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Abstract— In this paper, we present the adaptation of an
Optimal Bounding Ellipsoid (OBE) type algorithm for out-
put error systems with unknown but bounded disturbances.
Two identification algorithms are derived in a multi-input
multi-output context and the paper proposed stability and
convergence analysis. An iterative scheme is introduced and
simulation are performed, showing the excellent performance
of the proposed approach.

I. INTRODUCTION

All practical identification algorithms have to deal with
measurements corrupted by noise. In some cases (unknown
probability distribution of the disturbances, modeling inac-
curacy) the noise can’t be modeled as a stochastic process,
then the bounded noise assumption seems to be more ap-
propriate. In this context, the use of classical identification
schemes ([11]) is limited and in contrast Set Membership
Identification (SMI) algorithms are interesting alternative
approaches. Indeed these approaches are considered to be
more appropriate to handle the identification problem in
presence of bounded disturbances. Their principe consistsin
the estimation of a feasible set of parameters which must
be consistent with the measurement data and the model
structure. Important contributions have been presented in
[13], [9], [14], [20], [10], [1] and [4]. Among the SMI
type methods, OBE type algorithms represent a very popular
class of recursive algorithms ([9], [5], [12], [3], [16], [6],
[7], [19], [15], [18], [2]). These methods have been mainly
motivated by a low computational complexity and robustness
to measurement noise.

To the best of our knowledge, most of the existing works
in the OBE algorithms literature aim at designing identifi-
cation algorithm adapted to equation error models: stability
and convergence properties are established in particular for
affine-in-parameters model. Less attention has been focused
on the output error systems with bounded disturbances ([8])
and our goal in this paper is to adapt an OBE algorithm to
this type of systems. The main contribution of this note is
the extension of some stability and convergence results ([3],
[19], [15], [18], [2]) to output error systems context and the
derivation of an algorithm which relaxes the stability and
convergence conditions.

The paper is organized as follows: in section II the model
structure is presented. In section III, some algorithms are
proposed and their convergence analysis are addressed. A

geometrical interpretation is also presented in this section.
Some simulation results are given in section IV. Finally,
section V concludes the paper.

II. PROBLEM FORMULATION

Consider a discrete-time multi-input multi-output stable
system of the form

{
yt=G(q)ut+vt

vT
t ∆−2

vt vt≤1
(1)

where ut ∈ R
nu and yt ∈ R

ny are respectively the system
inputs and outputs vector.vt ∈ R

ny is an unknown and
bounded disturbing term (noise measurement, state distur-
bances, modeling inaccuracy, etc.) and∆vt is a symmetric
positive definite known matrix which reflects a known upper
bound onvt .

The identification problem treated in this paper is stated
as: estimate the parameters of system (1) described by

G(q)=(A(q))−1B(q) (2)

where A(q) and B(q) are unknown matrix polynomials of
the form: {

A(q)=Iny+A1q−1+···+Anaq−na

B(q)=B0+B1q−1+···+Bnbq−nb

with Ai ∈ R
ny×ny and diagonal,Bi ∈ R

ny×nu. Note that this
description of the behavior of the system may not be a
minimal realization.

This structure of the plant is called an output error model
structure. The vector of coefficients of the plant is

Θ∗=
(

A1 ··· Ana B0 ··· Bnb

)

and the one-step-ahead output predictor is defined bearing in
mind the optimal predictor structure (see [11]), namely

ŷt=yt−vt=Θ∗ϕt

with ϕT
t =
(

−ŷT
t−1 · · · −ŷT

t−na uT
t · · · uT

t−nb

)
. This can

be rewritten as ˆyt = φT
t θ∗ (see [11]) with

{
θ∗=vect(Θ∗)

φt=ϕt⊗Iny

wherevect(.) denotes the vectorization of a matrix,⊗ the
Kronecker product andθ∗ ∈ R

n is the unknown parameters
vector to be identified withn = (nany + (nb + 1)nu)ny the
number of parameters.

A key observation is that the output predictor ˆyt is not
linear in the system parameters. This will have a strong
impact on the form of the estimation algorithm.



III. IDENTIFICATION ALGORITHMS

A. The OE-OBE (Output Error - OBE) algorithm.

Our aim in this paper is to design an iterative identification
algorithm for the system described by (1) and (2). Before
introducing the parameter adaptation algorithm, let us define
the well known a priori and a posteriori predictors as

{
ŷt/t−1=φ̂T

t θ̂t−1

ŷt/t=φ̂T
t θ̂t

θ̂t represents the estimation of the parameters vector at the
actual timet while φ̂t is an estimate of the prediction data
vectorφt which is simply obtained by replacing the unknown
components ˆy(t− i) by their a posteriori estimates ˆy(t− i/t−
i): φ̂t = ϕ̂t ⊗ Iny with

ϕ̂T
t =
(

−ŷT
t−1/t−1 · · · −ŷT

t−na/t−na
uT

t · · · uT
t−nb

)

Here again, the predictor ˆyt/t is not linear inθ̂t .
The estimated parameters vector has to maintain the output

error below a bound defined from the upper bound on the
disturbancevt . Generalization of some results performed in
[3], [19], [18] and [2], the following Output Error - OBE
algorithm provides such estimation:






θ̂t=θ̂t−1+Γtεt/t−1

Γt=Pt−1φ̂tσt(λ Iny+φ̂T
t Pt−1φ̂tσt)

−1

Pt=
1
λ (In−Γt φ̂T

t )Pt−1

εt/t−1=yt−φ̂T
t θ̂t−1

(3)

where 0< λ ≤ 1 is a design parameter forgetting factor that
will be used to monitor the parameter adaptation dynamics.
σt is a switching flag given by:

σt=






λ (φ̂T
t Pt−1φ̂t)

−1
(
(εT

t/t−1∆−2
t εt/t−1)

1/2−1
)

if
(

εT
t/t−1∆−2

t εt/t−1>1
)

and(φ̂T
t Pt−1φ̂t>0)

0 otherwise

(4)

∆t is a user defined symmetric positive definite matrix whose
role will be specify below.

εt/t−1 is the a priori prediction error. From (3) the a
posteriori prediction errorεt/t = yt − φ̂T

t θ̂t can be written
as:

εt/t=λ (λ Iny+φ̂T
t Pt−1φ̂tσt)

−1εt/t−1 (5)

Using the value ofσt for σt 6= 0 (5) yields:

εT
t/t∆

−2
t εt/t=1

This clearly shows that the OE-OBE algorithm ensures the
following key property:

σt 6=0 =⇒ εT
t/t∆

−2
t εt/t=1

∆t is then a bound on the a posteriori adaptation error which
has to be specified taking into account the bound∆vt .

Remark 1:From the expression (3) it is apparent that the
parameter adaptation is frozen whenσt = 0. This occurs
whenever the a priori prediction error is less than the
threshold∆t (i.e. the algorithm doesn’t have to update the
parameters vector) or the observation vector is no longer

persistently exciting (i.e. the algorithm doesn’t have enough
informations to realize an update).

Before providing a first result, let consider the following
observation on the a posteriori prediction errorεt/t = yt − ŷt/t .
Bearing in mind structures ofφT

t and φ̂T
t , εt/t becomes

εt/t=(A(q))−1φ̂T
t θ̃t+vt (6)

with θ̃t = θ∗− θ̂t .
This equation has the typical form encountered in pseudo-

linear regression. The stability analysis with an equationof
the formεt/t = φT

t θ̃t +vt has been already investigated in [3],
[19], [18] and [2]. The following result presents a stability
analysis for the form (6).

Result 1: Consider the class of systems defined in section
II and the OE-OBE algorithm given by (3) and (4). Assume
that

• A(q) is such that

‖Iny−A(q)‖1
< 1 (7)

where‖.‖1 is the l1 induced norm;
• ∆t is such that:

δt/min≥
‖A(q)‖1

1−‖Iny−A(q)‖1

δvt/min (8)

where δt/min is the minimal singular value of∆t and
δvt/min the minimal singular value of∆vt .

then for all initial conditions
•

|θ̃t |
2
≤γ1 |θ̃0|

2 (9)

with γ1 =
λmax(P−1

0 )
λmin(P−1

0 )
.

whereλmax
(
P−1

0

)
andλmin

(
P−1

0

)
are respectively the maxi-

mum and the minimum eigenvalues ofP−1
0 .

If, furthermore,{φ̂t} is a persistently exciting sequence of
order oe ≥ n, i.e there existα > 0 andβ > 0 such that for
all t

α In ≤ ∑oe−1
i=0 φ̂t+iσt+iφ̂T

t+i ≤ β In (10)

Then the following properties hold:

• for all t ≥ oe+1

|θ̃t |
2
≤ γ2 λ t |θ̃0|

2 (11)

with γ2=






λmax(P−1
0 )

α

(
λ−oe−1
λ−1−1

)
if λ <1

λmax(P−1
0 )

α if λ =1

.

• For λ < 1 one has

limt→∞ εT
t/t−1∆−2

t εt/t−1 ≤ 1 (12)

�

Proof:
• Consider the following Lyapounov function:

Vt=θ̃T
t P−1

t θ̃t



In a first time we are going to show thatVt ≤ λVt−1 if
conditions (7) and (8) hold. From (3) and (5) we have:

θ̃t−1=θ̃t+Pt−1φ̂t
σt
λ εt/t

then

Vt−1=θ̃T
t P−1

t−1θ̃t+
2
λ θ̃T

t φ̂tσtεt/t+
1

λ 2 εT
t/tσt φ̂T

t Pt−1φ̂tσtεt/t

After a few lines of calculation we show thatVt=λVt−1+qt with

qt = θ̃T
t φ̂tσt φ̂T

t θ̃t −2θ̃T
t φ̂tσtεt/t

−
1
λ εT

t/tσtφ̂T
t Pt−1φ̂tσtεt/t

• If σt = 0, thenqt = 0 and

Vt=λVt−1

• Let consider the case whereσt 6= 0 and let definebt =
φ̂T

t θ̃t . After a few lines of calculation we show thatqt ≤ 0
provided that:

(
εt/t−bt

)T

∆−2
t

(
εt/t−bt

)
≤1 (13)

εt/t is such thatεt/t = (A(q))−1bt + vt , thus Condition (13)
becomes:

((
Iny−A(q)

)
εt/t+A(q)vt

)T((
Iny−A(q)

)
εt/t+A(q)vt

)
≤δ2

t/min

where δt/min is the minimal singular value of∆t . From
triangular inequality, one obtains the following condition:

(
((Iny−A(q))εt/t)

T
((Iny−A(q))εt/t)

)1/2

+((A(q)vt)
T (A(q)vt))

1/2
≤δt/min

(14)

Let define‖.‖1 the l1 induced norm and suppose condition
(7) to be true. Equation (14) holds if:

‖Iny−A(q)‖1
(εT

t/tεt/t)
1/2+‖A(q)‖1(v

T
t vt)

1/2≤δt/min (15)

We know thatεT
t/t∆

−2
t εt/t ≤ 1 and vT

t ∆−2
vt

vt ≤ 1. It can be
easily shown that inequality (15) holds if:

‖Iny−A(q)‖1
δt/min+‖A(q)‖1δvt /min≤δt/min

whereδvt/min is the minimal singular value of∆vt . Finally
one obtains the following inequality:

δt/min≥
‖A(q)‖1

1−‖Iny−A(q)‖1

δvt /min

ensuringqt ≤ 0 and thenVt ≤ λVt−1.
• Henceforth we know that in each cases (σt = 0 orσt 6= 0)

one hasVt ≤ λVt−1 (if conditions (7) and (8) are satisfied).
This gives:

Vt≤λ tV0

For lack of space we do not present the proof of the results
(9), (11) and (12). These demonstrations are based on the
previous result.

Remark 2:The conditions (7) and (8) are only sufficient
conditions and since they are conservative we have observed
the algorithm to work well in some cases where these
conditions are not satisfied. In general, more poles are slow

more the condition (7) might not be verified, this leads to an
increased risk of instability of the algorithm.

Remark 3:The ability to seek the true parameters vector
depends on the threshold∆t , thus its specification proves
to be particularly crucial. If∆t is too large, the OE-OBE
algorithm will be stable but the update will be frozen too
early. If ∆t is too small, stability conditions will not be
satisfied. Actually the choice of the threshold depends on
the system throughout the matrixA(q) (which is an unknown
object) and the disturbances effects throughout the weighting
matrix ∆vt . A dichotomy-based procedure could be used
to get an appropriate value for∆t using all the a priori
knowledge on the system. In subsection III-C a modified
algorithm will be proposed to relax conditions (7) and (8).

B. Geometrical interpretation.

In order to provide some useful insights on the parameters
estimation algorithm, let us define for each timet:

• the observation setSt

St=

{
θ∈R

n,

(
yt−φ̂T

t θ
)T

∆−2
t

(
yt−φ̂T

t θ
)
≤1

}

• the ellipsoidEt−1

Et−1={θ∈R
n,(θ−θ̂t−1)

TP−1
t−1(θ−θ̂t−1)≤ρ2

t−1}

where ρ2
t−1 is a scalar such thatθ∗ belongs to the

ellipsoid Et−1.

Given (yt , φ̂t), St is the set of all possibleθ which are
consistent with the chosen threshold∆t . An essential property
of that observation set is given in the following result.

Result 2: If condition (7) and (8) in result 1 hold then

θ∗ ∈ St (16)

�

Proof: If θ∗ ∈ St then it means that
(

yt−φ̂T
t θ∗

)T

∆−2
t

(
yt−φ̂T

t θ∗

)
≤1 (17)

yt is such thatyt = φT
t θ∗ +vt , thus (17) is true if:

(
(φt−φ̂t)

Tθ∗+vt

)T

∆−2
t

(
(φt−φ̂t)

Tθ∗+vt

)
≤1

Bearing in mind structures ofφt andφ̂t this can be rewritten
as:

((
Iny−A(q)

)
εt/t+A(q)vt

)T
∆−2

t

((
Iny−A(q)

)
εt/t+A(q)vt

)
≤1

In the proof of result 1 it is shown that this last relation is
satisfied provided condition (7) and (8) hold.

The following result provides a geometrical interpretation
of the adaptation algorithm. It shows that the parameters
vectorθ̂t estimated at the actual timet is included in both the
subsetSt and the ellipsoidEt−1. Generally,(St

⋂
Et−1) is

not a regular convex set, the result provides another ellipsoid



St

Et

Et−1

Fig. 1. 2-Dimensional example:(St ∩Et−1) ⊂ Et

Et which contains the intersection(St
⋂

Et−1) (figure 1) and
the parameters vectorθ∗ too.

Result 3: Consider the class of systems defined in section
II and the OE-OBE algorithm given by (3) and (4). Assume
(7), (8) and

θ∗∈Et−1 (18)

then for all initial conditions

• An outer bounding ellipsoid of(St ∩Et−1) is given by
the following ellipsoidEt :

Et={θ∈R
n,(θ−θ̂t)

TP−1
t (θ−θ̂t)≤ρ2

t } (19)

with

ρ2
t = λρ2

t−1+
εT
t/t−1σt εt/t−1

εT
t/t−1

∆−2
t εt/t−1

−λεT
t/t−1

(
λ Iny+φ̂T

t Pt−1φ̂t σt

)−1

σtεt/t−1

•

θ∗∈Et (20)

Moreover if condition (10) in result 1 holds then we have:

• For λ < 1, there exists an ellipsoidE such that

limt→∞ Et = E (21)

�

Proof:
• Let θ such thatθ ∈ Et−1 then we have:

λ (θ−θ̂t−1)
TP−1

t−1(θ−θ̂t−1)≤λρ2
t−1 (22)

• θ is such thatθ ∈ St , it follows:
(

yt−φ̂T
t θ
)T

∆−2
t

(
yt−φ̂T

t θ
)
≤1

If σt = 0, then
(

yt−φ̂T
t θ
)T

σt

(
yt−φ̂T

t θ
)
≤

εT
t/t−1σt εt/t−1

εT
t/t−1

∆−2
t εt/t−1

. Forσt 6= 0

one gets for all(yt − φ̂T
t θ):

(
yt−φ̂T

t θ
)T(

∆−2
t

(
yt−φ̂T

t θ
)T

σt

(
yt−φ̂T

t θ
)
−σt

)(
yt−φ̂T

t θ
)
≤0

It follows:
(

yt−φ̂T
t θ
)T

σt

(
yt−φ̂T

t θ
)
≤

εT
t/t−1σt εt/t−1

εT
t/t−1∆−2

t εt/t−1
(23)

• Therefore ifθ ∈ (St ∩Et−1), then it comes from (22)
and (23):

λ (θ−θ̂t−1)
TP−1

t−1(θ−θ̂t−1)+

(
yt−φ̂T

t θ
)T

σt

(
yt−φ̂T

t θ
)

≤λρ2
t−1+

εT
t/t−1σt εt/t−1

εT
t/t−1

∆−2
t εt/t−1

(24)

After a few lines of calculation this gives

(θ−θ̂t)
TP−1

t (θ−θ̂t)

≤λρ2
t−1+

εT
t/t−1σt εt/t−1

εT
t/t−1

∆−2
t εt/t−1

−λεT
t/t−1

(
λ Iny+φ̂T

t Pt−1φ̂tσt

)−1

σtεt/t−1

This corresponds to the ellipsoidEt described by equation
(19).
• From result 2 we haveθ∗ ∈ St Together with (18) it

gives:θ∗ ∈ (St ∩Et−1) ⊂ Et .
• Et is described byEt={θ∈R

n,(θ−θ̂t)
TP−1

t (θ−θ̂t)≤ρ2
t }. From

(12) in result 1 limt→∞ σt = 0, thus fort ≫ 1 θ̂t=θ̂t−1, P−1
t =λ P−1

t−1

andρ2
t =λρ2

t−1 andEt becomes

Et={θ∈R
n,(θ−θ̂t−1)

TP−1
t−1(θ−θ̂t−1)≤ρ2

t−1}=Et−1

This shows convergence onEt and concludes the proof.

Remark 4:This result is a generalization to the output
error systems framework and the MIMO case of some results
established in the linear prediction framework and SISO case.
More precisely, ifnu = ny = 1 andA(q) = 1, then our result
is equivalent to results in [19] and [15].

C. The F-OE-OBE (Filtered - OE-OBE) algorithm.

In a number of case it may be interesting to remove the
condition (7) required for stability. This needs a modification
of the parameter adaptation algorithm. In [8] an estimation
algorithm adapted to output error systems is derived from the
substitution of the observation setSt by an extended obser-
vation setS ′

t ⊃ St . However this leads to a conservative
algorithm.

Here we use an adaptation filter so as to relax stability
condition. Let first define the a priori and a posteriori
adaptation errors as

{
ηt/t−1=εt/t−1+(F(q)−Iny)εt/t

ηt/t=F(q)εt/t

where F(q) is the adaptation filter designed by the user.
These definitions allow us to propose a filtered parameter
adaptation algorithm by simply substituting in (3) and (4):

• εt/t−1 by ηt/t−1 andεt/t by ηt/t ;

• yt by yF
t such thatF(q)yF

t = yt andφ̂t by φ̂F
t such that

F(q)φ̂F
t = φ̂t .

The idea is to compensate the effect ofA(q) in (7) and (8).
Taking into account these adjustments, the two following

equations sets summarize the proposed Filtered OE-OBE
algorithm:






θ̂t=θ̂t−1+Γtηt/t−1

Γt=Pt−1φ̂F
tσt

(
λ Iny+φ̂F

T
t Pt−1φ̂F

tσt

)−1

Pt=
1
λ

(
In−Γt φ̂F

T
t

)
Pt−1

εt/t−1=yF
t −φ̂F

T
t θ̂t−1

(25)



with

σt=






λ
(

φ̂F
T
t Pt−1φ̂F

t

)−1(
(η T

t/t−1∆−2
t ηt/t−1)

1/2−1
)

if
(

η T
t/t−1∆−2

t ηt/t−1>1
)

and

(
φ̂F

T
t Pt−1φ̂F

t>0

)

0 otherwise

(26)

It can easily be established that the following key property
holds: σt 6= 0 =⇒ η T

t/t∆
−2
t ηt/t=1 bearing in mind that∆t is a

now a bound on the a posteriori adaptation errorηt/t .
Here the equation of the a posteriori prediction error is:

εt/t=(A(q))−1φ̂F
T
t θ̃t+(F(q))−1vt

which givesηt/t = F(q)(A(q))−1φ̂F
T

t θ̃t +vt . Using this last
equation, the following result presents an analysis of the
proposed F-OE-OBE algorithm.

Result 4: Consider the class of systems defined in section
II and the F-OE-OBE algorithm given by (25) and (26).
Assume that

• F(q) is such that

F(q)=Iny+F1q−1+···+Fnf q−nf (27)

with Fi ∈ R
ny×ny and diagonal.

• A(q) is such that

‖Iny−A(q)(F(q))−1‖1
< 1 (28)

where‖.‖1 is the l1 induced norm;
• ∆t is such that:

δt/min≥
‖A(q)(F(q))−1‖1

1−‖Iny−A(q)(F(q))−1‖1

δvt/min (29)

then for all initial conditions
•

|θ̃t |
2
≤γ1 |θ̃0|

2 (30)

If, furthermore,{φ̂F
t} is a persistently exciting sequence

of orderoe ≥ n, then the following properties hold:
• for all t ≥ oe+1

|θ̃t |
2
≤ γ2 λ t |θ̃0|

2 (31)

• For λ < 1 one has

limt→∞ η T
t/t−1∆−2

t ηt/t−1 ≤ 1 (32)

�

Proof: The proof is similar to the proof of result 1.

It can be notice, of course, that the ideal filterF(q) is
F(q) = A(q). Thus, conditions (28) and (29) are much milder
than conditions (7) and (8) if a reasonable estimated model
is available. This remark is the corner stone of an iterative
scheme proposed here. The strategy is the following:

1) Choose a high threshold∆t and apply the OE-OBE
algorithm to getĜ(q);

2) Given this first estimation, design a filterF(q) = Â(q)
and choose a lower∆t ;

3) Apply the F-OE-OBE algorithm to get a neŵG(q);
4) Repeat steps 2 and 3 until convergence of step 3.

In the next section we illustrate this iterative scheme with
simulation studies.

Remark 5:Note that if F(q) ≃ A(q) it is possible to
choose∆t = ∆vt . In that case, from (32) we have

limt→∞ θ̂t=θ̂

where θ̂ is such thatη T
t ∆−2

vt
ηt ≤ 1 with ηt = F(q)εt =

F(q)

(
yF

t − φ̂F
T

t θ̂
)

= yt − φ̂T
t θ̂. Then the contribution of the

filter F(q) is twofold: it relaxes stability condition of the
algorithm and it allows the estimation of a modelĜ(q) such
that:

(yt−Ĝ(q)ut)
T∆−2

vt (yt−Ĝ(q)ut)≤1 (33)

which is coherent with (1).

IV. NUMERICAL EXAMPLE

Numerical data have been generated according to (1). The
system is the following two inputs/two outputs system:





A(q)=

(
1 0

0 1

)
+

(
−1.6 0

0 −1

)
q−1+

(
0.6175 0

0 0.41

)
q−2

B(q)=

(
0.0175 0.014

0.082 0.41

)
+

(
0 −0.0168

0 0

)
q−1

The two inputsu1
t and u2

t are uncorrelated random binary
sequences of lengthN = 2000. The noise componentsv1

t
andv2

t are generated as in [17] in the following manner:
(

v1
t

v2
t

)
= ∆vt

(
1
2 (e1

t +sin(πt/10))
1
2 (e2

t +cos(πt/15))

)

where e1
t and e2

t are white noises uniformly distributed in

[−1;1] and∆vt =

(
0.15 0

0 0.25

)
.

It can easily be shown that condition (7) in result 1 is
not satisfied in this example. However three identification
procedures have been tested:

• Procedure 1: the development of (1) and (2) gives

A(q)yt=B(q)ut+A(q)vt=B(q)ut+v′t

The first identification procedure consists in identifying
this ARX model using linear OBE algorithm proposed
in [2] and [3].

• Procedure 2: even if condition (7) is not satisfied, we
can try to use the OE-OBE algorithm to identify the
system. This is the second identification procedure.

• Procedure 3: this third identification procedure is our
iterative scheme. This scheme uses the F-OE-OBE
algorithm and has been applied over 20 iterations.

For each procedure we have adjusted the threshold∆t so
as to have the lowest threshold and in the same time a kind
of stability on theN available data. This has lead to the
following choices:

• Procedure 1:∆t = ∆vt .
• Procedure 2:∆t = 2∆vt .
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Fig. 2. Simulation results on the sixth component ofθ∗
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• Procedure 3:∆t : we have chosen a decreasing threshold.
At iteration i we choose∆(i)

t =
(

∆(ini)
t −∆( f in)

t

)
e−i+∆( f in)

t with

∆(ini)
t = 5∆vt and∆( f in)

t = ∆vt .
The simulation results for procedure 1, 2 and 3 are shown

in Fig. 2. In this figure only the sixth component ofθ∗ and
its estimations appear. The other components have similar
behavior. Fig. 3 presents the improvement of the estimated
vector at the end of each iteration in the iterative scheme. It
is clear that the iterative scheme proposed in this paper works
well. It increases estimation quality compared with the first
estimated model and compared with the other procedures.
Fig. 4 presents thresholds±∆vt and the output errorsyt −
Ĝ(q)ut for each final model (final model for procedure 1,
final model for procedure 2 and final model for procedure
3 at the 20th iteration). It appears that the model obtained
with the iterative scheme using the F-OE-OBE is the only
one satisfying (33).

V. CONCLUSION

In this paper we have considered the identification problem
of an output error system with bounded disturbances. Two
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Ĝ
1
(q

)u
t

 

 

∆
v

t

1

−∆
v

t

1

procedure 1
procedure 2
procedure 3

1600 1650 1700 1750 1800 1850 1900 1950 2000

−0.2

0

0.2

N

y
2 t
−

Ĝ
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Fig. 4. Output errors and threshold∆vt

identification algorithms which belong to the class of OBE
type algorithm are presented. Sufficient conditions for stabil-
ity and convergence of the first algorithm (conditions related
to a condition on the system) have been established. These
conditions can be relaxed by introducing an adaptation filter
which gives the second algorithm. This second algorithm
has been used in an iterative scheme which has lead to
a significant improvement of the estimation. In terms of
future research, it seems necessary to refine the process for
achieving relaxationF(q) ≃ A(q). We also believe that the
results developed in the paper can be extended to the closed
loop identification problem.
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