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Abstract— In this paper, we consider a closed-loop subspace
identification problem. An indirect method is developed using
exogenous input and knowledge of a part of the controller
impulse response. The idea is to extract dynamic of the plant
from dynamic of the closed loop system. Two main result allows
this double estimation. Only the deterministic behavior ofthe
plant is considered in this paper. A simulation example is given
to illustrate the performances of the present method.

I. INTRODUCTION

The identification of closed loop systems has received
much interest for the last decades ([33], [34] [26], [10],
[8], [11]) because for many industrial processes open loop
experiments are prohibited (safety, stability, efficiencyof
operation, etc.). Due to the feedback control, a main dif-
ficulty in the identification of system operating in closed
loop is the existence of a correlation between plant inputs
and disturbances, thus different specific methods have been
developed.

Recently there has been also an increasing interest in sub-
space identification algorithm as pointed out by the available
contributions ([35], [9], [18], [31], [32], [6]). These methods
have been mainly motivated by a set of interesting proper-
ties: the simplicity, the intrinsic numerical robustness and
their straightforward application to multivariable systems.
However, it is a fact that classical subspace methods fail
when data are collected in closed loop experiments: these
methods require the noise sequence to be orthogonal to the
input sequence which is not the case with a feedback.

To overcome this difficulty, some particular subspace
methods devoted to closed loop identification have been
proposed. These methods are divided into three groups
namely the direct approaches, the indirect approaches and
the joint input-output approaches:

• In the direct approaches the identification is performed
as in an usual open loop context up to a suitable data
processing ([25], [7], [30], [15], [23], [24], [16], [2],
[3], [13], [14], [4], [39], [12]);

• The indirect approaches are mainly based on an open
loop identification of the control system sensitivity func-
tion using the system output and an external excitation
input ([36]-[37], [27], [29], [28]);

• The joint input-ouput approaches use the system input-
output behavior together with an external excitation
input ([38], [17], [19], [21], [22]).

Some very attractive direct approaches have been analyzed
in [2], [3], [4], [5] and [6]. These methods ”may be regarded
(...) as a significant step towards a satisfactory subspace
identification algorithm working with closed-loop data” ([4]).
Analyzing the behavior of the closed loop system our indirect
approach is very different: a characteristic of the closed loop
system is first obtained using projections of subspace, as is
the case in lot of subspace identification algorithms. Then
model of the plant is extracted making use the knowledge of
the controller dynamic. Notice that the deterministic partof
the plant only is considered here.

The paper is organized as follows. In section II, the closed
loop identification problem considered in the paper is for-
mulated. Several notations and assumptions used throughout
the paper are also given. Section III is the highlight of the
paper: subsection III-A is devoted to two main results and the
proposed indirect subspace identification method is explained
in Subsection III-B. In Section IV, a numerical simulation
study is reported and finally, some concluding remarks are
presented in Section V.

II. PROBLEM FORMULATION AND NOTATION

A. Identification context

Consider the identification of the closed loop system
shown in Fig. 1 whereu(t) ∈ Rnu and y(t) ∈ Rny are
respectively the input and the output of the plant which is
expressed as:

y(t) = G(q)u(t)+H(q)e(t) (1)

G(q) is a proper transfer matrix of the deterministic part of
the plant,H(q) is an inversely stable square transfer matrix
and e(t) ∈ Rny a white noise representing the innovation.
A minimal state space model for (1) can be written in an
innovation form as{

x(t +1) = Ax(t)+Bu(t)+Ke(t)
y(t) = Cx(t)+Du(t)+e(t)

(2)

with A ∈ Rn×n, B ∈ Rn×nu, C ∈ Rny×n , D ∈ Rny×nu and
K ∈ Rn×ny. (A,C) is assumed to be observable and(A,B)
is assumed to be controllable. Note thatA should not be
stable, which it indeed often is not in a closed loop context.

The control signalu(t) is generated byu(t) = r(t) −
C(q)y(t). The controller state space equations are defined
as {

xc(t +1) = Acxc(t)−Bcy(t)
u(t) = Ccxc(t)−Dcy(t)+ r(t)

(3)
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Fig. 1. Closed loop system

where Ac ∈ Rnc×nc, Bc ∈ Rnc×ny, Cc ∈ Rnu×nc and Dc ∈
Rnu×ny. The controller should not be stable. Herer(t) ∈ Rnu

is an exogenous input for identification.
The identification problem treated in this paper is stated

as: find the ordern of the system and a realization of state
space matrices(A,B,C,D) given input, output and external
excitation measurements. The knowledge of the first Markov
parameters of the controller is also required but they can
easily be estimated (see end of subsection III-A).

We make some usual assumptions throughout the paper:
• The closed loop system is internally stable.
• r(t) and e(t) are wide sense stationary zero mean

processes and are second order ergodic.
• r(t) satisfies persistent excitation conditions.
• r(t) ande(t) are mutually uncorrelated.
• The control system of Fig. 1 is assumed to be well

posed. The well posed assumption of the control sys-
tem ensures that(Inu + DcD) and (Iny + DDc) are non
singular.

B. Notations

Standard subspace algorithms split the available data into
block matrices: the input Hankel matricesUp and U f are
defined as

(
Up

U f

)
=




u(t−p) u(t−p+1) . . . u(t−p+ j−1)

u(t−p+1) u(t−p+2) . . . u(t−p+ j)

. . . . . . . . . . . .
u(t−1) u(t) . . . u(t+ j−2)

u(t) u(t+1) . . . u(t+ j−1)

u(t+1) u(t+2) . . . u(t+ j)

. . . . . . . . . . . .
u(t+ f−1) u(t+ f ) . . . u(t+ f+ j−2)




Similar definitions hold forRf , Rp, Yf , Yp, Ef and Ep.
Subscriptsf andp respectively stand for ”future” and ”past”
and are user-defined indexes such thatf , p > n+ nc. j is
the number of columns in the Hankel matrices. In subspace
identification algorithm, it is assumed that there are long time
series available i.e.j → ∞. Due to the assumed ergodicity,
the expected operatorE {.} will be replaced by the operator
E j{.}:

E j{.}=lim j→∞
1
j {.}

(2) and (3) can be represented by the following basic
subspace equations:

{
Xt = ApXt−p+∆d

pUp+∆s
pEp

Yf = Γ f Xt+Hd
f U f +Hs

f Ef
(4)

{
Xc

t = Ap
cXc

t−p−∆c
pYp

U f = Γc
f Xc

t −Hc
f Yf +Rf

(5)

whereXt−p andXt are respectively the past and future state
matrices of the plant:

Xt−p=
(

x(t−p) x(t−p+1) . . . x(t−p+ j−1)
)

Xt=
(

x(t) x(t+1) . . . x(t+ j−1)
)

and Xc
t−p and Xc

t are respectively the past and future state
matrices of the controller.

Γ f =




C

CA

···

CAf−1




and ∆d
p=
(

Ap−1B ··· AB B
)

are respectively the extended observability matrix and the
reversed extended controllability matrix of the deterministic
part of the plant.Hd

f is defined as

Hd
f =




D 0 ··· 0

CB D 0 ···

··· ··· ··· ···

CAf−2B ··· CB D




and it corresponds to a lower triangular Toeplitz matrix
containing the firstf Markov parameters of the deterministic
part of the plant. Similar notations hold for the stochasticpart
i.e. ∆s

p andHs
f and for the controller i.e.Γc

f , ∆c
p andHc

f .
Combinaisons of (2) and (3) yields

{
xcl(t+1) = Aclx

cl(t)+Bcl/r r(t)+Bcl/ee(t)

y(t) = Cclx
cl(t)+Dcl/r r(t)+Dcl/ee(t)

with

xcl(t)=

(
x(t)

xc(t)

)

Acl, Ccl, Bcl/r , Dcl/r , Bcl/e andDcl/e are determined by the
state space matrices(A,B,C,D,K) and (Ac,Bc,Cc,Dc). The
order of this closed loop state space model isncl = n+ nc.
This order should not be the minimal ordernmin

cl i.e. nmin
cl ≤

ncl.
Similarly, a combinaison of (4) and (5) leads to an

extended state space model of the closed loop:
{

Xcl
t = Ap

clX
cl
t−p +∆cl/r

p Rp+∆cl/e
p Ep

Yf = Γcl
f Xcl

t +Hcl/r
f Rf +Hcl/e

f Ef
(6)

with

Xcl
t =

(
Xt

Xc
t

)
Γcl

f =
(

Tf Γ f Tf Hd
f Γc

f

)

∆cl/r
p =

(
∆d

p(Ipnu−Hc
pTpHd

p )

−∆c
pTpHd

p

)
H

cl/r
f =Tf Hd

f

∆cl/e
p =

(
−∆d

pHc
pTpHs

p+∆s
p

−∆c
pTpHs

p

)
H

cl/e
f =Tf Hs

f



where Tf =
(

I f ny +Hd
f Hc

f

)−1
. Notice that the well posed

assumption of the closed loop ensures
(

I f ny +Hd
f Hc

f

)
to be

invertible.Ap
cl can easily be expressed with matricesAp, Ap

c ,
H, ∆ andΓ.

To end this section let define the following projection
operators as in [35]:

• The orthogonal projectionA/B of the row space of the
matrix A on the row space of the matrixB:

A/B=E j{ABT}(E j{BBT})
−1

The projection ofA onto the orthogonal complement of
the row space ofB is defined asAΠ⊥

B

AΠ⊥
B =A−A/BB

• The oblique projectionA/B
C of the row space of the

matrix A on the row space of the matrixB along the
row space ofC:

A/B
C = E j {A( BT CT )}

(
E j

{
BBT BCT

CBT CCT

})−1( I
0

)

A/B
C = E j

{
AΠ⊥

C BT
}(

E j

{
BΠ⊥

CBT
})−1

III. PROPOSITION OF CLOSED LOOP
IDENTIFICATION ALGORITHM

Most of classical open loop subspace identification meth-
ods are based on the estimation of the extended observability
matrix Γ f . Whereas in a closed loop context the direct
application of these methods gives biased estimates, the
proposed indirect method allows an unbiased estimation
of Γ f : this is the aim of the first subsection. A possible
application algorithm for the estimation of a state matrices
realization(A,B,C,D) is given in the second subsection.

A. Main results

The first steps of the indirect algorithms by ([36]-[37])
and ([27], [29], [28]) are to estimate respectivelyTf Γ f and
Γ f . Here the estimation ofΓ f (or Tf Γ f ) will be done in
a next step. We first concentrate on the estimation of a
matrix describing the closed loop behavior i.e. the extended
observability matrix of the closed loopΓcl

f . To this end the
following result uses the standard procedure of subspace
approach (see [35]) on (6).

Result 1:
Let define the following oblique projection matrixOcl

f :

O
cl
f = Yf /

Ψ
Rf

ΨΠ⊥
Rf

(7)

whereΨ is an instrumental variable matrix such that:
• Ef /

Ψ = 0

• the matrix E j

{(
Xcl

t
Rf

)
( ΨT RT

f )
}

has rank(nmin
cl +

f nu)

Under assumptions stated in section II-A we have:

1) O
cl
f can be expressed with the extended observability

matrix of the closed loopΓcl
f and the state matrixXcl

t

O
cl
f = Γcl

f Xcl
t /Ψ

Rf
ΨΠ⊥

Rf

2) The singular value decomposition (SVD) ofO
cl
f is

given by

O
cl
f =

(
U1 U2

)( S1 0
0 0

)(
VT

1

VT
2

)
(8)

O
cl
f = U1S1V

T
1

whereS1 ∈ Rnmin
cl ×nmin

cl ,
3) Γcl

f can be taken equal toΓcl
f = U1T where T is a

similarity transformation.

Remark 1:The algorithm by [36]-[37] uses a similar
oblique projection matrix:Yf /

Ψ
U f

ΨΠ⊥
U f

. However this choice
does not allow the estimation of the closed loop behavior.

The first condition on the instrumental variable matrixΨ
must be guaranteed in order to obtain consistent estimation
under the noise-corrupted context. Let remark thatA should
note be stable which yieldsEf /

Up 6= 0 as discussed in [2],
thus Up don’t have to be directly introduced inΨ. Two

possible choices areΨ = Rp or Ψ =

(
Rp

Yp

)
.

The second condition onΨ (the rank condition) involves
some conditions on the choice of the indexesf andp ( f , p>
nmin

cl ), the degree of persistence excitation and the closed loop

complexity. According to [1], ifΨ = Rp or Ψ =

(
Rp

Yp

)

this rank condition is generically satisfied provided that the
exogenous input is persistently exciting enough.

Remark 2:Some weighting matrices are often added in
(7) in order to include some well known subspace methods
such that N4SID, PO-MOESP, CVA, IVM, etc. The MOESP
type algorithms make use of the two previous instrumental
variable matrices in (7).

Once the extended observability matrix known, we have
to find Γ f . From (6) it is easy to rewriteOcl

f as

O
cl
f = Tf Γ f Xt/

Ψ
Rf

ΨΠ⊥
Rf

+Tf H
d
f Γc

f X
c
t /Ψ

Rf
ΨΠ⊥

Rf

which gives

Γ f Xt/
Ψ
Rf

ΨΠ⊥
Rf

= T−1
f

(
O

cl
f −Tf H

d
f Γc

f X
c
t /Ψ

Rf
ΨΠ⊥

Rf

)

with
Γc

f X
c
t = U f +Hc

fYf −Rf (9)

To computeΓ f we need to determine matricesTf Hd
f and

Tf . From (6) we get

Yf /
ZZ = Γcl

f Xcl
t /ZZ+Tf H

d
f Rf

whereZ =

(
Rf

Ψ

)
. With

(
Γ̂cl

f

)⊥
computed from the pre-

vious result we find:
(

Γ̂cl
f

)⊥
Yf /

ZZ =
(

Γ̂cl
f

)⊥
Tf H

d
f Rf

with

Tf H
d
f =




L0 0 · · · 0

L1 L0

. . .
.
.
.

.

.

.
. . .

. . . 0
L f−1 · · · L1 L0






whereL0 = Dcl/r and Li = CclA
i−1
cl Bcl/r . These f elements

Li ∈Rny×nu can easily be extracted using the procedure given
in [36].

OnceT̂f Hd
f is known, it is easy to get an estimated ofTf :

T̂f = I f ny − T̂f Hd
f Hc

f (10)

By using previous estimations, the following result allows
the computation of the extended observability matrixΓ f of
the plant model.

Result 2:
Let define the following matrixO f :

O f = T−1
f

(
O

cl
f −Tf H

d
f Γc

f X
c
t /Ψ

Rf
ΨΠ⊥

Rf

)

Under the assumption stated in part II-A and in the
previous result we have:

1) The matrixO f can be expressed with the extended
observability matrix of the plantΓ f and the state matrix
Xt

O f = Γ f Xt/
Ψ
Rf

ΨΠ⊥
Rf

2) The SVD ofO f is given by

O f =
(

U′
1 U′

2

)( S′1 0
0 0

)(
V′T

1

V′T
2

)
(11)

O f = U′
1S

′
1V

′T
1

whereS′
1 ∈ Rn×n,

3) Γ f can be taken equal toΓ f = U′
1T where T is a

similarity transformation.

Remark 3: It is possible to estimate a matrix̂Xt =
Xt/

Ψ
Rf

ΨΠ⊥
Rf

= T−1S′
1V

′T
1 . This can be interpreted as the state

sequence estimated by a bank of non steady state Kalman
filters ([35]).

Remark 4: It should be noted that results 1 and 2 are
based on classical subspace procedures ([35]) and algebraic
computations applicable to MIMO processes, thus these
results are also applicable to this type of processes.

Remark 5: In the previous result the Markov parameters
of the controller are needed: in (9) and (10). It should be
noted that (5) can be rewritten as

(
U f −Rf

)
= Γc

f X
c
t −Hc

fYf .
This equation is free noise, thus the matrixHc

f can easily be
estimated without bias making use an open loop subspace
algorithm.

B. Closed loop identification algorithm

In this section we propose the estimation of a realization of
state space matrices(A,B,C,D). This can be realized with the
estimated state sequenceX̂t , however we present the solution
making use of the shift invariance structure of the extended
observability matrixΓ f .

The basic steps of the proposed algorithm are as follows:

step 1:Compute the LP decomposition



Rf

Ψ
Yf



=




M11 0 0
M21 M22 0
M31 M32 M33








NT

1
NT

2
NT

3





which gives the first oblique projection

O
cl
f = M32N

T
2

step 2:Compute the SVD (8) and extractΓcl
f

Γcl
f = U1

step 3:EstimateTf Hd
f andTf

step 4:Compute the LP decomposition



Rf

Ψ
Tf Hd

f Γc
f X

c
t



=




R11 0 0
R21 R22 0
R31 R32 R33








QT

1
QT

2
QT

3





which gives the second oblique projection

O f = T−1
f (U1S1V

T
1 −R32Q

T
2 )

step 5:Compute the SVD (11) and extractΓ f

Γ f = U′
1

step 6:The system matricesA andC can be estimated by

C = Γ f (1 : ny, :)

A =
(
ΓT

f Γ f

)−1ΓT
f Γ f

with Γ f = Γ f (1 : ( f −1)ny, :) andΓ f = Γ f (ny +1 :
f ny, :).
B and D can be estimated from the following
equation
(

T−1
f Γcl

f

)⊥
T−1

f Yf /
ZZ =

(
T−1

f Γcl
f

)⊥
Hd

f (B,D)Rf

using the procedure given in [35].

Remark 6:Note that the absence of feedback corresponds
to the caseHc

f = 0, Γc
f = 0, Rf = U f and Rp = Up. As a

consequence, in an open loop context the proposed algorithm
can be reduced to steps 1, 2 and 6. This corresponds to
the open loop MOESP type algorithms: withΨ = Up our
algorithm is equivalent to the PI-MOESP algorithm, with

Ψ =

(
Up

Yp

)
= our algorithm is equivalent to the PO-

MOESP algorithm.

IV. NUMERICAL EXAMPLE

In this section we consider a fifth order plant presented in
[38] and used as a benchmark problem by [36] for closed
loop subspace identification. This example is also adopted in
[24], [20], [13], [12], [21] for comparison.

The transfert functions of the plant and controller are
respectively given by

G(q)=10−3q−1 0.98+12.99q−1+18.59q−2+3.3q−3−0.02q−4

1−4.4q−1+8.09q−2−7.83q−3+4q−4−0.86q−5
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Fig. 2. The eigenvalues of estimated A matrix with direct approach: ∗
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Fig. 3. The eigenvalues of estimated A matrix with our indirect approach:
∗ estimated pole,+ system pole.

C(q)= 0.63−2.083q−1+2.8222q−2−1.865q−3+0.4978q−4

1−2.65q−1+3.11q−2−1.75q−3+0.39q−4

The exogenous inputr(t) is a gaussian white noise sequence
with variance 1. The innovatione(t) is a gaussian white noise
with variance 1/9 and the noise model is given by

H(q)= 1−2.1q−1+1.45q−2−0.315q−3−0.0146q−4+0.0034q−5

1−4.4q−1+8.09q−2−7.83q−3+4q−4−0.86q−5

The number of columns in Hankel matrices isj = 1200
and we generate 100 data sets, each time with the same
exogenous input but with different noise sequences. We
choosef = 20 and the following instrumental variableΨ

Ψ =

(
Rp

Yp

)

where Rp and Yp are built with p = f = 20. The Markov
parameters of the controller are supposed to be known.

Some estimates of the poles are shown in Figs. 2 and
3: Fig. 2 corresponds to the N4SID algorithm proposed by
MATLAB, Fig. 3 corresponds to our indirect algorithm. We
can see that our indirect method looks better than the other
in spite of one remark: poles 0.7319±0.6007i are difficult
to estimate, the estimation variance is higher (Fig 3).
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Fig. 4. The Bode magnitude plot of direct approach.
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Fig. 5. The Bode magnitude plot of our indirect approach.

Estimates of the frequency response are shown in Fig. 4
to 7: Fig. 4 corresponds to the N4SID algorithm proposed
by MATLAB, Fig. 5 corresponds to our indirect method,
Fig. 6 corresponds to the method proposed in [36]-[37]
(with p = f = 10 – as proposed in these papers) and Fig. 7
corresponds to the method proposed in [29] (withp= f = 20
– the best choice after several tests). Here again, our indirect
method works well: all the methods match with the frequency
response of the real system at low and medium frequency.

V. CONCLUSION

In this paper, an indirect closed-loop identification algo-
rithm is developed using the subspace identification culture.
The key idea was to estimate a characteristic matrix of the
closed loop behavior and then to extract a characteristic
matrix of the plant. Notice that two LQ decompositions and
two SVD are needed and the algorithm allows the estimation
of the closed loop complexity and plant complexity. In this
paper only the deterministic part of the plant is identified,
follow-up paper will concentrate on the stochastic part.
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