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Abstract The lattice Boltzmann method (LBM) is an innovative approach in computational
fluid dynamics (CFD). Due to the underlying lattice structure, the LBM is inherently par-
allel and therefore well suited for high performance computing. Its application to outdoor
aeraulic studies is promising, e.g. applied on complex urban configurations, as an alternative
approach to the commonplace Reynolds-averaged Navier–Stokes (RANS) and large eddy
simulation (LES) methods based on the Navier–Stokes equations. Emerging many-core de-
vices, such as graphic processing units (GPUs), nowadays make possible to run very large
scale simulations on rather inexpensive hardware. In this paper, we present simulation re-
sults obtained using our multi-GPU LBM solver. For validation purpose, we study the flow
around a wall-mounted cube and show agreement with previously published experimental
results. Furthermore, we discuss larger scale flow simulations involving nine cubes which
demonstrate the practicability of CFD simulations in building external aeraulics.

Keywords Computational fluid dynamics · Lattice Boltzmann method · Urban flow ·

Large eddy simulation · High-performance computing

1 Introduction

Computational fluid dynamics (CFD) appears more and more suited and relevant to inves-
tigate aeraulic issues from the building-scale to the meso-scale [37]. Actually, three ap-
proaches are at hand when focusing on external air flows: full-scale measurements, wind
tunnel simulations and CFD modelling. Each one has its own advantages and drawbacks,
which make them highly complementary, yet more or less suited to specific investigations.
Due to its better versatility, CFD modelling is well-suited for the investigation of various as-
pects linked with local urban micro-climates, such as urban wind patterns or building energy
loads [2, 18]. However, the accuracy of numerical outputs greatly depends on the physical
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Nomenclature

CS Smagorinsky constant
cs speed of sound [m ·s−1]
δ t time step [s]
δx mesh size [m]
e energy [J]
F external force
f distribution function
H height of the cube [m]
h height of the channel [m]
j fluid momentum [kg ·m−2

·s−1]
m mass of the particle [kg]
P strain rate tensor
pxx related to the strain rate tensor
p mean pressure [Pa]
q heat flux [W ·m−2]
Re Reynolds number [−]
r averaged pressure relative variation [−]
s relaxation rate
T0 turn-over time [s]
u0 maximum inlet velocity [m ·s−1]
u fluid velocity [m ·s−1]
x,y,z position [m]

Greek letters

Ω collision operator
ξ α particle velocity [m ·s−1]
ρ fluid density [kg ·m−3]
ε energy square [J2]
ν kinematic viscosity [m2

·s−1]
τ relaxation time [s]

Subscripts

0 molecular or inflow
α associated to the particle velocities ξ α

B bulk
t turbulent
x,y,z relative to direction
∞ free-stream

and numerical hypotheses. These modelling assumptions can directly impact simulation re-
sults and their usability in further studies.

In comparison to the commonplace Reynolds-averaged Navier–Stokes (RANS) models
used in wind engineering, studies performed with the large eddy simulation (LES) method
provide more relevant results. It should be pointed out, in particular, that simplified ap-
proaches are not satisfactory in terms of accuracy when modelling energy efficient build-
ings [3]. As a matter of fact, the representation of the turbulent fluctuations as well as the
resolution of the largest turbulence scales can significantly improve the computed fields pro-
viding better fit to experimental results. However, the more complex a model is, the higher
the computational effort will be. Consequently, the challenge is yet to enhance the quality
of CFD models while controlling the computational costs. Indeed, recent advances, in both
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computational fluid dynamics and high performance computing make possible to consider
the actual use of explicit flow simulations in building models.

In this contribution, we shall present simulation results obtained using the lattice Boltz-
mann method (LBM). Being based on a mesoscopic point of view, this novel CFD ap-
proach has numerous advantages over classic macroscopic methods such as the solving of
the Navier–Stokes equations [5]. Among other benefits, it is worth mentioning the high nu-
merical stability, the ability to deal with complex geometries and the straightforwardness
of various physical couplings and turbulence modelling [6]. Although parallel implementa-
tions of the LBM may be rather efficient, performing large scale simulations on mainstream
architectures still requires the use of expensive clusters [28]. The present simulations were
carried out using several graphics processing units (GPUs) in parallel within a single server.
Performance afforded by such hardware configuration is comparable to the one obtained us-
ing large clusters at a fairly lower cost. Their use in LBM based urban flow simulations dates
back to the first attempts to perform general purpose computations on these domain-specific
processors [9] and is still under active investigation [26]. The present work is an improved
and extended version of a contribution to the proceedings of the Building Simulation 2011
conference [23].

The remainder of the paper is organised as follows. The second section gives a brief
review of some previous works showing the ability of CFD to provide a better understanding
of urban air flows. It addresses current practices in CFD modelling for outdoor issues and
highlights some sore points which are directly linked to modelling assumptions. The third
section is a summary of the LBM, presenting the specific model we retained, together with
the subgrid-scale model we added in order to enable simulations at high Reynolds number.
In the fourth section, we give a short description of state-of-the-art GPU implementations
of LBM solvers and of our multi-GPU LBM framework. In the fifth section, for validation
purposes, we present the simulation of a fully developed flow over a wall-mounted cube in a
flat channel. The simulation results are compared to experimental data. Section 6 reports the
simulation of the flow over nine identical wall-mounted cubes at high Reynolds numbers.
The last section gives some concluding remarks.

2 Application of CFD to external aeraulic issues

With the present and future growth of the world’s urban population, new challenges arise
in terms of environment, energy, as well as human health and comfort. The development of
urban areas, with the increase of population density, imply sensible micro-climate modifica-
tions. As a matter of fact, urban thermal and mass balances are changed, which might lead
to the intensification of urban heat island as described in Ref. [25], as well as to more lo-
cal phenomena, such as specific wind events which are of great importance for many urban
applications.

Simple empirical relations might provide valuable indications and trends regarding the
outdoor environment of a building. However, as already stated, to go further than preliminary
investigations, it is necessary to resort to either on site measurement campaigns, wind tunnel
simulations or CFD modelling (see [18] for a more in-depth discussion). The first method
is the only one which includes all turbulence scales and takes into account all complex
interactions occurring within the area of interest. It allows for a direct observation of reality.

Wind tunnel tests and CFD simulations are models, which are generally composed of
still obstacles contained in a bounded domain. However, field experiments do not enable
parametric studies to be carried out, and their boundary conditions are inherently undefined.
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On the contrary, all boundary conditions of wind tunnels and CFD models are known. Sev-
eral versions of a geometrical configuration can be investigated, which is useful during the
design process. In practice, each one can advantageously be used to evaluate interactions
between a building or an urban planning project and its immediate environment (see for
instance [2]). Nevertheless, these approaches must address important methodological and
modelling requirements, such as similarity criteria or accuracy assessment by model valida-
tion and verification.

Due to its versatility and relatively low cost, CFD is increasingly used in urban studies.
Its application domain goes beyond the building boundaries, and is currently extended to
the study of the outdoor environment. Actually, numerical simulations can be performed to
investigate many applications linked with urban physics issues [3, 18], such as:

• urban pedestrian wind environment: wind comfort and wind danger;
• wind-driven rain on buildings;
• convective heat and mass transfer coefficients for external building walls which directly

impact building energy loads;
• pollutant dispersion within the urban area from car, domestic and industrial exhausts, or

toxic releases.

CFD can also provide information on natural ventilation potential and free cooling, which
are interesting passive strategies for building thermal control.

The temporal and spatial resolution of CFD models provide the whole flow field data.
As a consequence, CFD simulations can be linked with other numerical models, and supply
useful boundary conditions. For example, it can provide mean pressure distribution and
convective heat transfer coefficients at building outer walls for a building energy simulation.
It can also give pollutant concentrations close to ventilation devices to allow for a better
building design.

Nevertheless, because of turbulence phenomena, external air flows are usually complex,
even for apparently simple configurations. This hardship comes in addition to the conse-
quences of the CFD modelling assumptions. Consequently, most of research studies have
been carried out on quite simple geometries, for which comprehensive experimental valida-
tion datasets are available. Those generic cases, typically cubes, ideal street canyons or array
of cubes already show intricate flow recirculation phenomena, which would then be met in
more complex configurations. Their understanding is in essence preliminary to further urban
studies.

CFD studies for urban issues are often carried out using a steady RANS approach, based
on time-averaged Navier–Stokes equations together with a closure scheme, typically two
transport equations for the turbulent kinetic energy k and the dissipation ε . All turbulence
scales are thus taken into account. Such models are widely used in industrial applications be-
cause of their computational efficiency. However, for urban wind investigations, even though
this kind of approach usually provides satisfactory global mean wind fields, it is often de-
ficient to predict accurately recirculation in building wakes, concentration fields, or wind
driven rain impact.

The LES method is a time-dependent approach which resolves all the turbulence scales
but the smallest ones. The smallest eddies are taken into account by a sub-grid scale model.
The largest eddies, which contain most of the turbulent kinetic energy, are highly anisotropic
and dependent of the geometric and climatic conditions, whereas the smallest one have a
more universal behaviour [18]. Consequently, LES simulations usually reproduce empirical
observations well.
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To evaluate the accuracy of CFD approaches, several studies compare standard and mod-
ified RANS models and LES for urban wind issues [11, 35, 37]. They show the advantage of
reproducing transient features and vortex shedding. Such comparisons were performed for
variously complex geometries, allowing different levels of analysis and interpretation. Some
of them are briefly reviewed hereafter, as representative examples of wind velocity fields or
pollutant dispersion patterns investigations.

In Ref. [37], the authors compare several numerical approaches (mostly RANS but also
LES for the simplest cases) on different geometric configurations, from an isolated sharp
edged element to a complex urban configuration. Pedestrian wind environment is inves-
tigated. For the tested models, RANS predictions for strong wind zones are found to be
fairly satisfactory, but thus fail to reproduce wind patterns in the wake region and close to
buildings. This lack of accuracy is attributed to incapacity of RANS to reproduce the vortex
shedding in building wakes, which can be achieved with an LES model. Furthermore, instan-
taneous wind velocity maximum could be computed by LES, allowing for the identification
of dangerous gusts zones.

To analyse in details the mechanisms leading to the differences between RANS and LES,
Tominaga and Stathopoulos performed a detailed comparative study of dispersion around a
cube [35]. It is shown that the tested RANS model tends to underestimate the turbulence
diffusion around the cube, and that the reattachment length downstream the obstacle is over-
predicted. In terms of concentration fields, LES provides better results with regards to ex-
perimental measurements.

In Ref. [11], considering a more complex geometric configuration, the authors study
the near field pollutant dispersion for a stack release in Montreal. Simulations using the
standard RANS k–ε model and the LES approach are compared to a wind tunnel experiment.
LES provides better results than RANS for the two wind directions tested. One of the main
conclusions is that RANS output is highly dependent of the turbulent Schmidt number which
is a priori unknown. Because of its time-dependent nature, LES does not need such input
parameter. Moreover, the flow separation reproduction is found to be important to provide
more accurate results, which is known to be often one of the weaknesses of RANS.

All of these studies emphasise the importance of modelling transient flow features, tur-
bulence anisotropy, and turbulent dispersion of pollutant, to get accurate predictions. How-
ever, they also stress the high computational resources needed to carry out a mesoscopic LES
simulation even on a simple case. As a consequence, significant advances in the efficiency
of simulations are required for the LES to become more than a research tool, despite of its
identified benefits. In the following sections we shall thus present an innovative approach to
perform high-performance LES simulations, combining the computational power of GPUs
with the efficiency of the lattice Boltzmann method.

3 Lattice Boltzmann method

3.1 Lattice Boltzmann equation

Although originating from the lattice gas automata theory [10], the lattice Boltzmann method
is nowadays usually interpreted as a discrete version of the Boltzmann transport equa-
tion [16]:

∂t f +ξ · ∇x f +
F

m
· ∇ξ f = Ω ( f ), (1)
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where f (x,ξ , t) describes the evolution in time of the distribution of one particle in phase
space, F is the external force field, m the mass of the particle, and Ω the collision operator.
It is well known, using Chapman-Enskog expansion, that the incompressible Navier–Stokes
equations can be recovered from the Boltzmann transport equation for small Knudsen num-
bers (see for instance [4]).

Discretisation occurs both in time, with constant time steps δ t, and phase space, gen-
erally using a regular orthogonal grid of mesh size δx and a finite set of N + 1 particle
velocities ξ α with ξ 0 = 0. The later is commonly a subset of the velocities linking any node
of the grid to its nearest neighbours as the D3Q19 stencil we used for our simulations (see
Fig. 1).
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Fig. 1: The D3Q19 stencil — The elements of this stencil link any node of the grid to 19 of

its 27 nearest neighbours (including itself).

The discrete counterpart of the distribution function f is a finite set of functions fα(x, t)
associated to the particle velocities ξ α . Let us denote:

∣∣aα

〉
= (a0, . . .aN)

T ,

T being the transpose operator. The lattice Boltzmann equation (LBE) is expressed as:

∣∣ fα(x+δ tξ α , t +δ t)
〉
−
∣∣ fα(x, t)

〉
= Ω

[∣∣ fα(x, t)
〉]
. (2)

The mass density ρ and the velocity u of the fluid are given by:

ρ = ∑
α

fα , u =
1
ρ ∑

α

fα ξ α . (3)

3.2 Multiple-relaxation-time LBM

The simplest (and most commonly used) way to express the collision operator is the LBGK
approach [29], which uses the Bhatnagar-Gross-Krook approximation [1]. We instead chose
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to use the multiple-relaxation-time (MRT) approach [7]. Although of higher computational
cost, MRT was shown of better accuracy and numerical stability than LBGK [13].

In the MRT approach, collision is performed in moment space. The particle distribution
is mapped to a set of moments {mα | i = 0, . . .N} by an orthogonal matrix M:

∣∣ fα(x, t)
〉
=M−1

∣∣mα(x, t)
〉

(4)

where
∣∣m(x, t)

〉
is the moment vector. For the D3Q19 stencil, the orthogonal matrix M can

be found in appendix A of [8].
The moment vector corresponding to the D3Q19 vector is given by:

∣∣mα(x, t)
〉
=
(
ρ,e,ε, jx,qx, jy,qy, jz,qz,3pxx,3πxx, pww,πww, pxy, pyz, pzx,mx,my,mz

)T
(5)

where e is energy, ε is energy square, j = ( jx, jy, jz) is the momentum, q = (qx,qy,qz) is
the heat flux, pxx, pxy, pyz, pzx, pww are related to the strain rate tensor S, πxx, πww are
fourth-order moments and mx, my, mz are third-order moments with respect to the particle
velocities. The mass density and the momentum are the conserved moments.

The LBE is thus expressed as:

∣∣ fα(x+δ tξ α , t +δ t)
〉
−
∣∣ fα(x, t)

〉
=−M−1Λ

[∣∣mα(x, t)
〉
−
∣∣m(eq)

α (x, t)
〉]

(6)

where Λ is a diagonal collision matrix and the m
(eq)
α are the equilibrium values of the mo-

ments. For the sake of isotropy, Λ obeys:

Λ= diag(0,s1,s2,0,s4,0,s4,0,s4,s9,s10,s9,s10,s13,s13,s13,s16,s16,s16). (7)

We additionally set s9 = s13. The relaxation rate s9 is linked to the kinematic viscosity
ν of the model by:

1
s9

=
1
c2

s

ν +
1
2
, (8)

where the speed of sound cs is set to:

cs =
1√
3
× δx

δ t
. (9)

The other rates are set according to [13], i.e. s1 = 1.19, s2 = s10 = 1.4, s4 = 1.2, and
s16 = 1.98.

3.3 Large-eddy simulation

For large-eddy simulation (LES), the kinematic viscosity is ν = ν0 + νt where ν0 is the
molecular viscosity and νt is the turbulent viscosity. In the Smagorinsky model [32], the
turbulent viscosity is given by:

νt = |S|(CSδx)2, |S|=
√

2S : S , (10)

where CS is the Smagorinsky constant, which in the present work is set to CS = 0.1. Adding
eddy viscosity to the MRT model is achieved by replacing the relaxation rate s9 with:

s∗9 =
1

τ0 + τt

(11)
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where τ0 and τt are the molecular and turbulent relaxation times:

τ0 =
1
c2

s

ν0 +
1
2
, τt =

1
c2

s

νt . (12)

Following [12], the second order moments obey:

Pi j = ∑
α

ξαiξα j fα = c2
s ρδi j +ρuiu j −Qi j (13)

with:

Q=
2c2

s ρ

s∗9
S . (14)

Thus, the strain rate tensor may be computed from the moment vector. For the D3Q19
stencil, we obtain:

Pxx =
1
57

(30ρ + e)+ pxx, (15)

Pyy =
1
57

(30ρ + e)+
1
2
(pww − pxx), (16)

Pzz =
1
57

(30ρ + e)− 1
2
(pxx + pww), (17)

Pxy = pxy, Pyz = pyz, Pzx = pzx. (18)

Finally, assuming that νt depends on S at current time, we have:

τt =
1
2

(√
τ2

0 +18 |Q|(CSδx)2 − τ0

)
. (19)

4 Multi-GPU solver

4.1 Algorithmic aspect

From an algorithmic standpoint, the LBE (Eq. 2) naturally breaks in two elementary steps:

∣∣ f̃α(x, t)
〉
=
∣∣ fα(x, t)

〉
+Ω

[∣∣ fα(x, t)
〉]

(20)

∣∣ fα(x+δ t ξ α , t +δ t)
〉
=
∣∣ f̃α(x, t)

〉
(21)

Equation 20 describes the collision step in which an updated particle distribution is com-
puted. Equation 21 describes the propagation step in which the updated particle populations
are transferred to the neighbouring nodes as outlined by Fig. 2 (in two dimensions for the
sake of simplicity).

It is worth mentioning that in the first step, computations only involve informations local
to each node. Moreover, in the second step, data transfers only require proper synchronisa-
tion with the nearest neighbours. As a matter of consequence, the LBM is fairly well suited
for parallel implementations.
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Fig. 2: Propagation step — After collision (left-hand side), the updated particle densities are

simply advected to the neighbouring nodes with respect of the chosen stencil.

4.2 CUDA implementations

During the last decade, the computational power of GPUs has grown exponentially, reach-
ing 1.35 Tflop/s single precision peak performance with the latest generation of NVIDIA
processors [19]. Early attempts to implement the LBM on such hardware [9] were quite
promising. With the introduction of the CUDA technology by NVIDIA in 2007, general
purpose programming on GPUs became more practicable. Several successful CUDA imple-
mentations of the three-dimensional LBM [20, 34] were reported from then on.

On recent hardware, single GPU implementations are able to handle up to about 7.7×
108 nodes per second, whereas multithreaded CPU implementations handle at most about
8.5× 107 nodes per second using a single quad core processor [14]. It is also worth men-
tioning that performance of GPU implementations is communication bound [21], while per-
formance of CPU implementations is computation bound. Thus, making use of a model of
higher algorithmic complexity (e.g. MRT instead of LBGK) has in general little impact on
performance.

4.3 TheLMA framework

GPUs provide large computational power at fairly low cost. Yet, although growing more ver-
satile at each generation, CUDA enabled GPUs still have numerous drawbacks. The CUDA
tool chain for instance, due to hardware limitations, is unable to link several GPU binaries.
In cases like LBM, this forbids the use of library oriented development techniques. The
limited amount of on board memory may also be problematic. Using the latest computa-
tion devices, a single GPU implementation of the D3Q19 scheme may handle at most about
4.2×107 nodes in single precision.

To address both issues, we created the TheLMA framework [33]. TheLMA stands for
Thermal LBM on Many-core Architectures, thermal simulations being our main topic of in-
terest. The TheLMA framework is designed to improve code reusability. Setting up a new
simulation usually only requires minor code modifications. Moreover, TheLMA provides
native multi-GPU support, for single-node servers [22] as well as for multi-node GPU clus-
ters [24].
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5 Flow around a single cube

In order to validate our MRT-LBM solver, we chose to simulate a fully developed flow
around a wall-mounted cube in a channel. The simulation results are compared to experi-
mental data from [17]. Figure 3 outlines the simulation setup.

O

Inflow

x

z

H

h

(a) Side view

O x

y

(b) Top view

Fig. 3: Simulation setup for a single cube

The channel is represented by a cavity containing 1024×768×192 ≈ 1.51×108 nodes.
Solid walls are simulated using half-way bounce-back boundary condition (see for instance
[27]). A uniform velocity profile at the inlet is imposed by adding the corresponding non-
equilibrium values to the distribution functions. The outlet condition is obtained by imposing
null velocity gradient. The size of the cube is set to H = 58δx in order to have h/H ≈ 3.3 as
in our reference, and the position of the cube is such as x0 = 4H. It should be mentioned that,
in order to save memory, y0 is less in our setup than in the experimental one. This allows to
improve the resolution of the obstacle, with little impact on the flow since we have y0 > 6H.
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In their work, the authors of [17] give the time-averaged streamwise velocity of the flow
in the vertical symmetry plane, obtained through laser Doppler anemometry (LDA). The
measurements were conducted at Reynolds number Re = 4440 where:

Re =
uBH

ν
(22)

and uB is the bulk velocity of the inflow. In our simulation, to ensure temporal convergence
to a statistically steady state, we averaged the streamwise velocity over time from 50T0 to
200T0, where T0 = H/u0 is the turn-over time and u0 is the maximum inlet velocity. The
overall computation time was less than six hours using a Tyan B7015 server with eight
Tesla C1060 computing devices.

Figures 5 and 6 show upstream and downstream normalised velocity profiles with re-
spect of x/H for both simulation and measurements. Agreement of simulation data with
experimental data is satisfactory since uncertainties on both position and value of measure-
ments should be taken into account. Unfortunately, our reference does not provide such
informations, nor does it give detailed data regarding the inlet velocity profile. Although not
perfect, agreement with measurements is by far better than in previously published work
(see for instance Fig. 9 of [36]).

The upstream velocity profiles (Fig. 5) show very similar variations. For z/H ≤ 0.13,
both the experiment and the simulation show that the streamwise velocity reaches a mini-
mum near the obstacle. While agreeing on the magnitude of this minimum, they disagree
on its location which is about x/H = −0.35 for the experiment and x/H = −0.45 for the
simulation. Moreover, for z/H ≥ 0.3, the simulation tends to overestimate the streamwise
velocity with respect to experimental data when drawing away from the obstacle. We assume
these discrepancies are mainly caused by the uncertainties regarding the approach flow. The
downstream velocity profiles (Fig. 6) are in good agreement, both from a qualitative and a
quantitative standpoint.

6 Flow around nine cubes

To illustrate the possible use of multi-GPU LBM solvers in building aeraulics, we chose to
simulate the flow around nine identical wall-mounted cubes. Figure 4 outlines the simulation
setup. Even if quite simple, this configuration implies complex turbulent flows.

For this simulation we used the same Tyan B7015 server, this time equipped with seven
Tesla C2075 computing devices. The larger available device memory enabled us to use a
simulation domain of size 1288×768×240 which amounts approximatively to 2.38×108

nodes. The size of the cubes is set to H = 48δx, and the position is such that x0 = 3H and
x1 = H/2. Thus, we have y0 = 6H and h = 5H. We impose logarithmic velocity profile for
the inflow. In this configuration, we define the Reynolds number as:

Re =
u1H

ν
(23)

where u1 is the inflow velocity at obstacle height. Furthermore, to reduce the impact of
lateral faces on the flow, we apply the same boundary condition as for the outlet, i.e. null
velocity gradient in the direction normal to the face.

We chose to run simulations at Re1 = 4× 104 and Re2 = 106. Smagorinsky subgrid-
scale models were reported satisfactory in similar situations, for Reynolds numbers up to
at least Re1 with LBM flow solvers [12], and at least Re2 for Navier-Stockes solvers [31].
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Fig. 4: Simulation setup for nine cubes

Although the LBM part in our implementation differs from the former, we may be confident
in the results at Re = Re1. The simulation at Re = Re2 is more relevant at building scale,
however the results should be considered with greater care.

As in the single cube simulation, we averaged density and velocity over time from 50T0

to 200T0, the turn-over time being set to T0 = 4H/u0. The overall computation time was
about 14 h 56 min for 768000 time steps. The corresponding performance is approxima-
tively 3.4× 109 node updates per second, which is about a 40× speedup over optimised
multi-threaded CPU implementations.
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Figures 7 and 8 display the pressure relative variation r and velocity streamlines of the
time-averaged flow in the horizontal plane at z = H/2 and in the vertical streamwise plane
at y = 0, with r defined as:

r =
p− p0

p0
(24)

where p0 is the pressure near the inflow.
Both simulations lead to very similar mean flow patterns. Considering the gaps upstream

and downstream the central cube, the horizontal sections display two weakly linked counter-
rotating cells, whereas the vertical stream-wise sections display a well-delimited cell above
a more quiet region. A closer inspection of these zones, using plane sections at various
locations, shows that these patterns correspond in fact to horse-shoe flow structures. Similar
phenomena are known to occur in the wake of a single wall-mounted cube [15]. The obtained
flow features seem compatible with the well-known street canyon phenomenology.

The most striking point revealed by the horizontal sections is the fact that the flow pat-
terns are asymmetric and almost enantiomorphic, i.e. the mirror image of one pattern with
respect to the median stream-wise plane closely coincides with the other one. We infer that
a symmetric mean flow pattern is either inexistent or metastable. Because of the turbulent
nature of the flow arriving at the obstacles, the simulation leads to a chiral ground-state with
either one of the two possible orientations.

If we assume p0 = p∞, where p∞ is the free-stream pressure, then r equals to the pressure
coefficient. The obtained values are within the range of coefficients used in practice and
seem therefore reasonable.

7 Conclusions

In the present work, we provide building scale flow simulation results obtained using our
multi-GPU implementation of the LBM. We show that the required computation times re-
main below reasonable limits, even for multi-obstacle cases. Since efficient LES can be
performed to accurately study external aeraulics, we believe this contribution is a significant
step towards the use of effective CFD simulations in building models. To a greater extent, its
suitability for further investigations (of wind patterns, pollutant dispersion process, or heat
transfers at building façade) on complex urban geometrical configurations is very promising.

Several improvements to our approach, regarding both performance and accuracy are
within reach. From a physical standpoint, the use of more elaborate subgrid-scale models
than the standard Smagorinsky model we implemented would be desirable. On-going re-
search founded on the same mesoscopic point of view as the LBM might provide advances
on this issue [30]. From a computational standpoint, porting grid refinement techniques to
the GPU would be of highest practical interest and we plan to add such a feature to our
framework in near future.



14 Christian Obrecht et al.

−3 −2,5 −2 −1,5 −1 −0,5 0

−0,5

−0,4

−0,3

−0,2

−0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Present

Reference

(a) z/H = 0.07

−3 −2,5 −2 −1,5 −1 −0,5 0

−0,5

−0,4

−0,3

−0,2

−0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Present

Reference

(b) z/H = 0.1

−3 −2,5 −2 −1,5 −1 −0,5 0

−0,5

−0,4

−0,3

−0,2

−0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Present

Meinders

(c) z/H = 0.13

−3 −2,5 −2 −1,5 −1 −0,5 0

−0,5

−0,4

−0,3

−0,2

−0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Present

Meinders

(d) z/H = 0.3

−3 −2,5 −2 −1,5 −1 −0,5 0

−0,5

−0,4

−0,3

−0,2

−0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Present

Reference

(e) z/H = 0.5

Fig. 5: Upstream normalised velocity profiles with respect of x/H — Comparison between

simulation and experimental reference data by Meinders et al. [17].
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(d) z/H = 0.9

Fig. 6: Downstream normalised velocity profiles with respect of x/H — Comparison be-

tween simulation and experimental reference data by Meinders et al. [17].



16 Christian Obrecht et al.

(a) Horizontal plane at z = H/2

(b) Vertical stream-wise plane at y = 0

Fig. 7: Streamlines and pressure relative variation of the time-averaged flow for Re= 4×104
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(a) Horizontal plane at z = H/2

(b) Vertical stream-wise plane at y = 0

Fig. 8: Streamlines and pressure relative variation of the time-averaged flow for Re = 106
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