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Abstract— In this paper, we consider a closed-loop subspace  Some very attractive direct approaches have been analyzed
identification problem. An indirect method is developed ushg in [2], [3], [4], [5] and [6]. These methods "may be regarded
exogenous input and knowledge of a part of the controller ()55 3 significant step towards a satisfactory subspace

impulse response. The idea is to extract dynamic of the plant . e . . . ,
from dynamic of the closed loop system. Two main result allow identification algorithm working with closed-loop data{].

this double estimation. Only the deterministic behavior ofthe ~ Analyzing the behavior of the closed loop system our indirec
plant is considered in this paper. A simulation example is gien  approach is very different: a characteristic of the closexpl

to illustrate the performances of the present method. system is first obtained using projections of subspace, as is
the case in lot of subspace identification algorithms. Then
. INTRODUCTION model of the plant is extracted making use the knowledge of

. e . the controller dynamic. Notice that the deterministic pzfrt
The identification of closed loop systems has recewe&e plant only is considered here.

much interest for the last decades ([33], [34] [26], [10], The paper is organized as follows. In section Il, the closed

(8], [1.1]) because forh_rg_ané/ indl;strial prl;)_(lz_esse?rqpen loqgop identification problem considered in the paper is for-
experiments are prohibited (safety, stability, efficienaly ulated. Several notations and assumptions used throtighou

operation, etc.). Due to the feedback control, a main di{ﬂe paper are also given. Section Il is the highlight of the

f|cult¥ in the |.dent|f|cat|on of syst(_em operating in clpse aper: subsection IlI-A is devoted to two main results ard th
loop is the existence of a correlation between plant inpu

4 disturb thus diff . i thods h b oposed indirect subspace identification method is expthi
and disturbances, thus different specilic methods have beNg, section 111-B. In Section 1V, a numerical simulation

developed. ) o . study is reported and finally, some concluding remarks are
Recently there has been also an increasing interest in Slﬂ?'esented in Section V.

space identification algorithm as pointed out by the avilab

contributions ([35], [9], [18], [31], [32], [6]). These miedds II. PROBLEM FORMULATION AND NOTATION

have been mainly motivated by a set of interesting propeA. Identification context

ties: the simplicity, the intrinsic numerical robustnesgla  consider the identification of the closed loop system
their straightforward application to multivariable sys® shown in Fig. 1 whereu(t) € R™ and y(t) € RV are

However, it is a fact that classical subspace methods faispectively the input and the output of the plant which is
when data are collected in closed loop experiments: theg@pressed as:

methods require the noise sequence to be orthogonal to the
input sequence which is not the case with a feedback. y(t) = G(a)u(t) +H(a)e(t) 1)

To overcome this difficulty, some particular subspaces(q) is a proper transfer matrix of the deterministic part of
methods devoted to closed loop identification have beehe plant,H(q) is an inversely stable square transfer matrix
proposed. These methods are divided into three groupad e(t) € R™ a white noise representing the innovation.
namely the direct approaches, the indirect approaches apdminimal state space model for (1) can be written in an

the joint input-output approaches: innovation form as
« In the direct approaches the identification is performed X(t+1) = Axt)+Bu(t)+Ke(t) @)
as in an usual open loop context up to a suitable data y(t) = Cx(t)+Du(t)+e(t)

processing ([25], [7], [30], [15], [23], [24], [16], [2], \yith Ac R BeR™M CecRYN DeRYM and
[3], [13], [14], [4], [39], [12]); K € R™", (A,C) is assumed to be observable afflB)

« The indirect approaches are mainly based on an oped ossmed to be controllable. Note thatshould not be
loop identification of the control system sensitivity funC-giapje ‘which it indeed often is not in a closed loop context.
tion using the system output and an external excitation Tha control signalu(t) is generated byu(t) = r(t) —

input ([36]-[37], [27], [29], [28]); _ C(q)y(t). The controller state space equations are defined
« The joint input-ouput approaches use the system inputy
output behavior together with an external excitation { X(t+1) = Acx(t) —Bey(t)

input ([38], [17], [19], [21], [22]). ut) = Cox®)-Dyt)+ry &



(2) and (3) can be represented by the following basic
subspace equations:

X = APXe p+AdUp+ASED @)
" H(a) Yi = Ti%+HIUf+HSE;
u(t) y(t) X{C _ AgXtC, o= A%Yp
_ .é 5
C(a) A’CB—’ G(a) — { Uf = TEXC—HEY(+Ry )

whereX;_p and X are respectively the past and future state
matrices of the plant:

X-p=( xt-p) xt-p+1) X(t-p+j-1) )

><t:( X(t)  x(t+1) X(t+j-1) )

Fig. 1. Closed loop system and Xtc,p and X¢ are respectively the past and future state
matrices of the controller.
c
where Ac € R%exc B, ¢ R"e*W C, € Rvxe and D, € r— CA and A%:( AP-1g AB B )
R"*"y_The controller should not be stable. Hefg) € R™
CAf71

is an exogenous input for identification.

The identification problem treated in this paper is stateglre respectively the extended observability matrix and the

as: find the orden of the system and a realization of statereversed extended controllability matrix of the deteristici
space matrice$A,B,C,D) given input, output and external part of the p|antHg is defined as
excitation measurements. The knowledge of the first Markov

parameters of the controller is also required but they can o0 -0

easily be estimated (see end of subsection IlI-A). po—| <& P 0
We make some usual assumptions throughout the paper:
cAf-2g CB D

« The closed loop system is internally stable.

« r(t) and e(t) are wide sense stationary zero mear@nd it corresponds to a lower triangular Toeplitz matrix
processes and are second order ergodic. containing the firsf Markov parameters of the deterministic

. r(t) satisfies persistent excitation conditions. part of the plant. Similar notations ho_ld for the stochagtct
« r(t) ande(t) are mutually uncorrelated. i.e. A} andH? and for the controller i.el'¢, Af andHg.

« The control system of Fig. 1 is assumed to be well Combinaisons of (2) and (3) yields

posed. The well posed assumption of the control sys- 1) = A (t)+Bg T (1) +Bg jeelt)
tem ensures thafn, + DcD) and (In, + DDc) are non yt) = Cox®(t)+Dgrr(t)+Dgeelt)
singular. with

B. Notations

Standard subspace algorithms split the available data into

block matrices: the input Hankel matricek, andU¢ are

Xcl _ X(t> )
© ( xc(t)

Adl, Col, Beyr,y Deijry Beije @ndDyy e are determined by the
state space matricé#\ B,C,D,K) and (A¢, B¢, Cc,Dc). The

defined as

order of this closed loop state space modehds= n-+ nc.

ut=p)  ut=p+d) ut=p+i-1) This order should not be the minimal ord&f™" i.e. N7 <
ult—p+1) ut—p+2) u(t—p+ij) Nl
Similarly, a combinaison of (4) and (5) leads to an
< Yp ) _ |ty uct) u(t+j-2) extended state space model of the closed loop:
U u(t) u(t+1) u(t+j-1) | |
ut+l)  ut+2) u(t+) X = AglxtC—IpJFA}:J/rRPJFA%/eED ©6)
Yo = raxe+HY R+ HEYoE,
u(t+f—1) u(t+f) u(t+f+j-2) with
Similar definitions hold forR¢, Rp, Yf, Yp, Ef and E,.
Subscriptsf and p respectively stand for "future” and "past” a [ % ri_( T Topdre
and are user-defined indexes such thap > n+nc. j is X= X¢ f=( mre T )

the number of columns in the Hankel matrices. In subspace
identification algorithm, it is assumed that there are lomget
series available i.ej — «. Due to the assumed ergodicity,
the expected operataf{.} will be replaced by the operator
&

Ei{}=limje ${.}

A |
(F:)/r (
/e

A (1, —HEToHS)
AN

dyc S AS

7ApHprHp+Ap
C s
—AprHp

)
)

cl/r
Hy

cl/e
Hy

=T¢HZ

:TfoS



1 _ . .
where T; = (Ifny+H?Hf°) . Notice that the well posed 2) The singular value decomposition (SVD) of¢' is

) d given by
assumption of the closed loop ensu(esny+ H{ ch) to be

,
invertible. AY} can easily be expressed with matricey AL, o =(un 1) ( 50 ) ( n ) )
0 0 v}
H, A andr. 2
To end this section let define the following projection 0 =U;S1V]

operators as in [35]: min

n

« The orthogonal projectio”/B of the row space of the WgereSl €R ol _

matrix A on the row space of the matri: 3) I'f can be taken equal t0f = UsT whereT is a
similarity transformation.

><ng|‘in’
Ry AT (5 (BT

The projection ofA onto the orthogonal complement of Rémark 1:The algorithm by [36]-[37] uses a similar

the row space oB is defined asAMg oblique projection matrifo /B’ftvﬂdf. However this choic.e
does not allow the estimation of the closed loop behavior.
ANg=A-A/®B The first condition on the instrumental variable matx

« The oblique projectionA/8 of the row space of the MUSt be guaranteed in order to obtain consistent estimation
matrix A on the row spage of the matri along the under the noise-corrupted context. Let remark thahould
. . U . .
row space of: note be stable which yield&¢ /~r = 0 as discussed in [2],
thus Uy don’t have to be directly introduced i. Two

B o f BB BCT \\ 1/ 1
Alc=&{A( B ¢ )} (éaJ{ cB  ccT }) ( 0 ) possible choices ar¢’ = R, or W = Ro

Yp
-1 The second condition oW (the rank condition) involves
B_ o LT _ LT
Ale=¢i {AHCB } (éa’ {BHCB }) some conditions on the choice of the indefeandp (f, p>
I1l. PROPOSITION OF CLOSED LOOP ng'"™, the degree of persistence excitation and the closed loop

IDENTIFICATION ALGORITHM complexity. According to [1], if¥ =Rp or W = 5’3
Most of classical open loop subspace identification met his rank condition is generically satisfied provided ptﬁai t
ods are based on the estimation of the extended obseryabilit 9 y P

matrix . Whereas in a closed loop context the direcfX09€N0OUS |.nput IS per_5|st_ently exgmng enough. .
Remark 2: Some weighting matrices are often added in

application of these methods gives biased estimates, Xf) in order to include some well known subspace methods

proposed indirect method allows an unbiased estimati i
of I'¢: this is the aim of the first subsection. A possibleSUCh that N4SID, PO-MOESP, CVA, IVM, etc. The MOESP

application algorithm for the estimation of a state maEricetgggllg?:;T;T;:]iikg)use of the two previous instrumental
realization(A,B,C,D) is given in the second subsection. '

A. Main results Once the extended observability matrix known, we have
The first steps of the indirect algorithms by ([36]-[37])t0 find T's. From (6) it is easy to rewrite’f' as

and ([27], [29], [28]) are to estimate respectivalyf ¢ and o e Yunt o THIFSXS /Y Wit

I¢. Here the estimation of ; (or T¢I') will be done in _ _f (1% /R W, + TeHIT /R WTTg,

a next step. We first concentrate on the estimation of \&hich gives

matrix describing the closed loop behavior i.e. the extdnde W 1 -1/ decyvc /W 1

observability matrix of the closed lodp?. To this end the FiXe/r ¥Ry =Ty (ﬁf — THHTEX /waan)

following result uses the standard procedure of subspaggth

approach (see [35]) on (6). FEXE =Us +HPYs — R¢ 9)
Result 1:
: e
Let define the following oblique projection matrix¢': To computel’s we need to determine matric&gHy and

T¢. From (6) we get

cl _ W L
OF =Yt /R W, (") Vi /22 = T9XE /22 4+ THIR,

whereW is an instrumental variable matrix such that:

—\ L
« Ef/¥=0 whereZ = Fjj ) With (F?‘) computed from the pre-

« the matrix &; {( é:‘ )( wTOR )} has rank(nf'"+  vious result we find:

fru) o)y, z Ca) T,
Under assumptions stated in section 1I-A we have: (rf) Vi/7z= (rf) TrHiRy
with
1) 0¢ can be expressed with the extended observability b 00
matrix of the closed loof$ and the state matrix® THi=| & b

cl _ rclycl /W 1 . 0
Of =TFX /r Wk, Lie o L Lo



whereLo = D/ andLi = CdAid’le/r. Thesef elements step 1:Compute the LP decomposition

L; e RW*Mu can easily be extracted using the procedure given
. 136 y gthep 9 Ry My O O NJ
=y . . W | = Mz Mz O \y
OnceT¢H{ is known, it is easy to get an estimatedTot Y Ms; Ma> Mas Ng
T =1, _-EH\?ch (10) which gives the first oblique projection
y
0% = MgpNJ

By using previous estimations, the following result allows
the computation of the extended observability maifrixof step 2:Compute the SVD (8) and extract
the plant model.
r{=u,
Result 2:

Esti d
Let define the following matrix?;: step 3:EstimatdH¢ and T

O = Tffl (ﬁgl ~TrHITEXE /¥ Wik ) step 4:Compute the LP decomposition
f f
. . . Rt Riu 0O O Q]
Ur_1der the Iassw;]ptlo.n stated in part lI-A and in the 0] —| Ry Ry O Q!
previous result we have: TeHErexe Ry Rs Ras of

1) The matrix &s can be expressed with the extended which gives the second oblique projection

observability matrix of the plarit; and the state matrix O = Tf’l(UlSNT _ Rsng)

Xt
step 5:Compute the SVD (11) and extragt

O =Tt X/, W,

re=0"1
2) The SVD of @ is given by step 6:The system matricésandC can be estimated by
s/ O V/T . . .
ﬁf:( LOT % )< 01 0) < V/i_ ) (11) C_Ff(l.ny,.)

—(rTr\irTF
O ZUI1§I1VII A= (O
with [y =T¢(1:(f —1)ny,:) andTs =T¢(ny+1:

whereS'; € R™", fny,:).
3) '+ can be taken equal tbs = U'1T whereT is a B and D can be estimated from the following
similarity transformation. equation
. . . 7 1re\ T o1y, 2 e\t
Remark 3:It is possible to estimate a matri¥ = (T{ r?) T Y/ = (T{ r?) Hf (B,D)R¢

X/ WM =T-15'1V']. This can be interpreted as the state
sequence estimated by a bank of non steady state Kalman
filters ([35]).

Remark 4:1t should be noted that results 1 and 2 are Remark 6:Note that the absence of feedback corresponds
based on classical subspace procedures ([35]) and algebri the caseHf = 0, =0, Rt =Us andRy =Up. As a _
computations applicable to MIMO processes, thus thegg@nsequence, in an open loop context the proposed algorithm
results are also applicable to this type of processes. can be reduced to steps 1, 2 and 6. This corresponds to

Remark 5:In the previous result the Markov parameterghe open loop MOESP type algorithms: with = Uy, our
of the controller are needed: in (9) and (10). It should b@lgonthanJ is equivalent to the PI-MOESP algorithm, with
noted that (5) can be rewritten 8y —Rf) =F¢XE—HfYr. @ — y’ ) = our algorithm is equivalent to the PO-
This equation is free noise, thus the matrd¥ can easily be p /.

; : . . MOESP algorithm.
estimated without bias making use an open loop subspace
algorithm. IV. NUMERICAL EXAMPLE

In this section we consider a fifth order plant presented in
_ ] o ~ [38] and used as a benchmark problem by [36] for closed
In this section we propose the estimation of a realization g subspace identification. This example is also adopted i
state space matric€A, B,C, D). This can be realized with the [24], [20], [13], [12], [21] for comparison.
estimated state sequenXie however we present the solution” The ransfert functions of the plant and controller are
making use of the shift invariance structure of the eXtend%spectively given by
observability matrix ;. . P »
The basic steps of the proposed algorithm are as follows: G(a) =102 a7 6 60

using the procedure given in [35].

B. Closed loop identification algorithm
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Fig. 2. The eigenvalues of estimated A matrix with direct rapgh: * Fig. 4. The Bode magnitude plot of direct approach.
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Fig. 5. The Bode magnitude plot of our indirect approach.

Qa

Fig. 3. The eigenvalues of estimated A matrix with our inclirapproach:
+ estimated pole;+ system pole.

Estimates of the frequency response are shown in Fig. 4
063208311+ 28222 2 1668040781 to 7: Fig. 4 corresponds to the N4SID algorithm proposed
=" s T13119-2 1753 3103934 by MATLAB, Fig. 5 corresponds to our indirect method,
Fig. 6 corresponds to the method proposed in [36]-[37]
?with p= f =10 — as proposed in these papers) and Fig. 7
corresponds to the method proposed in [29] (witk f =20
— the best choice after several tests). Here again, ouricidir
H(q)= 172.11q4*Z}fzf(;g.zslgq;;:ggz@;“gg;g@*’ method works well: all the methods match with the frequency
o RS e response of the real system at low and medium frequency.
The number of columns in Hankel matrices jis= 1200
and we generate 100 data sets, each time with the same V. CONCLUSION
exogenous input but with different noise sequences. We In this paper, an indirect closed-loop identification algo-

The exogenous inpuit) is a gaussian white noise sequenc
with variance 1. The innovaticg(t) is a gaussian white noise
with variance ¥9 and the noise model is given by

choosef = 20 and the following instrumental variab¥e rithm is developed using the subspace identification caltur
The key idea was to estimate a characteristic matrix of the
W= ( Rp ) closed loop behavior and then to extract a characteristic

Yp matrix of the plant. Notice that two LQ decompositions and

where R, and Y, are built with p = f = 20. The Markov WO SVD are needed and the algorithm allows the estimation
parameters of the controller are supposed to be known. Of the closed loop complexity and plant complexity. In this
Some estimates of the poles are shown in Figs. 2 am@Per only the deterministic part of the plant is identified,
3: Fig. 2 corresponds to the N4SID algorithm proposed bfpllow-up paper will concentrate on the stochastic part.
MATLAB, Fig. 3 c_orr_esponds to our indirect algorithm. We REFERENCES
can see that our indirect method looks better than the oth[(ﬂ D. Bauer and M. Jansson. "Analysis of the asymptotic prées of
In Splt.e of one remf”lrk: _poles'L_Blgi _0'6907‘ are .dlfﬂcult th.e MOESP type. of subspéce algorithmA&utomatica 36 (4),497-509,
to estimate, the estimation variance is higher (Fig 3). 2000.
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