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1 Introduction

Imagine yourself lying in your bed at night. Now try to answer these questions:
Is your body parallel or not to the sofa that is two rooms away from your
bedroom? What is the distance between your bed and the sofa? Except for
some special cases (like rotating beds, people who actually sleep on their sofas,
or tiny apartments), these questions are usually nontrivial, and answering
them requires abstract thought. If pressed to answer quickly, so as to forbid the
use of abstract geometry learned in high school, the reader will very probably
give wrong answers.

However, if people had the same representations of their environment that
roboticians usually provide to their robots, answering these questions would
be very easy. The answers would come quickly, and they would certainly be
correct. Indeed, robotic representations of space are usually based on large-
scale, accurate, metric Cartesian maps. This enables judgment of parallelism
and estimations of distances to be straightforward.

On the other hand, even though humans have difficulties with these ques-
tions, they usually have no trouble navigating from the sofa to the bed, or
learning to do so in a new apartment. Robots have more difficulties in the same
situation. In most robotic mapping approaches, the acquisition of a precise,
and more importantly, accurate map of the environment is a prerequisite to
solving navigation tasks. This is still a difficult and open issue in the general
case.

Therefore, there appears to be a discrepancy in representations of space be-
tween the ones we usually provide to the robots we build and program, and the
representations of space humans or animals use. Indeed, the nature, number,
and possible interplay of the spatial representations involved in human or an-
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imal navigation processes are still an open question in the life sciences. There
is also a discrepancy in the difficulty of navigation tasks currently solved by
state-of-the-art robots and the navigation tasks solved very easily by humans
or animals.

We believe studying the difference between robotics and life sciences mod-
els of navigation can be very fruitful, both for modelling better robots and
understanding animal navigation better. That is the topic of this chapter.

We first offer a quick overview of navigation models, both in robotics and
in biology. We will first focus, more precisely, on probabilistic approaches
to navigation and mapping in robotics. These approaches include – but are
far from limited to – Kalman filters [Leonard et al., 1992], Markov local-
ization models [Thrun, 2000], (partially or fully) observable Markov decision
processes [Kaelbling et al., 1998], and hidden Markov models [Rabiner and
Juang, 1993]. We will here assume that the reader has some familiarity with
these approaches. We will show how these methods differ from most models
of human or animal navigation. Indeed, whereas robotics approaches mostly
rely on large-scale monolithic representations of space, models of animal nav-
igation, right from the start, assume hierarchies of representations. We thus
then describe hierarchical approaches to robotic mapping.

Indeed, in this domain of probabilistic modelling for robotics, hierarchical
solutions are currently flourishing. However, we will argue that the main phi-
losophy used by all these approaches is to try to extract, from a very complex
but intractable model, a hierarchy of smaller models. Of course, automatically
selecting the relevant decomposition of a problem into subproblems is quite a
challenge – this challenge being far from restricted to the domain of navigation
for robots facing uncertainties.

We propose to pursue an alternative route. We investigate how, starting
from a set of simple probabilistic models, one can combine them to build
more complex models. The goal of this paper is therefore to present a new
formalism for building models of the space in which a robot must navigate
(the Bayesian Map model), and a method for combining such maps together
in a hierarchical manner (the Abstraction operator). This formalism allows for
a new representation of space, in which the final program is built upon many
inter-related models, each of them deeply rooted in lower-level sensorimotor
relationships.

For brevity, we will discuss neither the learning methods that can be in-
cluded in Bayesian Maps [Simonin et al., 2005], nor other operators for merg-
ing Bayesian Maps (such as the Superposition operator [Diard et al., 2005]).
The foundation of the present work was created in Diard’s PhD thesis [Diard,
2003].

The rest of this chapter is organized as follows. Section 2 gives a quick
overview of the most prominent models of navigation and representation of
large-scale space, first from a robotics point of view, then from a life sciences
point of view. Section 3 offers a comparison of the main characteristics of
the models, and an analysis of their strengths and weaknesses, and argues
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in favour of the need for hierarchical and modular probabilistic models of
navigation. We then introduce our contribution to the domain, the Bayesian
Map formalism (Section 4), and one of the operators we defined for combining
Bayesian Maps, the abstraction operator (Section 5). Finally, we report in
Section 6 a series of robotic experiments in which we apply the Bayesian Map
model and the abstraction operator on a Koala mobile robot, in a proof-of-
concept experiment.

2 Navigation models in robotics and biology

We focus this brief review on existing models of navigation skills, in both
robotics and life sciences. Because the literature in robotics concerning the
representation of space is so large, we focus here on probabilistic approaches
to mapping. In the life sciences, we describe some of the more prominent
theoretical models of large-scale navigation in humans and animals, focusing
on their hierarchical nature.

2.1 Probabilistic models of navigation and mapping

There is currently a wide variety of models in the domain of probabilistic
mobile robot programming. These approaches include Kalman Filters (KF,
[Leonard et al., 1992]), Markov Localization models (ML, [Thrun, 2000]),
(Partially or fully) Observable Markov Decision Processes (POMDP, MDP,
[Boutilier et al., 1999]), Hidden Markov Models (HMM, [Rabiner and Juang,
1993]), Bayesian Filters (BFs), and even Particle Filters (PFs). The literature
covering these models is huge: for references that present several of them at
once, giving unifying pictures, see [Murphy, 2002, Roweis and Ghahramani,
1999, Smyth et al., 1997]. Some of these papers define taxonomies of these ap-
proaches, by proposing some ordering that helps to classify them into families.
One such taxonomy is presented in Fig. 1 (from [Diard et al., 2003]). It is based
on a general-to-specific ordering: for example, it shows that Dynamic Bayesian
Networks (DBNs) are a specialization of the Bayesian network formalism, tai-
lored to take time series into account. In Fig. 1, subtrees that correspond to
different specialization strategies can be identified. In the remainder of this
section, we will focus on the Markov localization subtree, which corresponds
to specializing DBNs using a four-variable model.

The ML model is basically an HMM with an additional action variable.
It seems especially relevant in the robotic programming domain, because ob-
viously robots can affect their states via motor commands. The stationary
model of an HMM is basically the decomposition

P (P t Lt Lt−1) = P (Lt−1)P (Lt | Lt−1)P (P t | Lt), (1)

where P t is a perception variable, and Lt and Lt−1 are state variables or,
more precisely in our navigation case, location variables at time t and t − 1.
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Fig. 1. Some common probabilistic modelling formalisms and their general-to-
specific partial ordering (adapted from [Diard et al., 2003]). The ML subtree, which
results from specializing DBNs, is highlighted (dashed nodes).

P (Lt | Lt−1) is commonly called the transition model, and P (P t | Lt) is
referred to as the observation model. Starting from this structure, the ac-
tion variable At is used to refine the transition model P (Lt | Lt−1) into
P (Lt | At Lt−1), which is called the action model. Thus, the ML model is
sometimes referred to as the input–output HMM model. Because of the gen-
erality of the BRP formalism, the model for Markov Localization can be cast
into a BRP program. This is shown Fig. 2.
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Relevant Variables:
P t : perception variable
Lt : discrete location variable at time t

Lt−1 : discrete location variable at time t − 1
At : action variable
Decomposition:
P (At Lt Lt−1 Lt) =

P (Lt | At Lt−1)P (P t | Lt)P (At)P (Lt−1)
Parametric Forms:
usually, matrices or particles

Identification:
any

Question:
localization P (Lt | At P t)

Fig. 2. The Markov Localization stationary model expressed as a BRP.

The ML model is mostly used in the literature to answer the question
P (Lt | At P t), which estimates the state of the robot, given the latest motor
commands and sensor readings. When this state represents the position of the
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robot in its environment, this amounts to localization. When this stationary
ML model is replicated over time to estimate the positions L0:T of the robot
over a long series of time steps, it can be shown that an iterative localization
procedure exists that localizes the robot simply by updating the last position
estimate in view of the latest motor commands At and sensor readings P t.
This justifies, in this presentation, the focus on the stationary model.

The ML model has been successfully applied in a range of robotic ap-
plications, the most notable examples being the Rhino ([Thrun et al., 1998,
Burgard et al., 1999]) and Minerva ([Thrun et al., 1999a,b]) robotic guides.
The most common application of the ML model is the estimation of the po-
sition of a robot in an indoor environment, using a fine-grained metric grid
as a representation. In other words, in the model of Fig. 2, the state variable
is very frequently the pose of the robot, i.e. a pair of x, y discrete Cartesian
coordinates for the position, and an angle θ for the orientation of the robot.
Assuming a grid cell size of 50 cm, an environment of 50 m× 50 m, and a 5◦

angle resolution entails a state space of 720,000 states.
Using some specialized techniques and assumptions, it is possible to make

this memory-consuming model tractable.
For example, the forms of the probabilistic model can be implemented us-

ing sets of particles. These approximate the probability distributions involved
in Fig. 2, which leads to an efficient position estimation. This specialization
is called the Monte Carlo Markov Localization model (MCML, [Fox et al.,
1999]).

Another possibility is to use a Kalman filter as a specialization of the ML
model, in which variables are continuous. The action model P (Lt | At Lt−1)
and the observation model P (P t | Lt) are both specified using Gaussian laws
with means that are linear functions of the conditioning variables. With these
hypotheses, it is possible to solve the inference problem analytically to answer
the localization question. This leads to an extremely efficient algorithm that
explains the popularity of Kalman filters.

2.2 Biologically inspired models

All the approaches mentioned in the preceding section are based on the clas-
sical view of robotic navigation, which is inherited from marine navigation. In
this view, solving a navigation task basically amounts to answering sequen-
tially the questions of Levitt and Lawton: “Where am I?”, “Where are other
places with respect to me?”, and “How do I get to other places from here?”
[Levitt and Lawton, 1990]. These are formulated somewhat similarly in the
works of Leonard and Durrant-Whyte: “Where am I?”, “Where am I going?”,
and “How should I get there?” [Leonard and Durrant-Whyte, 1991].

While they are a valid first decomposition of the navigation task into sub-
tasks, these questions have usually led to models that require a global model
of the environment, which allows the robot to localize itself (the first ques-
tions), to infer spatial relationships between the current recognized location
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and other locations (the second questions), and to plan a sequence of actions
to move within the environment (the third questions). These skills amount
to the first two phases of the “perceive, plan, act” classical model of robotic
control.

Very early in their analysis, biomimetic models of navigation disputed
this classical view of robotic navigation. Indeed, when studying living beings,
the existence of such a unique and global representation that would be used
to solve these three questions is very problematic. This seems obvious even
for simple animals like bees and ants. For instance, the outdoor navigation
capabilities of the desert ant Cataglyphis, which have been widely studied, rely
on the use of the polarization patterns of the sky [Lambrinos et al., 2000]. It
is clear that such a strategy is useless for navigating in a nest; this calls for
another navigation strategy, and another internal model. The existence of a
unique representation is also doubtful for humans. The navigation capabilities
of humans are based on internal models of their environment (cognitive maps),
but their nature, number and complexity are still largely debated (see for
instance [Berthoz, 2000, Redish and Touretzky, 1997, Wang and Spelke, 2002],
for entry points into the huge literature associated with this domain).

As a consequence, biomimetic approaches assume from the start the ex-
istence of multiple representations, most often articulated in a hierarchical
manner. We now give a brief review of some theories from that domain, fo-
cusing on their hierarchical components.

Works by Redish and Touretzky

Works by Redish and Touretzky address the issue of the role of the hippocam-
pus and parahippocampal populations in rodent navigation, focusing on the
well-studied place cells and head direction cells. They proposed a conceptual
model [Touretzky and Redish, 1996] and discussed its anatomical plausibil-
ity [Redish and Touretzky, 1997]. Their hierarchical conceptual model consists
of four spatial representations (place code, local view, path integrator and
head direction code), supplemented by two components called the reference
frame selection subsystem and the goal subsystem.

Place codes are local representations tied to one or several landmarks or
geometric features of the environment. When the environment of the animal
becomes large or structured, several place codes may be used to describe this
environment, each place code representing a part of the environment. For
instance, Gothard et al. [Gothard et al., 1996] found different place codes for
a rat navigating in an environment containing a goal and a starting box. They
identified three independent place codes: one tied to the room, one to the goal,
and one to the box. These effectively provide representations of sections of the
environment: cells tuned to the box frame were only active when the rat was
in or around the box, cells tuned to the goal only responded when the rat was
near the goal, cells tuned to the room were active at other times (i.e. when
the rat was not near the box or the goal).
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The reference frame selection component is responsible for selecting the
appropriate place code for navigating in the environment. In the above exam-
ple, this means that it is responsible for selecting, at any given time, which
place code should be active.

This theory thus proposes an account of the low-level encoding of space
in central nervous systems of animals using a two-layer hierarchy of models.
The low-level layer consists of a series of place codes describing portions of
the animal environment, under the hierarchical supervision of a larger-space
model.

Computational models of the low-level component of this hierarchy, (i.e.
place cells and head-direction cells) abound in the literature (e.g. [Hartley and
Burgess, 2002]), whereas the reference frame selection component, to the best
of our knowledge, has yet to be mathematically defined.

Works by Jacobs and Schenk

Jacobs and Schenk proposed a new theory of how the hippocampus encodes
space [Jacobs and Schenk, 2003, Jacobs, 2003]. This theory is called the Par-
allel Map Theory (PMT), and it defines a hierarchy of navigation representa-
tions made of three components and two layers.

The bearing map is the first, low-level, component. This is a single map
based on several directional cues such as intersecting gradients. It provides
a large-scale two-dimensional reference frame, enabling large-scale navigation
skills, simply using gradient ascent or descent.

The sketch maps are the second component of the low-level layer of the
hierarchy. They encode small-scale fine-grained representations of the relation-
ship of landmarks that are close to each other (positional cues). This creates
local representations, which can be used for precise control of the position,
and thus for solving precise, small-scale navigation tasks.

Finally, the integrated map is the third, high-level, component. This is
constructed from the bearing map and several sketch maps. It consists of
a unified map of large-scale environments, where the local sketch maps are
cast into the large-scale reference frame of the bearing map. This provides
the means to infer large-scale spatial relationship between the local, metric
representations of the sketch maps, thus allowing computation of large-scale
shortcuts and detours.

To the best of our knowledge, the papers by Jacobs and Schenk do not
provide computational models of these different components. Instead, they
mainly focus on the anatomical and phylogenetic plausibility of their concep-
tual model. This provides many experimental predictions concerning possible
impairments resulting from lesions.

Works by Wang and Spelke

These authors dispute the idea that enduring, allocentric, large-scale repre-
sentations of an environment should be the main theoretical tool used for
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investigating navigation in humans and animals. Indeed, the cognitive map
concept, introduced by Tolman in 1948, is still controversial [Tolman, 1948].
Instead, Wang and Spelke argue that many navigation capabilities in animals
can be explained by dynamic, egocentric representations that cover a limited
portion of the environment [Wang and Spelke, 2000, 2002]. Such representa-
tions can be studied in animals that are far simpler than humans, such as
desert ants [Lambrinos et al., 2000].

Studies on these animals have identified three subsystems: a path integra-
tion system, a landmark-based navigation system, and a reorientation system.
This last component is not hierarchically related to the other two, as it is
mainly responsible for resetting the path integration system when the animal
becomes disoriented. However, the first two components show a strong hier-
archical relation. Indeed, it has been shown that the landmark-based strategy
is hierarchically higher in the cognitive mechanisms of insects and rodents. It
also appears that, in the sudden absence of landmarks after learning a path,
animals rely on the path integration encoding as a “backup” [Stackman et al.,
2002, Stackman and Herbert, 2002].

This model is somewhat different from the previous studies, as it focuses
on defining a hierarchy of skills of navigation, instead of hierarchies of repre-
sentations of space, as in the PMT or studies of the hippocampal and parahip-
pocampal areas.

Works by Kuipers, Franz, and Trullier

The hierarchies of models proposed in the biomimetic robotic literature
([Kuipers, 1996, Trullier et al., 1997, Franz and Mallot, 2000, Kuipers, 2000,
Victorino and Rives, 2004]) have several aspects: they are hierarchies of in-
creasing navigation skills, but also of increasing scale of the represented en-
vironment, of increasing time scale of the associated movements, and of in-
creasing complexity of representations. This last aspect means that topologic
representations, which are simple, come at a lower level than global metric
representations, which are arguably more complex to build and manipulate.
This ordering stems from the general observation that animals that are able
to use shortcuts and detours between two arbitrary encoded places (skills that
require global metric models) are rather complex animals, like mammalians.
These skills seem to be mostly absent from simpler animals, like invertebrates.

The resulting proposed hierarchies show a striking resemblance. We present
the salient and common features of these hierarchies by summarizing the Spa-
tial Semantic Hierarchy (SSH) proposed by Kuipers [Kuipers, 1996, 2000]. It
is, to the best of our knowledge, the only biomimetic approach that has been
applied to obtain a complete and integrated robotic control model.

The SSH essentially consists of four hierarchical levels: the control level,
the causal level, the topological level, and the metric level.

The control level is a set of reactive behaviours, which are control laws
deduced from differential equations. These behaviours describe how to move



Bayesian Maps 9

the robot to reach an extremum of some gradient measure. This extremum
can be zero-dimensional (a point in the environment), in which case it is
called a locally distinctive state. The associated behaviour is called a hill-
climbing law. The extremum can also be one-dimensional (a line or curve in
the environment), in which case the behaviour is called a trajectory-following
law. Provided that any trajectory-following law guarantees arriving at a place
where a hill-climbing law can be applied, then alternating laws of both types
displace the robot in a repetitive fashion. This solves the problem of the
accumulation of odometry errors. The control level is also referred to as the
guidance level [Trullier et al., 1997, Franz and Mallot, 2000].

Given the control level, the environment can be structured and summa-
rized by the locations of locally distinctive states and the trajectories used
to go from one such state to another. This abstraction takes place in the
causal level, which is the second level of the hierarchy of representations.
Unlike the control level, it allows the robot to memorize relationships be-
tween places that are outside the current perceptive horizon (this is part of
the way-finding capabilities in other terminologies [Trullier et al., 1997, Franz
and Mallot, 2000]). To do so, Kuipers abstracts locally distinctive places as
views V , the application of lower-level behaviours as actions A, and defines
schemas as tuples 〈V,A, V ′〉 (expressed as first-order logic predicates). The
schemas have two meanings. The first is a procedural meaning: “when the
robot is at V , it must apply action A.” This aspect of a schema is equivalent
to the recognition-triggered response level of the other hierarchies [Trullier
et al., 1997, Franz and Mallot, 2000], or to the potential field approaches, or
to other goal-oriented methods. However, the second meaning of schemas is
a declarative one, where 〈V,A, V ′〉 stands for: “applying action A from view
V eventually brings the robot to view V ′.” This allows using the schemas for
prediction of future events, or in a planning process, for example.

The goal of the topological level is to create a globally consistent represen-
tation of the environment, as structured by places, paths and regions. These
are extracted from lower-level schemas by an abduction process that creates
the minimum number of places, paths and regions to maintain consistency
with the known schemas. Places are zero-dimensional parts of the environ-
ment that can be abstractions of lower-level views, or abstractions of regions
(for higher-level topological models). Paths are one-dimensional, oriented, and
can be built upon one or more schemas. Finally, regions are two-dimensional
subspaces, delimited by paths. It must be noted that, because the problem of
accumulation of odometry error was dealt with at the control level, building
a globally consistent topological representation (i.e. solving the global con-
nectivity problem) is much easier. To do so, Kuipers proposes an exploration
strategy, the rehearsal procedure, which, unfortunately, requires a bound on
the exploration time and is not well suited to dynamic environments. The
places and paths of the topological representation obtained can be used for
solving planning queries using classical graph-searching algorithms.
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The last level is the metric level, in which the topological graph is cast
into a unique global reference frame. For reasons outlined above (and detailed
in [Kuipers, 2000]), this level is considered as a possibility, not a prerequisite
for solving complex navigation tasks. If the sensors are not good enough to
maintain a good estimation of the Cartesian coordinates of the position, for
instance, it is still possible to use the topological model to act in the environ-
ment – although shortcuts and detours are not possible. Indeed, few robotics
systems implementing biomimetic models include the metric level [Franz and
Mallot, 2000, Trullier et al., 1997].

3 Theoretical comparison

3.1 Which mathematical formalism?

A major drawback of the biomimetic models presented previously is that they
are seldom defined as computational models: they give conceptual frameworks
for understanding animal navigation but lack complete mathematical defini-
tions that would make simulations of these models possible. The notable ex-
ception is the SSH model, which not only defines layers in a hierarchy of space
representations but also defines each of them mathematically.

However, the SSH model uses a variety of formalisms for expressing knowl-
edge at different layers of the hierarchy: differential equations and their solu-
tions for the control level, and first-order logic and deterministic algorithms
for higher-level layers of the hierarchy. This makes it difficult to justify the
consistency and correctness of the mechanisms for communication between
the layers of the hierarchy theoretically. In some cases, it even limits and con-
strains the contents of the layers: for instance, the SSH model requires that
the behaviours of the control level guarantee that the robot reaches the neigh-
bourhood of a given locally distinctive state. In our view, this constraint is
barely acceptable for any kind of realistic robotic scenario. Consider dynamic
environments: how can we guarantee that a robot will reach a room if a door
on the route can be closed?

We assume as a starting point for our analysis that the best formalism for
expressing incomplete knowledge and dealing with uncertain information is
the probabilistic formalism [Bessière et al., 1998, Jaynes, 2003]. This gives us
a clear and rigorous mathematical foundation for our models. The probabil-
ity distributions are our unique tool for the expression and manipulation of
knowledge, and in particular, for communication between submodels. We will
thus argue in favour of hierarchical probabilistic models.

3.2 Hierarchical probabilistic models

This idea is not a breakthrough: in the domain of probabilistic modelling for
robotics, hierarchical solutions are currently flourishing. The more active do-
main in this regard is decision-theoretic planning: one can find variants of
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MDPs that accommodate hierarchies or that select automatically the parti-
tion of the state space (see, for instance, [Hauskrecht et al., 1998, Lane and
Kaelbling, 2001], or browse through the references in [Pineau and Thrun,
2002]). More exceptionally, one can find hierarchical POMDPs [Pineau and
Thrun, 2002]. The current work can also be related to Thrun’s object map-
ping paradigm [Thrun, 2002], in particular concerning the aim of transferring
some of the knowledge the programmer has about the task to the robot.

Some hierarchical approaches outside the MDP community include hierar-
chical HMMs and their variants (see [Murphy, 2002] and references therein),
which, unfortunately, rely on the notion of the final state of the automaton.
Another class of approaches relies on the extraction of a graph from a proba-
bilistic model such as a Markov localization model [Thrun, 1998], or an MDP
[Lane and Kaelbling, 2002]. Using such deterministic notions is inconvenient
in a purely probabilistic approach, such as we are pursuing here.

Moreover, the main philosophy used by all the previous approaches is to
try to extract, from a very complex but intractable model, a hierarchy of
smaller models (structural decomposition, see [Pineau and Thrun, 2002]).

Again, this comes from the classical robotic approach, where the process
of perception (in particular, localization) is assumed to be independent of the
processes of planning and action. A model such as the ML model (Fig. 2) is
only concerned with localization, not control; therefore, its action variable At

is actually only used as an input to the model. In this view, a pivotal rep-
resentation is used between the perception and planning subproblems. It is
classically assumed that the more precise this pivotal model, the better. Un-
fortunately, when creating integrated robotic applications, dealing with both
the building of maps and their use is necessary. Some authors have realized
that their global metric maps were too complex to be easily manipulated.
Therefore, they have tried to degrade their maps, which were so difficult to
obtain initially, for instance, by extracting graphs from their probabilistic
models [Thrun, 1998]. This problem is also at the core of the robotic plan-
ning domain, where the given description of the environment is assumed to
be an infinitely precise geometrical model. The difficulty is to discretize this
intractable, continuous model into a finite model, typically, in the form of a
graph [Latombe, 1991, Kavraki et al., 1996, Mazer et al., 1998, Svestka and
Overmars, 1998].

3.3 Modular probabilistic models: towards Bayesian Maps

We propose to pursue an alternative route, investigating how, starting from
a set of simple models, one can combine them to build more complex mod-
els. Such an incremental development approach allows us to depart from the
classical “perceive, plan, act” loop, considering instead hierarchies built upon
many inter-related models, each of them deeply rooted in lower-level sensory
and motor relationships.
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The Bayesian robotic programming methodology offers exactly the formal
tool that can transfer information from one program to another in a theoreti-
cally rigorous fashion. Indeed, in Bayesian robotic programs, terms appearing
in a description c1 can be defined as a probabilistic question to another de-
scription c2. This creates a link between the two descriptions, one being used
as a resource by another. Depending on the way questions are used to link
subprograms, several different operators can be created, each with specific se-
mantics: for instance, in the framework of behaviour-based robotics, Lebeltel
has defined behaviour combination, hierarchical behaviour composition, and
behaviour sequencing and sensor model fusion operators. He has also applied
these successfully to realize a complex watchman robot behaviour using a
control architecture involving four hierarchical levels [Lebeltel et al., 2004].

Thus, we can solve a global robotic task problem by first decomposing it
into subproblems, then writing a Bayesian robot program for each subprob-
lem, and finally combining these subprograms. This method makes robot pro-
gramming similar to structured computer programming. So far in our work,
we have let the programmer do this analysis: relevant intermediary represen-
tations can be imagined, or copied from living beings. We propose to apply
this strategy to the map-based navigation of mobile robots. The submodels
can be submaps, in the spatial sense (i.e. covering a part of the global en-
vironment), or in the subtask sense (i.e. modelling knowledge necessary for
solving part of the global navigation task), or even in less familiar senses (e.g.
modelling partial knowledge from part of the sensorimotor apparatus).

Our approach is therefore based on a formalism for building models of the
space in which the robot must navigate, called the Bayesian Map model, that
allows us to build submodels that provide behaviours as resources. We also
define operators for combining such maps in a hierarchical manner.

4 The Bayesian Map formalism: definition

4.1 Probabilistic definition

A Bayesian Map c is a description that defines a joint distribution

P (P Lt Lt′ A | c),

where:

• P is a perception variable (the robot reads its values from physical sensors
or lower-level variables);

• Lt is a location variable at time t;
• Lt′ is a variable having the same domain as Lt, but at time t′ (without

loss of generality, let us assume t′ > t); and
• A is an action variable (the robot writes commands to this variable).
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For simplicity, we will assume here that all these variables have finite domains.
The choice of decomposition is not constrained: any probabilistic depen-

dency structure can therefore be chosen here; see [Attias, 2003] for an example
of how this can lead to interesting new models. Finally, the definition of forms
and the learning mechanism (if any) are also not constrained.

For a Bayesian Map to be usable in practice, the description must be
rich enough to generate behaviours. We describe as elementary behaviour any
question of the form P (Ai | X), where Ai is a subset of A, and X is a subset
of the other variables of the map (i.e. of those not in Ai). A typical example
consists of the probabilistic question P (A | [P = p] [Lt′ = l]): compute the
probability distribution over actions, given the current sensor readings p and
the goal l to reach in the internal space of possible locations.

A behaviour can be not elementary, for example, if it is a sequence of
elementary behaviours, or, in more general terms, if it is based on elementary
behaviours and some other knowledge (which may be expressed in terms other
than maps).

For a Bayesian Map to be interesting, we will also require that it generates
several behaviours – otherwise, defining just a single behaviour instead of a
map is enough. Such a map is therefore a resource, based on a location variable
relevant enough to solve a class of tasks; this internal model of the world can
be reified.

A “guide” one can use to “make sure” that a given map will generate
useful behaviours is to check whether the map answers in a relevant manner
the three questions P (Lt | P ) (localization), P (Lt′ | A Lt) (prediction) and
P (A | Lt Lt′) (control).

By “relevant manner”, we mean that these distributions must be informa-
tive, in the sense that their entropy is “far enough” from its maximum (i.e. the
distribution is different from a uniform distribution). This constraint is not
formally well defined, but it seems intuitive to focus on these three questions.
Indeed, the skills of localization, prediction and control are well identified in
the literature as ways of generating behaviours. Checking that the answers to
these questions are informative is a first step to evaluating the quality of a
Bayesian Map with respect to solving a given task.

Figure 3 is a summary of the definition of the Bayesian Map formalism.

4.2 Generality of the Bayesian Map formalism

We now invite the reader to verify that the Markov localization model is indeed
a special case of the Bayesian Map model by comparing Fig. 2 and Fig. 3.
Recall that Kalman filters and particle filters are special cases of Markov
localization, as they add hypotheses over the choice of dependency structure
made by the Markov localization model. This implies that Kalman filters and
particle filters are also special cases of Bayesian Maps.

Bayesian Maps can therefore accommodate many different forms, depend-
ing on the need or information at hand: for example, a Bayesian Map can be
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Relevant Variables:
P : perception variable
Lt : location variable at time t

Lt′ : location variable at time t′, t′ > t

A : action variable
Decomposition:

Any
Parametric Forms:
Any

Identification:
Any

Question:
elementary behaviours: P (Ai | X), with Ai ⊆ A,

X ⊆
(

{P, Lt, Lt′ , A} \ Ai

)

Fig. 3. The Bayesian Map model definition expressed in the BRP formalism.

structured like a real-valued Kalman filter for tracking the angle and distance
to some feature when it is available. If that feature is not present, or if the
linearity hypotheses fail, we can use another Bayesian Map, which may not
be a Kalman filter (for example, based on a symbolic variable).

Hierarchies of Bayesian Maps (via the abstraction operator) can thus be
hierarchies of Markov localization models or hierarchies of Kalman filters, and
so on. Moreover, heterogeneous hierarchies of these models can be imagined:
ML over KFs, or even n KFs and one ML model. In our view, this would be
a potential alternative to the solution of Tomatis et al. [Tomatis et al., 2001,
2003].

5 Combining Bayesian Maps: definition of the

abstraction operator and example

Having defined the Bayesian Map concept, we now turn to defining operators
for combining Bayesian Maps. The one we present here is called the abstrac-
tion of maps. It is defined in Fig. 4 and discussed in the rest of this section.

As stressed above, in a Bayesian Map, the semantics of the location vari-
able can be very diverse. The main idea behind the abstraction operator is
to build a Bayesian Map c containing locations that are other Bayesian Maps
c1, c2, . . . , cn. The location variable of the abstract map will therefore take n

possible symbolic values, one for each underlying map ci. Each of these maps
will be “nested” in the higher-level abstract map, which justifies the use of
the term “hierarchy” in our work. Recall that Bayesian Maps are designed for
generating behaviours.
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Relevant Variables:

P =
∧n

i=1

(

Pi ∧ Lt
i ∧ Lt′

i ∧ Ai

)

Lt : DLt = {c1, c2, . . . , cn}, kLt = n

Lt′ : D
Lt′ = {c1, c2, . . . , cn}, kLt′ = n

A : DA = {a1, a2, . . . , ak}, kA = k

Decomposition:

P (P Lt Lt′ A) =

P (Lt)P (Lt′)P (A | Lt Lt′)
∏n

i=1
P (Pi Lt

i Lt′

i Ai | Lt)
Parametric Forms:
P (Lt) = Uniform

P (Pi Lt
i Lt′

i Ai | [Lt = c])

=

{

if c = ci then P (Pi Lt
i Lt′

i Ai | ci)
else Uniform

P (Lt′) = Uniform

P (A | Lt Lt′) = Table
Identification:

a priori programming or learning of P (A | Lt Lt′)
Question:

P (Lt | P ) ∝
∏n

i=1
P (Pi Lt

i Lt′

i Ai | Lt)

P (Lt′ | A Lt) ∝ P (A | Lt Lt′)

P (A | Lt Lt′) = P (A | Lt Lt′).

Fig. 4. The abstraction operator definition expressed as a Bayesian Map.

Let us denote a1, a2, . . . , ak, the k behaviours defined in the n underlying
maps, with k ≥ n. In the abstract map, these behaviours can be used for
linking the locations ci. The action variable of the abstract map will therefore
take k possible symbolic values, one for each behaviour of the underlying
maps. To build an abstract map having n locations, the programmer will
require n previously defined lower-level maps, which generate k behaviours.
The numbers n and k are therefore small, and so the abstract map deals
with a small internal space, having retained from each underlying map only a
symbol, and having “forgotten” all their details. This justifies the use of the
name “abstraction” for this operator. However, this “summary mechanism”
has yet to be described: that is what the perception variable P of the abstract
map will be used for, as it will be the list of all the variables appearing in the
underlying maps: P = P1, L

t
1, L

t′

1 , A1, . . . , Pn, Lt
n, Lt′

n , An.
Given the four variables of the abstract map, we define its joint distribution

with the following decomposition:

P (P Lt Lt′ A) = P (Lt)P (Lt′)P (A | Lt Lt′)

n
∏

i=1

P (Pi Lt
i Lt′

i Ai | Lt). (2)
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In this decomposition, P (Lt) and P (Lt′) are defined as uniform distribu-
tions. All the terms of the form P (Pi Lt

i Lt′

i Ai | [Lt = c]) are defined as
follows: when c 6= ci, the probabilistic dependency between the variables Pi,
Lt

i, Lt′

i , Ai of the map ci is supposed unknown, and therefore defined by a
uniform distribution. When c = ci, however, this dependency is exactly what
the map ci defines. Therefore this term is a question to the description ci but a
question that includes the whole subdescription by asking for the joint distri-
bution it defines. Because the last term, P (A | Lt Lt′), only includes symbolic
variables that have a small number of values, it makes sense to define it as a
table, which can be easily programmed a priori or learned experimentally.

The abstract Bayesian Map is now fully defined, and, given the n un-
derlying maps, can be built automatically. The last step is to verify that it
generates useful behaviours. We will examine the guiding questions of local-
ization, prediction and control.

The localization question leads to the following inference (derivation omit-
ted): P (Lt | P ) ∝

∏n

i=1 P (Pi Lt
i Lt′

i Ai | Lt). The interpretation of this result
will be explained with an example in Section 6. The derivations for solving
the prediction P (Lt′ | A Lt) and control P (A | Lt Lt′) questions are also
straightforward, given Fig. 4.

Recall that the final goal of any Bayesian Map is to provide behaviours.
In the abstract map, this is done by answering a question like P (A | [Lt′ =
ci] [P = p]): what is the probability distribution over lower-level behaviours,
knowing all values p of the variables of the lower level, and knowing that
we want to “go to map ci” (more formally, “reach some location recognized
as the lower-level map ci”)? Answering this question thus allows selection of
the most relevant underlying behaviour to reach a given high-level goal. The
computation is as follows:

P (A | Lt′ P ) ∝
∑

Lt

(

n
∏

i=1

P (Pi Lt
i Lt′

i Ai | Lt)

)

P (A | Lt Lt′). (3)

This computation includes the localization question, by weighing the probabil-
ities given by the control model P (A | Lt Lt′). In other words, the distribution
over the action variable A includes all localization uncertainties. Each under-
lying model is used, even when the robot is located at a physical location that
this model is not made for. As a direct consequence, there is no need to decide
what map the robot is in, nor to switch from map to map: the computation
considers all possibilities and weighs them according to their (localization)
probabilities. Therefore the underlying maps are not necessarily “mutually
exclusive” in a geographical sense.

6 Experimental validation

We report here an experiment made on the well-known Koala mobile robot
platform (K-team company). To keep as much control as possible over our
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experiments and the different effects we observe, we simplify the sensorimotor
system and its environment. We only use the 16 proximeters Px = Px0∧ . . .∧
Px15 of our robot, and we keep two degrees of freedom of motor control, via
the rotation and translation speeds V rot and V trans. The environment we
use is a 5 m × 5 m area made of movable planks (a typical configuration is
shown in Fig. 5). The goal of this experiment is to solve a navigation task:
we want the robot to go and hide in any corner, as if the empty space in the
middle of the area were dangerous.

The first programming step is to analyse this task into subtasks. Three
particular situations are relevant for solving the task: the robot can either be
near a wall, and it should follow it in order to reach the nearest corner, or the
robot can be in a corner, and it should stop, or finally it could be in empty
space, and should therefore go straight, so as to leave the exposed area as
quickly as possible.

6.1 Low-level Bayesian Maps

Given this analysis, the second programming step is to define one Bayesian
Map for each of the three situations. They all use the same perception variable
P = Px and the same action variable A = V rot ∧ V trans.

The first map, cwall, describes how to navigate in the presence of a sin-
gle wall, using a location variable Lt = θ ∧ Dist: the phenomenon “wall”
is summarized by an angle θ and a distance Dist. Therefore, cwall defines
P (Px θt Distt θt′ Distt

′

V rot V trans | cwall). We have implemented this
map using 12 possible angle values and three different distances. This leads
to a compact model that is still accurate enough to solve the subtasks. The
dependency structure we choose is (cwall on right hand sides omitted):

P (Px θt Distt θt′ Distt
′

V rot V trans)

= P (θt Distt)
∏

i

[

P (Pxi | θt Distt)
]

P (θt′ Distt
′

)

P (V rot | θt Distt θt′ Distt
′

)P (V trans | θt Distt θt′ Distt
′

).

P (θt Distt) and P (θt′ Distt
′

) are uniform probability distributions. Each term
of the form P (Pxi | θt Distt) is a set of bell-shaped probability distributions3

that were identified experimentally in a supervised learning phase: we physi-
cally put the robot in all 36 possible situations with respect to the wall and
recorded proximeter values so as to compute experimental means and stan-
dard deviations. Finally, the two control terms P (V rot | θt Distt θt′ Distt

′

)
and P (V trans | θt Distt θt′ Distt

′

) were programmed “by hand”: given the
current angle and distance, and the angle and distance to be reached, what
should the motor commands be?

3 Bell-shape probability distributions approximate Gaussian probability distribu-
tions on finite discretized ranges.
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This map successfully solves navigation tasks like “follow wall right”, “fol-
low wall left”, “go away from wall”, “stop”, using behaviours of the same
name. For example, “follow wall right” is defined by the probabilistic ques-
tion P (V rot V trans | Px [Lt′ = 〈90, 1〉]): compute the probability distribution
on motor variables knowing the sensory input and knowing that the location
to reach is θ = 90 , Dist = 1 (wall on the right at medium distance).

This map is an instance where a Kalman filter-based Bayesian Map could
have been used instead, for example, if we had required a more accurate angle
and distance to the wall using continuous variables. The coarse-grained set of
values we used were sufficient for our experiments.

The two other Bayesian Maps we define are the following. 1) ccorner de-
scribes how to navigate in a corner, using a symbolic location variable that
can take four values: FrontLeft, FrontRight, RearLeft and RearRight.
This is enough for solving tasks like “quit corner and follow right”, “away
from both walls”, “stop”. 2) cemptyspacedescribes how to navigate in empty
space, i.e. when the sensors do not see anything. The behaviours defined here
are “straight ahead” and “stop”. For brevity, these two Bayesian Maps are
not described further here; the interested reader can find details in Diard’s
PhD thesis [Diard, 2003].

6.2 Abstract Bayesian Map

Given these three maps, the third and final programming step is to apply the
abstraction operator to them. We obtain a map c with a location variable Lt =
{cwall, ccorner, cemptyspace}. The action variable lists the behaviours defined by
the low-level maps: A = {follow wall right, go away from wall, . . .}. The rest
of the abstract map is in accordance with the schema of Fig. 4.

We now discuss the localization question. Let us assume that the robot is
in empty space: all its sensors read zero. Let us also assume that the robot
is currently applying the “straight ahead” behaviour, which sets V rot and
V trans near 0 (no rotation) and 40 (fast forward movement), respectively,
using sharp bell-shaped distributions.

Let us consider the probability of being in location cemptyspace (with w

standing for wall, c for corner and e for emptyspace).

P ([Lt = cemptyspace] | P )

∝





P (Pw Lt
w Lt′

w Aw | [Lt = cemptyspace])

P (Pc Lt
c Lt′

c Ac | [Lt = cemptyspace])

P (Pe Lt
e Lt′

e Ae | [Lt = cemptyspace])



 .

Of the three terms of the product, two have uniform distributions, and one is
the joint distribution given by cemptyspace. This joint distribution gives a very
high probability for the current situation, because describing the phenomenon
“going straight ahead in empty space” basically amounts to favouring sensory
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readings of 0 and motor commands near 0 and 40 for V rot and V trans, re-
spectively. The situation is quite the opposite for P ([Lt = cwall] | P ): for
example, cwall does not favour this sensory situation at all. Indeed, the phe-
nomenon “I am near a wall” is closely related to the sensors actually sensing
something. The probability of seeing nothing on the sensors knowing that the
robot is near a wall is very low: P ([Lt = cwall] | P ) will be very low. The
reasoning is similar for P ([Lt = ccorner] | P ).

This computation can thus be interpreted as the recognition of the most
pertinent underlying map for a given sensorimotor situation. Alternatively, it
can be seen as a measure of the coherence of the values of the variables of
each underlying map, or even as a Bayesian comparison of the relevance of
models, as assessed by the numerical value of the joint distributions of each
lower-level model. Because these distributions include (lower-level) location
and action variables, the maps are recognized not only from sensory patterns
but also from what the robot is currently doing.

The localization question can therefore be used to assess the “validity
zones” of the underlying maps, i.e. the places in the environment where the
hypotheses of each model hold. Experimentally, we make the robot navigate
in the environment, and we ask at each time step the localization question.
We can visually summarize the answer, for example, by drawing values for
Lt, and reporting the drawn value on a Cartesian map of the environment.
A simplified but readable result is shown in Fig. 5. As can be seen, the robot
correctly recognizes each situation for which it has a model. Note that the
resulting zones are not contiguous in the environment: for example, all the
corners of the environment are associated with the same symbol, namely,
ccorner. This effect is known as perceptual aliasing. However, this very simple
representation is sufficient for solving the task that was given to the robot: the
behaviour “go hide in any corner” is indeed generated by the abstract map.

Using the abstract Bayesian Map we have programmed in this way, the
robot can solve the task of reaching corners. A typical trajectory for the
robot, starting from the middle of the arena, is to start by going straight
ahead. As soon as a couple of forward sensors sense something, the “empty
space” situation is no longer relevant, and the robot applies the best model
it has, depending on the correlation between what the sensors see: if it looks
like a wall and continues to do so as the robot moves, then the probability for
the “wall” model is high; on the other hand, if it instead feels like a corner,
then the corner model wins the probabilistic competition. Suppose the robot
is near a wall and starts to follow it until a corner is reached. In our first
version, the corner model was designed too independently of the wall model:
the validity zone of the ccorner map was too small and seldom visited by the
robot as it passed the corner using the “follow wall right” behaviour, defined
by cwall. The robot would then miss the first corner and stop at another one.
This shows that the decomposition of the task gives independent subtasks only
as a first approximation. We solved the problem by modifying the “corner”
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corner

wall

empty-space

Fig. 5. 2D projection of the estimated “validity zones” of the maps cwall, ccorner

and cemptyspace. The bottom part of the figure is a screenshot of the localization
module of the abstract map: it shows the “comparison” and competition between
the underlying models. The winner is marked by the central dot: in this case, the
robot was near a wall.

model, so that it would recognize a corner on a typical “follow wall right”
trajectory.

7 Conclusion

We have presented the Bayesian Map formalism: it is a generalization of most
probabilistic models of space found in the literature. Indeed, it drops the usual
constraints on the choice of decomposition, forms, or implementation of the
probability distributions. We have also presented the abstraction operator, for
building hierarchies of Bayesian Maps.

The experiments we presented are of course to be regarded only as “proofs
of concept”. Their simplicity also served didactic purposes. However, these
experiments, in our view, are a successful preliminary step towards apply-
ing our formalism. Part of the current work is of course aimed at enriching
these experiments, in particular with respect to the scaling up capacity of the
formalism.

Moreover, because each map of the hierarchy is a full probabilistic model,
it is potentially very rich. Possible computations based on these maps include
questions like the prediction question P (Lt′ | A Lt), which can form the basis
of planning processes. Hierarchies of Bayesian Maps can therefore be consid-
ered as model-based approaches rather than as purely reactive approaches.
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Exploiting such knowledge by integrating a planning process in our Bayesian
Map formalism is also part of the ongoing work.
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