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Bounded-error identification for closed-loop systems

Mathieu Pouliquen a, Olivier Gehan a, Eric Pigeon a

aControl Group, GREYC CNRS UMR 6072
ENSICAEN, 06 Bd du Maréchal Juin

14050 Caen Cedex, France.

Abstract

This paper presents a scheme for the identification of a system which operates in closed-loop and in the presence of bounded
output disturbances. Two algorithms are proposed to solve this identification problem. The first algorithm is an Optimal
Bounding Ellipsoid (OBE) type algorithm. This first algorithm is analyzed and sufficient conditions for stability and convergence
are established. Relaxation of these conditions leads to a second identification algorithm. The implementation of that second
algorithm is realized in an iterative scheme. A numerical example is provided to show the efficiency of the scheme.
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1 Introduction

1.1 The considered identification problem

This paper is devoted to the study of a Set Member-
ship Identification (SMI) algorithm for a dynamic SISO
system operating in the presence of feedback. Here the
system is assumed to be parameterized by a discrete-
time transfer function G∗(q) such that the closed-loop

behavior of the system satisfies

{
yt = G∗(q)ut + wt

ut = rt − C(q)yt
,

it follows

yt =
G∗(q)

1 +G∗(q)C(q)
rt + vt (1)

with vt = 1
1+G∗(q)C(q)wt. C(q) is the linear controller

(supposed to be known) and rt an exogenous input sig-
nal. The sequencewt is not observable but is known to be
bounded in the ℓ1 norm: |wt| ≤ δw. Through the closed-
loop wt produces the bounded sequence vt such that

|vt| ≤ δv (2)

It represents noise measurements, state disturbances or
modeling inaccuracies brought back on the output of the
closed loop.
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This closed-loop SMI problem occurs when open-loop
experiment is prohibited or has no meaning (safety, sta-
bility, economical reasons, efficiency of operation, etc.)
and when the diversity of the components on wt is such
that its probability density function is unknown.

1.2 Prior work

The identification of closed-loop systems has received
much interest for the last decades (see e.g. [12] and
[1]) and three specific groups of methods can be distin-
guished: (1-) The direct approaches in which the identifi-
cation is performed as in an usual open-loop context ([7],
[6] and references therein), (2-) the indirect approaches
which are mainly based on an analysis of the control
system sensitivity function using the system output and
an external excitation input (see [19], [20], [12], [13])
and (3-) the joint input-ouput approaches which use the
system input-output behavior together with an external
excitation input (see [21], [14]). These methods aim at
providing an unbiased model of the plant in the stochas-
tic noise assumption. If the only information about the
noise is its instantaneous bound, these methods are not
able to efficiently identify the system.
SMI methods are the identification methods introduced
to deal with system identification when the noise is as-
sume to be unknown but bounded. Here we consider
noise bounded in the ℓ1 norm. Unlike to the other iden-
tification approaches, which provide an estimate, SMI
methods propose the estimation of a feasible parameter
set i.e. a model set compatible with all the available in-
formation. There are two main possible structures for
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the design of this feasible parameter set: a polytope or
an ellipsoid. In this paper we shall investigate a partic-
ular type of ellipsoidal algorithms: the Optimal Bound-
ing Ellipsoid (OBE) type algorithms. The reason is that
their computational complexity is low and they are ap-
propriated to handle the identification problem in pres-
ence of bounded disturbances. Some contributions have
been presented in [11], [9], [2], [18] and [17].
In the abovemethods very few of them are devoted to the

direct identification problem expressed as |yt−Ĝ(q)ut| ≤

δw with Ĝ(q) an IIR filter and δw fixed in advance.
Among them, some are only suitable for the identifica-
tion of stable systems ([8], [3], [4], [10], [17]) and others
have a high computational complexity ([4], [5]). Above
all, none of them ensures the estimation of a model which
stabilizes the closed-loop, this is however an essential el-
ementary property.
In this paper, to get around these difficulties, we con-
sider the indirect identification problem expressed as∣∣∣∣yt −

Ĝ(q)

1+Ĝ(q)C(q)
rt

∣∣∣∣ ≤ δv with δv fixed in advance. In the

above challenging problem, the number of alternatives is
very limited. One alternative is to use a SMI algorithm in
an indirect two steps approach: 1− the transfer function

G∗(q)
1+G∗(q)C(q) between rt and yt is identified, 2− G∗(q) is

retrieved from the identified transfer function under the
condition that the controller is linear and known. This
approach leads however to a high order model and the
use of a model reduction step would probably not main-

tain the property

∣∣∣∣yt −
Ĝ(q)

1+Ĝ(q)C(q)
rt

∣∣∣∣ ≤ δv. This paper

consists in the development of a new alternative which
alleviates some of the issues of the previous methods.

1.3 Contributions of this paper

The first key idea in our development is the proposi-
tion of a first algorithm using an OBE type algorithm
together with the closed-loop Output Error (CLOE)
parametrization introduced in [15]. Such a parametriza-
tion is not linear in the parameter vector. This non-
linear effect impacts the stability analysis and a main
contribution is the establishment of stability and con-
vergence conditions of the algorithm. The second key
idea in our development is the relaxation of the previous
stability conditions via a second identification algo-
rithm. This leads to the estimation of a model such that∣∣∣yt − G(q)

1+G(q)C(q)rt

∣∣∣ ≤ δv without over-parametrization.

The current paper completes the work presented in [16].
The paper is organized as follows: the identification
problem is formulated in Section 2. In Section 3, two
identification algorithms are presented. The first one is
described and analyzed in detail in subsections 3.1 and
3.2, the second one is introduced in subsection 3.3. The
proposed algorithms have been tested on a numerical
application, results are given in section 4. Section 5
concludes the paper. Appendices contain most of the

proofs.

2 Problem formulation

Consider the transfer function G∗(q) parameterized as

G∗(q) = q−dB
∗(q)

A∗(q)
(3)

with

{
B∗(q) = b∗0 + b∗1q

−1 + · · ·+ b∗nb
q−nb

A∗(q) = 1 + a∗1q
−1 + · · ·+ a∗na

q−na

. q−1 is the

delay operator, d is the delay, na and nb the degrees of
respectivelyA∗(q) and B∗(q). Let us denote θ∗ ∈ R

n the
parameter vector with n = na + nb + 1 the number of

parameters: θ∗ T =
(
· · · a∗i · · · b∗i · · ·

)
. Making use of

the CLOE parametrization, yt =
G∗(q)

1+G∗(q)C(q)rt + vt can

be re-expressed as yt = ŷt + vt where ŷt is determined

by ŷt = φT
t θ

∗ with φt =
(
· · · −ŷt−i · · · ût−d−i · · ·

)
and

ût−d−i = rt−d−i − C(q)ŷt−d−i.

Objective: Given the degrees na and nb, the aim of this
paper is to present an identification scheme in order to

find an estimate θ̂ for θ∗. The transfer function Ĝ(q)

parameterized by θ̂ must satisfy

∣∣∣∣∣yt −
Ĝ(q)

1 + Ĝ(q)C(q)
rt

∣∣∣∣∣ ≤ δv (4)

This must be done by using the available data {rt, yt},

the knowledge of the controller C(q) = R(q)
S(q) and the

upper bound δv.

The estimate for θ∗ at the instant t is denoted θ̂t. For
this current time t, ŷt is replaced by its a priori and

a posteriori estimates

{
ŷt/t−1 = φ̂T

t θ̂t−1

ŷt/t = φ̂T
t θ̂t

. The pseudo

linear regression vector φt is substituted by φ̂t which is
simply obtained by replacing the unknown component
ŷt−i by its a posteriori estimate ŷt−i/t−i and ût−d−i by
its a posteriori estimate ût−d−i/t−d−i:

φ̂T
t =

(
· · · −ŷt−i/t−i · · · ût−d−i/t−d−i · · ·

)

with ût−d−i/t−d−i = rt−d−i − C(q)ŷt−d−i/t−d−i.
The a priori and a posteriori prediction errors are de-
rived form the previous definitions in the following form:{
ǫt/t−1 = yt − ŷt/t−1

ǫt/t = yt − ŷt/t
. Let us notice that the a posteri-
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ori prediction error ǫt/t can be easily expressed as:

ǫt/t =
S(q)

A∗(q)S(q) + q−dB∗(q)R(q)
φ̂T
t θ̃t + vt (5)

where θ̃t = θ∗ − θ̂t denotes the parameter error vector.

3 Identification algorithms and analysis

3.1 The CLOE-OBE (closed-loop Output Error - OBE)
algorithm.

From (1) and (2) the parameter vector θ∗ belongs to the

set defined by
⋂t

i Si withSt =
{
θ ∈ R

n, |yt − φT
t θ| ≤ δv

}
.

The first OBE algorithm to be presented builds on
that property in the sense that its aim is to find a pa-

rameter vector θ̂t center of an ellipsoid Et such that

Et ⊃
⋂t

i Ŝi where Ŝt is the observation set defined by

Ŝt =
{
θ ∈ R

n, |yt − φ̂T
t θ| ≤ δ

}
. δ is a user defined

bound which has to be specified taking into account the

bound δv. Given (yt, φ̂t), Ŝt is the set of all possible θ
which are consistent with the chosen bound δ. An im-
portant property of this observation set is given in the
following theorem. In this theorem ‖.‖1 is the l1 induced
norm.

Theorem 1 Consider a parameter vector θ̂t such that

θ̂t ∈ Ŝt. Assume that G∗(q) and δ are such that:

∥∥∥∥1−
A∗(q)S(q) + q−dB∗(q)R(q)

S(q)

∥∥∥∥
1

< 1 (6)

δ ≥

∥∥∥A∗(q)S(q)+q−dB∗(q)R(q)
S(q)

∥∥∥
1

1−
∥∥∥1− A∗(q)S(q)+q−dB∗(q)R(q)

S(q)

∥∥∥
1

δv (7)

Then
θ∗ ∈ Ŝt (8)

�

This theorem states that the ability to find the true pa-

rameter vector inside Ŝt depends on one condition on
G∗(q) and one condition on δ. From (7) the choice on
δ depends on the known controller C(q), on the known
bound δv but also on the unknown polynomials A∗(q)
and B∗(q). In subsection 3.3 a filter will be introduced
so as to relax these hard conditions.

Remark 2 The previous conditions depend on the de-
sign of the controller. In particular, condition (6) im-
plies the asymptotic stability of the controller used dur-
ing the identification step. There is no stability condition
on G∗(q), consequently the proposed approach is suitable
both for stable systems and unstable systems.

The first proposed algorithm is named CLOE-OBE. It
will be shown in Theorem 3 that it provides a parameter

vector θ̂t center of an ellipsoid Et ⊃
⋂t

i Ŝi. This algo-
rithm corresponds to a modified weighted recursive least
square algorithm. Its update equations are given in table
1 below.

CLOE-OBE algorithm

θ̂t = θ̂t−1 + Γtǫt/t−1 (9)




Γt =
Pt−1φ̂tσt

λ+φ̂T
t Pt−1φ̂tσt

P−1
t = λP−1

t−1 + φ̂tσtφ̂
T
t

ǫt/t−1 = yt − φ̂T
t θ̂t−1

(10)

σt =





λ

φ̂T
t Pt−1φ̂t

(∣∣ ǫt/t−1

δ

∣∣− 1
)

if
(∣∣ǫt/t−1

∣∣ > δ
)
and

(
φ̂T
t Pt−1φ̂t > 0

)

0 otherwise

(11)

Table 1
Algorithm 1: CLOE-OBE algorithm

The two weighting terms are λ and σt. 0 < λ ≤ 1 is
the forgetting factor fixed by the user to weight the past
information. σt is a switching flag which stops the up-

dating of θ̂t if the a priori prediction error is below δ or

if the arrival data are meaningless (i.e. φ̂T
t Pt−1φ̂t = 0).

An important point to note is that, the a posteriori pre-
diction error ǫt/t can be written as:

ǫt/t =
λ

λ+ φ̂T
t Pt−1φ̂tσt

ǫt/t−1 (12)

Using the value of σt for φ̂
T
t Pt−1φ̂t > 0 and

∣∣ǫt/t−1

∣∣ > δ
yields |ǫt/t| = δ. This clearly shows that the CLOE-OBE
algorithm ensures the following key property:

∀t such that φ̂T
t Pt−1φ̂t > 0 ; |ǫt/t| ≤ δ (13)

Consequently the a posteriori prediction error ǫt/t is

bounded by δ which implies that θ̂t ∈ Ŝt.

3.2 Stability and convergence properties

This subsection is devoted to analyzing the properties
of the CLOE-OBE algorithm. The first properties pro-
vide some geometrical interpretations, to this end let
us define for each time t − 1 the ellipsoid Et−1: Et−1 ={
θ ∈ R

n, (θ − θ̂t−1)
TP−1

t−1(θ − θ̂t−1) ≤ ρt−1

}
with ρt−1

a scalar. From above we have θ̂t ∈ Ŝt. The following
Theorem 3 builds the ellipsoid Et so as to ensure Et to

be a bounding ellipsoid of (Ŝt ∩ Et−1). It is shown that
provided Et−1 is a sufficiently large ellipsoid such that
θ∗ ∈ Et−1 then Et contains θ

∗ too.
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Theorem 3 Consider the class of systems defined in
section 2 and the CLOE-OBE algorithm given by (9),
(10) and (11). Assume (6), (7) and

θ∗ ∈ Et−1 (14)

then

• An outer bounding ellipsoid of (Ŝt ∩ Et−1) is given
by the ellipsoid Et with ρt computed as follows:

ρt = λρt−1 + σtδ
2 − λσt

ǫ2t/t−1

λ+ φ̂T
t Pt−1φ̂tσt

(15)

• Et is such that θ∗ ∈ Et.
�

The size of the ellipsoid Et is related to the eigenvalues
of Pt and the scalar ρt. In this theorem the scalar ρt is
computed so as to ensure Et to be a bounding ellipsoid of⋂t

i Ŝi. By carefully analyzing (15) it can be shown that
σt minimizes ρt. The size of the ellipsoid Et is indirectly
influenced by the value chosen for the upper bound δ in
the sense that an overestimation of this bound generates
a larger ellipsoid. An underestimation of the bound is in
contradiction with the condition (7) which may generate
some difficulties in estimation.
The following Theorem 4 focuses on the center θ̂t of the

ellipsoid Et. It is shown that under some conditions θ̂t
converges in a neighborhood of θ∗.

Theorem 4 Consider the class of systems defined in
section 2 and the CLOE-OBE algorithm given by (9),
(10) and (11). Assume (6), (7) then for all initial condi-
tions

• ∣∣∣θ̃t
∣∣∣
2

≤ γ1

∣∣∣θ̃0
∣∣∣
2

(16)

with γ1 =
µmax(P−1

0 )
µmin(P−1

0 )
, where µmax

(
P−1
0

)
and

µmin

(
P−1
0

)
are respectively the maximum and the

minimum eigenvalues of P−1
0 .

Furthermore, if σi 6= 0 on an interval [t; t−oe+1] and if

{φ̂i} is a persistently exciting sequence of order oe ≥ n,
i.e there exist α > 0 and β > 0 such that

αIn ≤

oe−1∑

i=0

φ̂t−iσt−iφ̂
T
t−i ≤ βIn (17)

Then the following properties hold:

• ∣∣∣θ̃t
∣∣∣
2

≤ γ2 λt
∣∣∣θ̃0

∣∣∣
2

(18)

with γ2 =





µmax(P−1
0 )

α

(
λ−oe−1

λ−1
−1

)
if λ<1

µmax(P−1
0 )

α if λ=1

•
lim
t→∞

|ǫt/t−1| ≤ δ (19)

�

Remark 5 In this result,
∣∣∣θ̃t

∣∣∣
2

exponentially decreases

as long as σt 6= 0 and the persistent excitation condition
holds. The adaptation is frozen once |ǫt/t−1| ≤ δ.

3.3 The F-CLOE-OBE (Filtered - CLOE-OBE) algo-
rithm.

The above algorithm suffers from conditions (6) and
(7): they limit the scope of application of the algorithm
(condition (6)) and they limit the choice on δ (condi-
tion (7)). To remove them an adaptation filter is in-
troduced here. This adaptation filter must be designed
and implemented in such a way to compensate the ef-

fect of S(q)
A∗(q)S(q)+q−dB∗(q)R(q)

in (5) without increasing

the noise level. Denote the adaptation filter by F (q). Let
first define the a priori and a posteriori adaptation er-

rors as

{
ηt/t−1 = ǫt/t−1 + (F (q)− 1) ǫt/t

ηt/t = F (q)ǫt/t
. These defi-

nitions allow us to propose a filtered algorithm by simply
substituting in (9), (10) and (11):

• ǫt/t−1 by ηt/t−1 and ǫt/t by ηt/t;

• yt by yFt such that yFt = 1
F (q)yt and φ̂t by φ̂F

t such

that φ̂F
t =

1
F (q) φ̂t.

Taking into account these adjustments, the proposed F-
CLOE-OBE algorithm is given in table 2. It can be es-
tablished that ηt/t = λ

λ+φ̂F
T

t Pt−1φ̂F
tσt

ηt/t−1 and conse-

quently a similar relation to (13) holds: ∀t such that

φ̂F
T

t Pt−1φ̂F
t > 0 we have |ηt/t| ≤ δ, highlighting that

δ is now a bound on the magnitude of the a posteriori
adaptation error ηt/t.

After some straightforward lines of calculus it can be
shown that the a posteriori adaptation error satisfies

ηt/t = F (q)
S(q)

A∗(q)S(q) + q−dB∗(q)R(q)
φ̂F

T

t θ̃t + vt

Using this last equation, the following Theorem 6
presents an analysis of the F-CLOE-OBE algorithm.

Theorem 6 Consider the class of systems defined in
section 2 and the F-CLOE-OBE algorithm given by (20),
(21) and (22). Assume that G∗(q), F (q) and δ are such
that

∥∥∥∥1−
A∗(q)S(q) + q−dB∗(q)R(q)

S(q)

1

F (q)

∥∥∥∥
1

< 1 (23)
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F-CLOE-OBE algorithm

θ̂t = θ̂t−1 + Γtηt/t−1 (20)




Γt =
Pt−1φ̂F

tσt

λ+φ̂F
T

t Pt−1φ̂F
tσt

P−1
t = λP−1

t−1 + φ̂F
tσtφ̂F

T

t

ǫt/t−1 = yFt − φ̂F
T

t θ̂t−1

(21)

σt =





λ

φ̂F
T

t Pt−1φ̂F
t

(∣∣ηt/t−1

δ

∣∣ − 1
)

if
(∣∣ηt/t−1

∣∣ > δ
)
and

(
φ̂F

T

t Pt−1φ̂F
t > 0

)

0 otherwise

(22)

Table 2
Algorithm 2: F-CLOE-OBE algorithm

δ ≥

∥∥∥A∗(q)S(q)+q−dB∗(q)R(q)
S(q)

1
F (q)

∥∥∥
1

1−
∥∥∥1− A∗(q)S(q)+q−dB∗(q)R(q)

S(q)
1

F (q)

∥∥∥
1

δv (24)

then for all initial conditions

• ∣∣∣θ̃t
∣∣∣
2

≤ γ1

∣∣∣θ̃0
∣∣∣
2

(25)

Furthermore, if σi 6= 0 on an interval [t; t−oe+1] and if

{φ̂F
i} is a persistently exciting sequence of order oe ≥ n,

then the following properties hold:

• ∣∣∣θ̃t
∣∣∣
2

≤ γ2 λt
∣∣∣θ̃0

∣∣∣
2

(26)

•
lim
t→∞

|ηt/t−1| ≤ δ (27)

�

The proof is similar to that of Theorem 4. From a ge-
ometrical point of view, by considering the following

Filtered-observation set ŜF
t :

ŜF
t =

{
θ ∈ R

n, |yFt − φ̂F
tθ + (F (q) − 1)ǫt/t| ≤ δ

}

we get Theorem 7, similar to Theorem 3.

Theorem 7 Consider the class of systems defined in
section 2 and the F-CLOE-OBE algorithm given by (20),
(21) and (22). Assume (23) and (24) in Theorem 6 hold
then

θ∗ ∈ ŜF
t (28)

Moreover if
θ∗ ∈ Et−1 (29)

then

• An outer bounding ellipsoid of (ŜF
t ∩ Et−1) is given

by the ellipsoid Et with ρt computed as follows:

ρt = λρt−1 + σtδ
2 − λσt

η2t/t−1

λ+ φ̂F
T

t Pt−1φ̂F
tσt

(30)

• Et is such that
θ∗ ∈ Et (31)

�

The proof is similar to that of Theorem 3. The ideal

filter is obviously F (q) = A∗(q)S(q)+q−dB∗(q)R(q)
S(q) . Thus,

conditions (23) and (24) aremuchmilder than conditions
(6) and (7) if a reasonable estimated model is available.
From the previous considerations on (23) and (24), the
following implementation iterative scheme is proposed:

(1) Choose a high bound δ and apply the CLOE-OBE

algorithm to get Ĝ(q);
(2) Given this first estimation, design the filter F (q) =

Â(q)S(q)+q−dB̂(q)R(q)
S(q) and choose a lower δ;

(3) Apply the F-CLOE-OBE algorithm to get a new

Ĝ(q);
(4) Repeat steps 2 and 3 until convergence of step 3

and δ = δv or until a finite number of iterations.

The first step is an initialization step: an initial esti-
mate of the model is necessary so as to implement the
F-CLOE-OBE algorithm. Then at each iteration a tem-
porary model is used to generate the adaptation filter. It
is difficult to make a general discussion on the behavior
of this iterative scheme, global convergence has not been
proven so far. A smooth transition between two itera-
tions may be introduced by using a smooth decreasing
bound δ: at iteration i, choose δ = δ(i) with δ(i) given
by the formula:

δ(i) =
(
δ(ini) − δ(fin)

)
e−i/µ + δ(fin) (32)

with δ(ini) > δv and δ(fin) = δv. In our experiments this
iterative scheme works well with µ = 1.

Note that if F (q) ≃ A∗(q)S(q)+q−dB∗(q)R(q)
S(q) it is possi-

ble to choose δ = δv. In that case, from (27) we have

limt→∞ θ̂t = θ̂ where θ̂ is such that |ηt| ≤ δv with ηt =

F (q)εt = F (q)

(
yFt − φ̂F

T

t θ̂

)
that’s to say ηt = yt−φ̂T

t θ̂.

To summarize we see that the contribution of the filter
F (q) is twofold: first it relaxes conditions (6) and (7),

second it allows the estimation of a Ĝ(q) such that:

∣∣∣∣∣yt −
Ĝ(q)

1 + Ĝ(q)C(q)
rt

∣∣∣∣∣ ≤ δv (33)

That is what we expected. This is coherent with the
objective stated in section 2 by equation (4).
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Fig. 1. Convergence of parameters.

4 Simulation results

In this section, different simulation results are re-
ported so as to illustrate performance of the pro-
posed iterative scheme. The system and controller

are described by G∗(q) = q−1(1+0.5q−1)
1−1.55q−1+0.45q−2 and

C(q) = 0.9092−1.3404q−1+0.5464q−2

1−1.1q−1+0.1q−2 . Note that the system

is unstable and condition (6) in Theorem 1 is violated.
The iterative scheme has been applied in different situa-
tions. For each of them the default value for the number
of iterations has been fixed to 20 (as in MATLAB c©),
the forgetting factor λ has been chosen equal to 1 and
δv has been adjusted so as to have a signal to noise ratio
equal to 10dB on the output of the closed-loop.

4.1 First simulation experiment

In a first experiment, we focused on performance of the
iterative scheme with respect to the excitation signal
and the choice on δ. Two excitation signals of length
N = 2000 have been used:

• rt = r
(rbs)
t a random binary sequence ;

• rt = r
(sin)
t a sum of 10 sinusoids uniformly dis-

tributed over [0.01;π]rads−1.
The bounded noise wt was defined by to wt = δw

1
2 (et +

bt) with et a white noise uniformly distributed in [−1; 1]
and bt a binary periodic square wave with period 2 sam-
ples.
In a first time the applied exogenous excitation signal

was the random binary sequence r
(rbs)
t . In the iterative

scheme we have chosen a decreasing bound as described

by (32) with δ(ini) = 5 ∗ δv. The convergence of θ̂ at the
end of each iteration towards θ∗ is shown in Fig. 1. These
results suggest that even if condition (6) is violated, this
does not affect the convergence of the algorithm, the
adaptation filter relaxes this condition. Fig. 2 presents

bounds ±δv and the output error yt −
Ĝ(q)

1+Ĝ(q)C(q)
rt ob-

tained with the final model. This figure illustrates the
fact that the final model satisfies (33).
In a second time a Monte Carlo simulation with 100 runs
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Ĝ
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Ĝ
(q
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Fig. 2. Bounds ±δv and the closed-loop output error

yt −
Ĝ(q)

1+Ĝ(q)C(q)
rt.

(with different realizations of the noise) has been car-
ried out in order to study the behavior of F-CLOE-OBE
algorithm with respect to the excitation signal and an
over-evaluation of δv. Fig. 3 presents the mean value of
‖θ̃‖ as a function of δ/δv. It reveals that the size of the
parameter error vector is related to the choice of δ: an
over-evaluation of δv leads to a highest error. This figure
also shows that a poor excitation signal degrades the es-
timation accuracy, even if the estimated model satisfies
(33).

4.2 Second simulation experiment

In a second experiment, the objective was to compare the
iterative scheme with a similar closed-loop identification
algorithm: the F-CLOE method (see [15]). Here three
noise sources have been considered:

• wt = w
(1)
t = δw(

9
10et +

1
10bt)

• wt = w
(2)
t = δw(

5
10et +

5
10bt)

• wt = w
(3)
t = δw(

1
10et +

9
10bt)

with et and bt defined as previously. These three noise
sources produce three noises vt with three different dis-
tributions as depicted on Fig. 4.
Each algorithm has been implemented in an iterative
scheme with the same number of iterations. A Monte
Carlo simulation with 100 runs has been carried out
with the three noise sources and with the two previous
excitation signals. Table 3 presents the mean value of
‖θ̃‖. From the results given, it appears that performance
of the F-CLOE-OBE algorithm are inferior to perfor-
mance of the F-CLOE algorithmwhen the noise samples
are distributed over the entire interval [−δv; δv] (first
noise distribution). This is not surprising because the
F-CLOE-OBE algorithm freezes the parameters adap-
tation if

∣∣ǫt/t−1

∣∣ ≤ δ while the F-CLOE algorithm never
stops adapting. However, performance of the F-CLOE-
OBE algorithm become better when the noise samples
are close to the bounds δv and −δv (third noise distribu-
tion). The F-CLOE algorithm is not suitable to a such
noise distribution. Also note that the F-CLOE-OBE al-
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Fig. 4. Histograms of the three noise vt.

noise rt = r
(rbs)
t rt = r

(sin)
t

wt = w
(1)
t F-CLOE: 0.03 0.08

F-CLOE-OBE : 0.16 0.72

wt = w
(2)
t F-CLOE: 0.02 0.80

F-CLOE-OBE : 0.11 0.61

wt = w
(3)
t F-CLOE: 0.08 1.86

F-CLOE-OBE : 0.08 0.09

Table 3
Mean value of ‖θ̃‖ as a function of the noise source and the
excitation signal.

gorithm seems less sensitive than F-CLOE algorithm to
a poor excitation signal.

5 Conclusion

In this paper, we have presented a scheme for the iden-
tification of a system operating in closed-loop and with
bounded noise on the output. We have posed the prob-
lem in terms of an OBE type algorithm and we have
obtained an identification iterative scheme with a low
computational complexity. The study was based on two
identification algorithms, for each of them sufficient con-
ditions for stability and convergence have been demon-
strated. The relationship between the two algorithms
is the introduction of an adaptation filter used to re-
lax some binding conditions. With regard to other SMI
methods, the proposed scheme estimates an IIR filter, it
can be applied both to stable systems and to unstable

systems and it ensures the estimation of a model stabi-
lizing the closed-loop.

A Proof of Theorem 1

If θ∗ ∈ Ŝt then it means that
∣∣∣yt − φ̂T

t θ
∗
∣∣∣ ≤ δ. This in-

equality is true if
∣∣∣yt − φ̂T

t θ̂t − φ̂T
t (θ

∗ − θ̂t)
∣∣∣ ≤ δ that’s

to says
∣∣ǫt/t − bt

∣∣ ≤ δ with bt = φ̂T
t θ̃t. It has been said

that ǫt/t =
S(q)

A∗(q)S(q)+q−dB∗(q)R(q)
bt + vt, thus bt si such

that bt=
A∗(q)S(q)+q−dB∗(q)R(q)

S(q) (ǫt/t−vt). From the triangu-
lar inequality, the last inequality becomes:

∣∣∣
(
1−

A∗(q)S(q)+q−dB∗(q)R(q)
S(q)

)
ǫt/t

∣∣∣+
∣∣∣A∗(q)S(q)+q−dB∗(q)R(q)

S(q)
vt

∣∣∣≤δ

(A.1)

θ̂t is estimated in such a way that θ̂t ∈
⋂t

i Ŝi thus θ̂t
belongs to Ŝt and then

∣∣ǫt/t
∣∣ ≤ δ. Moreover if condition

(6) is supposed to be true and vt is such that |vt| ≤ δv
then one obtains condition (7).

B Proof of Theorem 3

• Let θ such that θ ∈ Et−1 and θ ∈ Ŝt then we have (θ−

θ̂t−1)
TP−1

t−1
(θ−θ̂t−1)≤ρt−1 and |yt−φ̂T

t θ|≤δ. If θ ∈ (Ŝt ∩Et−1)
it comes:

λ(θ−θ̂t−1)
TP−1

t−1
(θ−θ̂t−1)+σt

(
yt−φ̂T

t θ

)2

≤λρt−1+σtδ
2 (B.1)

It can be shown that the left term in (B.1) be-

comes (θ−θ̂t)
TP−1

t (θ−θ̂t)+
σt
λ

(
λ+φ̂T

t Pt−1φ̂tσt

)
ǫ2t/t and

together with (12), (B.1) gives (θ−θ̂t)
TP−1

t (θ−θ̂t)≤

λρt−1+σtδ
2−λσt

ǫ2
t/t−1

λ+φ̂T
t

Pt−1 φ̂tσt
. This corresponds to the el-

lipsoid Et.

• From Theorem 1 we have θ∗ ∈ Ŝt. Together with (14)

it gives: θ∗ ∈ (Ŝt ∩ Et−1) ⊆ Et.

C Proof of Theorem 4

• Consider the Lyapounov function Vt = θ̃Tt P
−1
t θ̃t.

From (9), (10) and (12) we have θ̃t−1 = θ̃t+Pt−1φ̂t
σt

λ ǫt/t
then Vt−1 can be rewritten as Vt−1=

1
λVt−

1
λ θ̃T

t φ̂tσtφ̂
T
t θ̃t+

2
λ θ̃T

t φ̂tσtǫt/t+
σ2
t

λ2 φ̂T
t Pt−1φ̂tǫ

2
t/t. This gives Vt = λVt−1 + qt

with qt=θ̃T
t φ̂tσtφ̂

T
t θ̃t−2θ̃T

t φ̂tσtǫt/t−
σ2
t
λ φ̂T

t Pt−1φ̂tσ
2
t ǫ

2
t/t. If

σt = 0, then qt = 0 and Vt = λVt−1. Let consider
the case where σt 6= 0. qt can be rewritten as follows:

qt=σt

(
ǫt/t−bt

)2

− 1
λσt(λ+φ̂T

t Pt−1φ̂tσt)ǫ2t/t. It comes from

(12) qt = σt

(
ǫt/t − bt

)2

− λ
σtǫ

2
t/t−1

λ+φ̂T
t Pt−1φ̂tσt

. From (11) we

have: λ+ φ̂T
t Pt−1φ̂tσt = λ

∣∣ ǫt/t−1

δ

∣∣, together with qt this

7



gives: qt=σt

(
ǫt/t−bt

)2

−ǫ2t/t−1σt

∣∣∣ δ
ǫt/t−1

∣∣∣. In this part one

considers the case σt 6= 0, so
∣∣∣ δ
ǫt/t−1

∣∣∣ < 1. Thus qt ≤ 0 if

(ǫt/t − bt)
2 ≤ δ2. In the proof of Theorem 1 it is shown

that this inequality is true provided that conditions (6)
and (7) hold. This ensures qt ≤ 0 and then Vt ≤ λVt−1.
• Henceforth we know that in each cases (σt = 0 or
σt 6= 0) one has Vt ≤ λVt−1 (if conditions (6) and (7)

are satisfied). This gives θ̃Tt P
−1
t θ̃t ≤ λtθ̃T0 P

−1
0 θ̃0. We

have P−1
t = λP−1

t−1 + φ̂tσtφ̂
T
t and σ(t) ≥ 0 so it follows

that P−1
t ≥ λtP−1

0 and consequently θ̃Tt λ
tP−1

0 θ̃t ≤

λtθ̃T0 P
−1
0 θ̃0 thus µmin

(
P−1
0

) ∣∣∣θ̃t
∣∣∣
2

≤ µmax

(
P−1
0

) ∣∣∣θ̃0
∣∣∣
2

.

This gives property (16).
• In order to establish (18) and (19) let consider

again the following relation P−1
t = λP−1

t−1 + φ̂tσtφ̂
T
t .

After several iterations between t − oe and t it
comes P−1

t ≥
∑oe−1

i=0 λiφ̂t−iσt−iφ̂
T
t−i. It can be

shown that P−1
t ≥ ν(λ)

∑oe−1
i=0 φ̂t−iσt−iφ̂

T
t−i with

ν(λ)=

{
1 if λ=1

1−λ−1

1−λ−oe
if λ<1

. On the interval [t; t − oe + 1]

it is assumed that σi 6= 0 and that the sequence

{φ̂i} is persistent exciting of order oe ≥ n, then
from (17) this gives P−1

t ≥ ν(λ)αIn . It has been

established that θ̃Tt P
−1
t θ̃t ≤ λtθ̃T0 P

−1
0 θ̃0 it follows

ν(λ)α
∣∣∣θ̃t

∣∣∣
2

≤ λtµmax(P
−1
0 )

∣∣∣θ̃0
∣∣∣
2

. This gives (18) with

γ2 =
µmax(P

−1
0 )

ν(λ)α . From (18), as long as the a priori pre-

diction error is such that
∣∣ǫt/t−1

∣∣ ≤ δ, the parameter

vector is updated and
∣∣∣θ̃t

∣∣∣ decreases exponentially. This
yields to the convergence of θ̂t in a neighborhood of θ∗ ,
conclusion (19) follows.
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