criterion for the Gravity Gliding
Models 2 and 3 simulate the impact of a small variation of the overburden thickness at the toes of the

anticline. Theory suggests that the resistive force to downslope failure (F
→

d) decreases with thinning (erosion)
of the overburden and increases with its thickening (deposition). This would favor gravity gliding above the
long limb and would delay it above the short limb.

Indeed, in comparison with the reference model, the presence of a valley decreases the critical slope angle
required to trigger instabilities and increases the cumulative displacement. The apical stretching is thus
increased, which results in an additional collapsed block (B5) (Figure 8b). Reverse faulting accommodates
most of the shortening near the valley (Figure 8c). Thus, this valley creates a weakness zone that facilitates
the initiation of gliding, increasing the upslope stretching of 35% and controlling the location of
downslope shortening.

On the contrary, sedimentation increases the critical slope angle and reduces the cumulative displacements
of 85%. The apical stretching is strongly reduced in comparison with model 1, as expressed by the lack of
collapsed block B1 (Figure 10b). In addition, shortening at the toe of the limb is very weak, and strain in the
syncline hinge may be fully explained by flexural bending (Figures 10a and 10d). Thus, deposition
strengthens the overburden and inhibits the gravity gliding.

Considering a mixed model taking into account incision and deposition, gravity gliding would occur only
along the long limb where the slope angle is less than 5.2° with a critical slope angle reduced to 3.9°.Models 2
and 3 show that gravity gliding could be favored above the long limb while it is negligible above the short
limb, which runs against the prediction of model 1 with constant overburden thickness.

5. Analytical Solutions of Gravity Gliding

We compare the numerical models with an analytical theory to discuss how the critical slope depends on (1)
the length of the slide, (2) the thickness of the overburden, (3) the depth of incision, and (4) the thickness of
sedimentation. We also discuss the influence of the internal angle of friction. We consider the décollement
layer as a pure viscous body and we do not investigate the kinematics of the gliding after the critical slope
angle is reached. Thus, the analytical approach assumes that the basal detachment does not act against the
gliding, irrespective of the slope angle. The discrepancy between the numerical model and the analytical
results may be due to inaccuracies in the thin-sheet approximation assumed in the analytical approach.

5.1. Estimation of Critical Slope Angle

In this section, we provide a direct and rough estimate of the critical slope angle θc above which
instability can occur. This is achieved by solving a simplified two-dimensional equilibrium problem, to
obtain results that can be compared with our numerical models and used to facilitate the analysis of
some parameter effects. Contrary to the analytical work of Dahlen [1984] and Xiao et al. [1991] and the
recent analytical theories of Gemmer et al. [2005], Mourgues and Cobbold [2006], Brun and Fort [2011],
and Mourgues et al. [2014], our analytical approach assumes continental environments with no
additional solid or pore fluid pressure in the sediments. Moreover, there is no lateral friction since we are
considering lateral free edges.

For this purpose, let us consider the equilibrium of the tilted domain shown in Figure 3. Since the body is at

rest, the basal Couette force (F
→

b) falls to zero. Thus, the only forces acting on this domain are its weight F
→

w, the

reactions on its lateral facesF
→

u andF
→

d, and the reaction on its base (normal reactionR
→

N and Poiseuille force F
→

p).

The projection of the momentum equation F
→

u þ F
→

d þ F
→

w þ R
→

N þ F
→

p ¼ 0
→

onto the slope direction Ox gives

the equilibrium condition:

Fu � Fdð Þ cosθ þ Fw sinθ þ Fp ¼ 0 (12)

where Fu, Fd, Fw, and |Fp| are the norms of the corresponding vectors.
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The required expression for the critical slope angle θc is obtained by rewriting equation (12) with θ = θc,
which gives

ΔF cosθc þ Fw sinθc þ Fp ¼ 0 (13)

where ΔF = Fu� Fd. Note that if h1 = h2 then the Poiseuille force Fp is zero and the solution is simply given by

tanθc ¼ �ΔF
Fw

(14)

whereas, when h1≠ h2, equation (14) can be transformed into a quadratic equation involving tan(θc/2):

Fp � ΔF
� �

tan2 θc=2ð Þ þ 2Fw tan θc=2ð Þ þ Fp þ ΔF
� � ¼ 0 (15)

which is solved for θc in [0, π/2].

Compared to the solution of Brun and Fort [2011], our analytical approach takes into account the global
equilibrium of the forces including the upslope and downslope forces. It also avoids the load of the sea water
layer and considers lateral variations in the overburden thickness which implies the addition of the Poiseuille
force at the base of the system.

5.2. Relations Between Length, Thickness, and Slope of Overburden

Figure 12 shows some analytical solutions of the critical slope angle as a function of the length and thickness
of the slide. Few examples of inferred onland gravitational collapses may exceed 100 km long and 10 km
thick [e.g., Rangin et al., 2010]. In the following sections, we plot and discuss the results for lengths between 1
and 70 km and thicknesses between 0.5 and 10 km. This allows us to estimate the critical conditions for the

Figure 12. Results of the analytical model without incision or sedimentation: critical slope for sliding, as a function of the length of the sliding sheet (L), for various values
of overburden thickness (h) with internal friction angles (ϕ) of (a) 26°, (b) 30°, (c) 19°, and (d) 15°. ΔH(L,θ): difference in height as a function of slope and sheet length.
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initiation of gravity gliding on local to lithospheric scales. The dashed lines indicate a difference in elevation
of 2000 and 4000 m corresponding to the slope versus length couple. Considering a constant dip of the basal
detachment, we assume that the difference in height (ΔH; Figure 3) in continental environments rarely
exceeds 2000 m and never 4000 m. Thus, we consider that gliding is unlikely when the ΔH value falls in the
range 2000–4000 m, and unrealistic above 4000 m.

Figure 12a shows the analytical solutions obtained with amedium internal friction angle (ϕ =26°) and using the
hydrostatic pore pressure set in the numerical models. The critical slope angle rapidly attains 30° for lengths
shorter than 15 km and decreases to angles lower than 5° for 150 km long sliding sheets. Because the critical
slope angle decreases with the thickness of the slide, irrespective of its length, gliding is always favored in the
case of the thinnest overburden. Thus, as in the numerical models, the analytical critical slope angle would be
higher for shorter lengths, with gravity gliding occurring first above the shallowest detachment. If we consider a
1 km thick overburden, the analytical solution yields critical slopes of 4.8° and 3.3° for slides with lengths of
15 km and 22 km that correspond, respectively, to the western and eastern limbs of the Chihuido North
anticline. Similarly, the numerical model 1 yields slope angles of 5.6° and 3.9°. These slightly higher values
are probably due to the geometrical approximation of the analytical solution. According to the analytical
solutions, the 4200 m thick overburden requires critical slopes of 17.5 and 12.1° above the short and long
limbs, which are around 4 times higher than for a 1000 m deep décollement. These slopes are probably
unrealistic in nature, since the difference in elevation (ΔH; Figure 3) would exceed 4000 m.

According to equation (12), the overburden will fail andmove downslope when its weight (Fw) and the upslope
force (Fu) exceed the downslope resistance (Fd). Considering that the overburden thickness is laterally

Figure 13. Results of the analytical model with incision: critical slope for sliding, as a function of the length of sliding sheet (L), for various values of overburden thick-
ness (h) with incision depth (I) of (a) 200 m, (b) 1000 m, (c) 1500 m, and (d) 2000 m. ΔH(L,θ): difference in height as a function of the slope and the length.
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constant (h1 = h2 = h), the equation also holds true for the stress conditions (σ = F/h). Numerical and analytical
results show that a 1000 m thick overburden would slide when σd, σu, and σw are equal to 36, 4, and 32 MPa,
respectively, along both limbs. Because σw is not a function of the thickness, for similar lengths and slopes, its
value remains the same for the 4200 m thick overburden. Nevertheless, in this case, σd and σu increase to 140
and 22 MPa. Hence, under these conditions, the weight is insufficient, and gravity gliding cannot occur above
the deepest décollement layer in model 1. This demonstrates that contractional resistance at the toe of the
slope is a primary factor controlling gliding dynamics, in accordance with previous studies [Mourgues and
Cobbold, 2006; Lacoste et al., 2012]. In addition, the analytical solutions show that gravity gliding in nature
could occur when the décollement depth is shallower than 2000 m, while it is unlikely between 2000 and
4000 m, and certainly unrealistic at greater depths (Figure 12a).

5.3. Influence of Internal Friction Angle

According to Chéry et al. [2001], the friction angle needs to be adjusted to take account of pore pressure at
the crustal scale. Chéry et al. [2001] simulated this rheological state using an effective friction angle (ϕeff ) of
15–20° for a Drucker-Prager criterion. The Mohr-Coulomb criterion at yield point, assuming negligible
cohesion, is given by sin(ϕ) = (σ1/σ3� 1)/(σ1/σ3 + 1). Since borehole measurements in regions with
extensional and strike-slip stress regimes have shown that the σ1/σ3 ratio is always lower than 2 [Brudy
et al., 1997; Zoback and Townend, 2001], this leads us to obtain an effective friction angle lower than
19°. This result differs from laboratory experiments of Byerlee [1978] (ϕ ≈ 30°) and could be due to a
scale effect, pore fluid pressure, and structural inheritance. For example, in the first steps of the uplift
in our numerical models, extensional and compressional fracturing related to flexural bending may
weaken the upper and lower hinges of the bulge, thus localizing the resistive domains of the gliding
as discussed above.

Figures 12b–12d show the gliding conditions for several values of ϕ. For ϕ = 30°, according to Byerlee
[1978], gravity gliding is unrealistic for thicknesses exceeding 2 km (Figure 12b). Gliding would be more
probable for thicknesses of 3000–4000 m when associated with decreasing values of ϕ (Figures 12c and
12d). Considering the numerical model 1, gravity gliding remains likely above the shallower décollement
whatever the value of ϕ, with critical slope angles ranging from 5.8 to 2.7° for the short limb and from 3.9
to 1.9° for the long limb (Figure 12). Gliding remains unrealistic for an overburden thickness of 4200 m
whatever the value of ϕ.

5.4. Influence of Valley Incision and Deposition

F
→

d is affected by changes in the overburden thickness at the toe of the uplift (equation (5)). Removal of material

will decrease the resistance to contractional failure, whereas deposition will increase the resistance. On the

Figure 14. Results of the analytical model with sedimentation: critical slope for sliding, as a function of the length of sliding sheet (L), for various values of overbur-
den thickness (h) with sedimentation thickness (S) of (a) 200 m and (b) 1000 m.
ΔH(L,θ): difference in height as a function of the slope and sheet length.
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contrary, considering that the length and thickness of the translated raft are unchanged, F
→

w varies only with
θc. Moreover, fluvial incision and/or sedimentation induce a pressure gradient in the overburden which

induces Poiseuille flow F
→

p in the décollement layer. The presence of a valley generates a positive pressure

gradient directed downslope, where F
→

p favors the formation of a slide. This gradient becomes negative in the

case of deposition, andF
→

p resists the formation of a slide. To compare the analytical and numerical solutions, we

set the thickness (hs) of the shallow décollement layer at 200 m and at 300 m for deeper décollement. For these

thicknesses, F
→

p decreases significantly the critical slope angle by about 1–10%, i.e., by ~1° when the overburden

is short and thin, and by ~0.1° when the overburden is long and thick. Figure 13 shows the effect of depth of
incision on the critical slope angle, assuming a valley of infinite width (with depths of 200m, Figure 13a; 1000m,
Figure 13b; 1500 m, Figure 13c; and 2000 m, Figure 13d). The deepest valley is consistent with the amount of
incision of the Colorado River (Utah, USA). A 200 m deep valley facilitates gravity gliding above décollements
having depths inferior to 2000 m (Figure 13a). Gliding becomes possible above a 4200 m deep décollement in
the case of an incision of 1000 to 1500 m (Figures 13b and 13c) and likely where incision reaches 2000 m
(Figure 13d). Gravity gliding remains unlikely where décollements are deeper than 6000 m. The analytical
solution yields a smaller critical slope (2.0°) along the long limb compared with the value of 3.9° obtained from
model 2 assuming a 200mdeep valley (Figure 13a). In that case, the analytical solution also suggests that gravity
gliding cannot occur above a 4200 m deep décollement along the long limb. Indeed, the critical slope angle θc
would have to reach 10.9°, while the slope is only 7.0° at the end of the numerical simulation (Figure 8).

Figure 14 shows analytical calculations of the influence of deposition at the toe of the uplifted zone. We
tested the deposition thicknesses of 200 m (Figure 14a) and 1000 m (Figure 14b). In the former case, gravity
gliding is inhibited above décollements located at depths superior than 1000 m (Figure 14a). According to
the analytical solution, a slide along the short limb would be initiated at θc = 7.0° for a 15 km long overburden
instead of at 8.8°, as indicated by the numericalmodel 3. The difference in elevation reaches around 2000 m,
which explains why gravity gliding is negligible at the end of the numerical simulation. In addition, the
analytical solution suggests that deposition having a thickness of more than 1000 m inhibits gravity gliding
regardless of the depth to the detachment (Figure 14b). Note that the critical slope angle required to
generate gliding becomes higher when the overburden thickness increases from 500 m to 1000 m, which is

in contrast to the usual solutions. This probably reflects the resistance to gliding due to the effect of F
→

p.

6. Discussion

Our numerical models are simplified prototypes designed to investigate the forcing factors that allow onland
gravity gliding. Our models are not intended to simulate the details of geological processes operating in
nature and are not expected to provide exact representations of the resulting structural styles. The models
display plane strain cross sections with a geometrically simple sedimentary cover, as found in forelands, and
are based on idealized material properties that are homogeneous along strike, without any preexisting relief.
In nature, many other configurations of gravity gliding could be associated with other values of erosion,
deposition, internal friction angle, viscosity, and thickness of the décollement layers.

In accordance with our results, numerical and analytical solutions and laboratory experiments have shown
that dips lower than 5° are sufficient to generate large-scale gravity gliding as observed on passive margins
[e.g., Mandl and Crans, 1981; Vendeville et al., 1987; Rossello and Cobbold, 1988; Cobbold et al., 1989; Mauduit
et al., 1997a; Duval et al., 1992; Lundin, 1992; Mourgues and Cobbold., 2006; Sellier et al., 2013]. Brun and Fort
[2011] proposed analytical solutions showing that dominant gravity gliding of overburdens up to 2000 m
thick and several hundreds of kilometers long would occur on land for slope angles of 1° without abnormal
fluid pressure in sediments or supplementary upslope load. Nevertheless, it remains unclear whether smaller-
scale gliding could occur under such conditions.

The idea that smaller gravity-driven slides could occur on land has been investigated mechanically considering
that river incision weakens the frontal buttress. For example,McGill and Stromquist [1979] interpreted a series of
grabens in the Canyonlands National Park (Utah) as resulting from a gravity slide toward the canyon of the
Colorado River. The rigid plate is 25 km long and 460 m thick and slides above a 300 to 450 m thick evaporite
layer dipping at an angle of 1–2°. Schultz-Ela and Walsh [2002] presented a set of numerical models which
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simulate this gravity-driven slide without a frontal buttress. Assuming rheological properties similar to those
used in our models, they concluded that sliding could be simulated for these conditions. Lacoste et al. [2009]
questioned the link between gravity spreading and river incision. They investigated an example of river
incision-related landslides in the Waitawhiti area (New Zealand) involving overburdens around 1 km long and
50 m thick with strata dipping nearly horizontal to 20°. Based on these settings, analogue experiments indicate
that initial incision at the toe of the slope would trigger slides, especially when the process is continuous
through time [Lacoste et al., 2011, 2012]. Such configurations are consistent with our results (Figure 13). In
addition, since river incision often attains the décollement layer, Poiseuille flow can play a significant role when
this layer is composed of evaporites [Schultz-Ela and Walsh, 2002].

Using numerical models and the analytical solutions, we investigated the feasibility of onland gravity gliding
in the Chihuidos area of the Andean fold belt (Figure 1). Results imply that a tilt of 3 to 5° in a 30 km long
slab of sediments would be sufficient to generate gravitational instabilities in the uppermost kilometer
(Figures 6 and 12). These conditions are encountered on the eastern limb of the Chihuido North anticline,
suggesting that gravity gliding can occur. Solutions with a 200 m deep river valley at the toe of the long limb
indicate that incision forms a weak zone which favors contractional failure and reduces the critical slope
required for sliding by as much as 1° (Figures 8 and 13a). Thus, incision would facilitate gliding and lead to
increased maturity of the extensional and contractional deformation. Such gliding could not occur above a
4200 m deep décollement layer (Figures 1, 6, and 12), which is consistent with the geological observations.
Nevertheless, because the current structural slope of the short limb of the Chihuido North anticline exceeds
the critical slope predicted by the numerical and analytical solutions, the short limb should have experienced
deformation, even thoughMessager et al. [2014] failed to observe any evidence of this (Figures 1, 6, and 12a).
However, geological observations argue for a 200 to 1000 m thick sedimentary thickening at the toe of
this limb. For these values, our theoretical solutions show that deposition can inhibit gravity gliding
(Figures 1, 10, and 14b). Thus, rather than the structural pattern of the Chihuidos Massif, Cretaceous to
Neogene sedimentation andQuaternary river incision at the toes of the structure may have primarily controlled
the onset of gravity gliding. On a more regional scale, Quaternary extension in the southern central Andes is
mostly located above crustal-scale anticlines [e.g., Narciso et al., 2000; Folguera et al., 2008]. In a recent study,
Messager et al. [2010] showed that some of these crustal structures were uplifted during the Quaternary,
while fluvial incision of more than 1000 m took place in the Neuquén Basin during the Pleistocene, probably
due to climatic forcing [Rabassa and Clapperton, 1990]. Thus, we can investigate the origin of some extensional
structures in the light of criterion failure analysis of gravity-driven instabilities. In general, we infer that
gravity gliding over distances of less than 100 km with an overburden thickness of up to 2000 m could be
common in tectonically active foothills where incision is the rule.

Recent studies have suggested the possibility of such a process at the crustal scale. In the southwestern
French Alps, Rangin et al. [2010] proposed that the 150 km long French Provençal Basin detached at a depth
of 10 km above Triassic evaporites. Considering a density of 2800 kgm�3, a cohesion of 1 MPa and a low
internal friction angle of 15° [Chéry et al., 2001], the critical slope exceeds the current average topographic
gradient (0.95°; Figure 12d). For the critical slope to reach a value of 0.55°, themechanical conditions require a
thinning of around 2500–3000 m down the slope. Fluvial incision is insufficient to produce so much thinning;
only oceanic basins can guide the location of a weak frontal buttress at the crustal scale as invoked by
Larroque et al. [2009] in the southeastern French Alps. Nevertheless, these results suffer from some shortcomings
due to the geometrical assumptions of the physical problem in 2-D, as well as uncertainties on the crustal
rheology and the role of the spreading component.

7. Conclusions

Mechanisms allowing large-scale onland gravity gliding are investigated using 2-D finite elementmodeling and
a 2-D analytical failure solution. Numerical models are used to simulate the shape of asymmetrical crustal-scale
uplift near the Andean front. The sedimentary cover includes two thin décollement layers at depths of 1000 m
and 4200m. Uplift during the Quaternary is suspected to trigger the sliding of a 1000m thick overburden above
the long limb of the Chihuido North anticline. In this study, we examine the role of fluvial incision and
sedimentation which occur at the toes of the structure. We consider that, unlike in passive margins or deltaic
domains, upslope sedimentation and fluid overpressure in onland sediments are not driving forces.
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Finite deformation associated with the gravity gliding shows that the overburden slides only above the
shallow décollement located at a depth of 1000 m. Extension is expressed by collapsed blocks on top of the
uplift, while contraction is more diffuse at the toe of the limbs. Numerical and analytical results show that
without incision and sedimentation, gliding occurs simultaneously above both limbs but is faster above the
steeper short limb. Large-scale gravity gliding can be found in continental domains where overburden
thickness is less than 2000 m; river incision reduces the critical slope angle and facilitates gliding above the
long limb. Stretching is increased and shortening is concentrated in this weakened zone. River incision
between 1000 and 2000 m deep may lead to overburden instabilities up to 4000 m thick; deposition
increases the critical slope angle and gliding is negligible above the short limb. The deposition of sediments
thicker than 1000 m would inhibit large-scale gravity gliding in nature.

In tectonically active regions, we show that uplift can generate slopes steep enough to initiate gravity
instabilities and that incision reduces the downslope resistance to contractional failure, while sedimentation
has the opposite effect. Our results show that gravity gliding is mechanically feasible in the case of the
Chihuido North anticline. Considering both sediment storage and river incision, gravity gliding would occur
only along the long limb, contrary to the prediction without incision or sedimentation. These results show
that thin-skinned onland gravity gliding could be common in tectonically active regions where incision is the
rule, which provides a potentially new explanation for the origin of thin-skinned extension in
mountain ranges.
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