N
N

N

HAL

open science

Output error identification for multi-input multi-output
systems with bounded disturbances

Mathieu Pouliquen, Eric Pigeon, Olivier Gehan

» To cite this version:

Mathieu Pouliquen, Eric Pigeon, Olivier Gehan. Output error identification for multi-input multi-
IEEE Conference on Decision and Control Euro-
pp-7200 - 7205,

output systems with bounded disturbances.
pean Control Conference, CDC-ECC’11, Dec 2011, Orlando, United States.

10.1109/CDC.2011.6160211 . hal-01059158

HAL Id: hal-01059158
https://hal.science/hal-01059158
Submitted on 29 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01059158
https://hal.archives-ouvertes.fr

Output error identification for multi-input multi-output s ystems
with bounded disturbances

Mathieu Pouliquen, Eric Pigeon, Olivier Gehan
Control Group, GREYC CNRS UMR 6072
ENSICAEN, 06 Bd du Marechal Juin
14050 Caen Cedex, France

mat hi eu. poul i quen@r eyc. ensi caen. fr

Abstract—In this paper, we present the adaptation of an geometrical interpretation is also presented in this sacti

Optimal Bounding Ellipsoid (OBE) type algorithm for out-  Some simulation results are given in section IV. Finally,
put error systems with unknown but bounded disturbances. section V concludes the paper
Two identification algorithms are derived in a multi-input ’

multi-output context and the paper proposed stability and II. PROBLEM FORMULATION

convergence analysis. An iterat.ive scheme is introduced dn Consider a discrete-time multi-input multi-output stable
simulation are performed, showing the excellent performane

of the proposed approach. system of the form
Y=G(q)u-+v
I. INTRODUCTION { Ta:wel (1)

All practical identification algorithms have to deal with\yhare , ¢ R and v € R are respectively the system
measurements corrupted by noise. In some cases (u”k”ON‘{Buts and outputs vector € R™ is an unknown and
probability distribution of the disturbances, modelingén  poynded disturbing term (noise measurement, state distur-
curacy) the noise can't be modeled as a stochastic proceggnces. modeling inaccuracy, etc.) abg is a symmetric

then the bounded noise assumption seems to be more dBitive definite known matrix which reflects a known upper
propriate. In this context, the use of classical identif@at |, ng onw.

schemes ([11]) is limited and in contrast Set Membership The identification problem treated in this paper is stated

Identification (SMI) algorithms are interesting alterneti ;¢ estimate the parameters of system (1) described by
approaches. Indeed these approaches are considered to be

more appropriate to handle the identification problem in G(o)=(A(a)) *B(a) )
presence of bounded disturbances. Their principe con'sistswhereA(q) and B(qg) are unknown matrix polynomials of
the estimation of a feasible set of parameters which mugie form:

be consistent with the measurement data and the model A@)=Iny+A1q 1 +-+Anaq "

structure. Important contributions have been presented in B(q)=Bo+B1q 1+-+Bnyq

[13], [9], [14], [20], [10], [1] and [4]. Among the SMI yjith A e R and diagonalB; € R™*™. Note that this
type methods, OBE type algorithms represent a very populggscription of the behavior of the system may not be a
class of recursive algorithms ([9], [5], [12], [3], [16], 6 minimal realization.

[7], [19], [15], [18], [2]). These methods have been mainly This structure of the plant is called an output error model

motivated by a low computational complexity and robustnesgyycture. The vector of coefficients of the plant is
to measurement noise.

To the best of our knowledge, most of the existing works 9*:( At A Bo - Bny )
in the OBE algorithms literature aim at designing identifiand the one-step-ahead output predictor is defined bearing i
cation algorithm adapted to equation error models: stgbili mind the optimal predictor structure (see [11]), namely
and convergence properties are established in particotar f
affine-in-parameters model. Less attention has been fdcuse
on the output error systems with bounded disturbances ([8Rith ¢J:( N o e W Wy ) This can
and our goal in this paper is to adapt an OBE algorithm to . A Tow _ 0*=vect(©*)
this type of systems. The main contribution of this note i9€ rewritten asy™= ¢ 6* (see [11]) W'th{ A=,
the extension of some stability and convergence resuljs ([3vherevect(.) denotes the vectorization of a matrig, the
[19], [15], [18], [2]) to output error systems context ane th Kronecker product an@* € R" is the unknown parameters
derivation of an algorithm which relaxes the stability andrector to be identified witm = (nany + (np 4+ 1)ny)ny the
convergence conditions. number of parameters.

The paper is organized as follows: in section Il the model A key observation is that the output predictgris not
structure is presented. In section lll, some algorithms almear in the system parameters. This will have a strong
proposed and their convergence analysis are addressedin#pact on the form of the estimation algorithm.

V=Yt~ =0"dt



I1l. IDENTIFICATION ALGORITHMS persistently exciting (i.e. the algorithm doesn’t have gyio

A. The OE-OBE (Output Error - OBE) algorithm. informations to realize an update). _ _
Before providing a first result, let consider the following

Our aim in this paper is to design an iterative identification,sarvation on the a posteriori prediction emor =yt — Ji 1.
algorithm for the system described by (1) and (2). Befor%earing in mind structures o’ and (ZIT, &1 becomes
introducing the parameter adaptation algorithm, let usméefi

the well known a priori and a posteriori predictors as &=(A@) @ G+w (6)
i1=@ &1 with é[ =0*— é[
=" b This equation has the typical form encountered in pseudo-

linear regression. The stability analysis with an equatibn
formg = qfé[ +w has been already investigated in [3],
, [18] and [2]. The following result presents a stalyilit
analysis for the form (6).

& represents the estimation of the parameters vector at
actual timet while @ is an estimate of the prediction data[lg]
vector@ which is simply obtained by replacing the unknown
componentg(t —i) by their a posteriori estimategt i/t —
) @ = §@ln, with Result 1: Consider the class of systems defined in section
Il and the OE-OBE algorithm given by (3) and (4). Assume
that
Here again, the predictok ; is not linear inG. « A(q) is such that

The estimated parameters vector has to maintain the output
error below a bound defined from the upper bound on the [y —A@]]; <2 7
disturbancex. Generalization of some results performed in where||.||; is thel; induced norm;
[3], [19], [18] and [2], the following Output Error - OBE , A is such that:
algorithm provides such estimation:

T_ 9 ce 9 ce
2 7( 7y;r—1/t—1 7y;r—na/t—na uf U‘tT—nb )

A Q/minZ% dft/min (8)
G=6_1+Tte 1 Y 1

M=R_1@0 (Al + @ R_1020t) 3) where & /min is the minimal singular value ofy; and
A=1(In—Tt@" )R-1 3y, /min the minimal singular value ofy.
St/t—lzyt*(h-ré[—l

where 0< A <1 is a design parameter forgetting factor that then for all initial conditions
will be used to monitor the parameter adaptation dynamics. ¢

a; is a switching flag given by: |8]°<n |&l” )
)\((&Tptfl(h)il((Et-l}tflAlizgt/tfﬂl/z*l) with y; = ’\"‘ax(Pfi)_
o= if (gtT/tflAtfzat/pPl) and (@' R_1>0) 4) Amin(Fo )

whereAmax(Py ) and Amin (Py t) are respectively the maxi-

_ _ _ N - _ mum and the minimum eigenvalues e *.
A is a user defined symmetric positive definite matrix whose

role will be specify below. If, furthermore,{@} is a persistently exciting sequence of
&1 is the a priori prediction error. From (3) the aorderoe > n, i.e there exisio > 0 and > 0 such that for
posteriori prediction errog ; = Yt — qua can be written gl t

0 otherwise

as: L aln < Z?:ealﬁﬂawi‘hli < Bhn (10)
=AMy +@ R_100) g1 5)
Using the value of; for o; # 0 (5) yields: Then the following properties hold:
o forallt >0e+1
stT/tA(zel/tzl © , ,

. . 6 At |8 11
This clearly shows that the OE-OBE algorithm ensures the (87 < 2 A" |6 (1)
following key property: Amax(Ry 1)y —oe ,

g Key property with -] ap‘il T i<t .
0t£0 = stT/tA{Zst/tzl %0) if A=1

. L . . e FOrA <1 one has
A is then a bound on the a posteriori adaptation error which

has to be specified taking into account the bogd |imestT/HA;zet/t,1 <1 (12)
Remark 1:From the expression (3) it is apparent that the
parameter adaptation is frozen when= 0. This occurs
whenever the a priori prediction error is less than the
thresholdA; (i.e. the algorithm doesn’t have to update the
parameters vector) or the observation vector is no longer Vi=6TR 6

Proof:
e Consider the following Lyapounov function:



In a first time we are going to show th& < AV;_q if
conditions (7) and (8) hold. From (3) and (5) we have:

b1=8+R_1a 3 &/t
then

Viei=8TRZ 6+ 287 <R0t€t/t+ €l/t01<ﬂ R MUtSm

After a few lines of calculation we show thatav;_;+q with
etT(ROt(R & — 26 aaie

T %/tth% R_1@0i&

=0, theng: =0 and

q( =

o If Gt
Vi=AVi_1

e Let consider the case whem # 0 and let defindy, =
(gTGt. After a few lines of calculation we show thgt <0

provided that:
(Sl/t*bt)TA{Z (st/fbt) <1

&t is such thatg , = (A(Q)) bt + v, thus Condition (13)
becomes:

( (Iny —A(q)) &t +A(q>v‘) ' ( ('W*A(Q)) &t +A(CI)Vt> <& min

where & min is the minimal singular value ofy:. From
triangular inequality, one obtains the following conditio

(((oy=A@)e) " ((1y—A@)e1))

+(A@WT A@W) Y’ <& jmin

(13)

(14)

more the condition (7) might not be verified, this leads to an
increased risk of instability of the algorithm.

Remark 3:The ability to seek the true parameters vector
depends on the thresholl, thus its specification proves
to be particularly crucial. IfA; is too large, the OE-OBE
algorithm will be stable but the update will be frozen too
early. If A; is too small, stability conditions will not be
satisfied. Actually the choice of the threshold depends on
the system throughout the matéxq) (which is an unknown
object) and the disturbances effects throughout the wieight
matrix Ay. A dichotomy-based procedure could be used
to get an appropriate value fak using all the a priori
knowledge on the system. In subsection 11I-C a modified
algorithm will be proposed to relax conditions (7) and (8).

B. Geometrical interpretation.

In order to provide some useful insights on the parameters
estimation algorithm, let us define for each time

« the observation set4

N
%Z{QER”, (yt*fﬁTe) A2 (yt,(&Tg) Sl}

« the ellipsoidé;_1

&_1= {QGRn (6— 9[1) (9 9l1<p1 1}

where p? | is a scalar such thaé* belongs to the
ellipsoid & _1.

Given (yt,czt) 4 is the set of all possibl® which are
consistent with the chosen threshdld An essential property

Let define]|. ||, thel, induced norm and suppose conditionof that observation set is given in the following resuit.

(7) to be true. Equation (14) holds if:
(15)

1/234/min

We know thatg tAt g <1 andvfA % < 1. It can be
easily shown that inequality (15) holds if:

[[1ny =A@ ||, (&0 2+ A 1104 )

leTy*A(cw||16(/min+HA(q>Hla\/t/mingat/min
where dy /min is the minimal singular value of\,. Finally
one obtains the following inequality:

A@lly

—mré\/[/min

ensuringg: < 0 and therv; < AV,_;.
e Henceforth we know that in each cases£ 0 or g; # 0)

5t/min

Vt is such thaty; =

Result 2: If condition (7) and (8) in result 1 hold then

0" € .A (16)
|
Proof: If 6* € .4 then it means that
T
(yﬁ@e*) A{Z(yﬁ(]ﬂe*)gl (17)

@' 6% +w, thus (17) is true if:
T
((wé)Teww) A{Z(«nﬁhﬂeww)gl

Bearing in mind structures aj and(h this can be rewritten

one hasv; < AV;_1 (if conditions (7) and (8) are satisfied). as:

This gives:
V<A

((lny—A<q>)st/t+A<q>vt)TA;2((InyfAm))st/ﬁA(q)vt) <1

For lack of space we do not present the proof of the results the proof of result 1 it is shown that this last relation is
(9), (11) and (12). These demonstrations are based on tbatisfied provided condition (7) and (8) hold. ]

previous result. [ ]

The following result provides a geometrical interpretatio

Remark 2: The conditions (7) and (8) are only sufficientof the adaptation algorithm. It shows that the parameters
conditions and since they are conservative we have observegttor§ estimated at the actual timeés included in both the
the algorithm to work well in some cases where thessubset# and the ellipsoid;_;. Generally,(# (1) is
conditions are not satisfied. In general, more poles are slawt a regular convex set, the result provides another eltips



e Therefore if6 € (4 Né—1), then it comes from (22)

“ and (23):
b1 ) ) T )
A(O-8_1)TRL(0-6 1)+ (Yt @ 9) t(thﬂTQ)
<Ap? +_t/t 1% &1 (24)
é? 1 l/t 1At &/t-1
Fig. 1. 2-Dimensional examplé:% Né&_1) C & After a few lines of calculation this gives

(6-&)TR*(6-8)
&t which contains the intersectidg# (N &—1) (figure 1) and Ap? 10t
the parameters vectd* too. e e
This corresponds to the ellipsoiff described by equation
Result 3: Consider the class of systems defined in sectiof19).
Il and the OE-OBE algorithm given by (3) and (4). Assume e From result 2 we havé* € .% Together with (18) it
(7), (8) and gives: 6* € (A Né&-1) C é.
0 e 1 (18) e & is described bys={6cr" (6-&)"R 1(6-&)<p?}. From

(12) inresult 1 lim . ot =0, thus fort > 1 §=6_;, R~1=AR7}
and p?=rp? ;, and & becomes

-1
el 4 ()\ 'ny+fRTFLl(ﬂ0t) Ot&jt-1

then for all initial conditions

&={0eR" (8—6_1)"P(6—-B_1)<p?  }=64_
« An outer bounding ellipsoid of 4 N&_1) is given by t={0RN(0-8-1)TRA(O-8-1)<pE 1} =6

the following ellipsoidé: This shows convergence afi and concludes the proofm

&s={0er",(6-&) R ! <p?} (19) Remark 4:This result is a generalization to the output

_ error systems framework and the MIMO case of some results
with established in the linear prediction framework and SIS@cas
) o 1msl/t 1 More precisely, ifny = ny =1 andA(q) = 1, then our result
pi= Moty Tt o is equivalent to results in [19] and [15].
-1
DY CUM LT EY R T C. The F-OE-OBE (Filtered - OE-OBE) algorithm.

In a number of case it may be interesting to remove the
condition (7) required for stability. This needs a modificat
of the parameter adaptation algorithm. In [8] an estimation
algorithm adapted to output error systems is derived fraan th
Moreover if condition (10) in result 1 holds then we haveSubstitution of the observation sef by an extended obser-
vation set.#; D .4. However this leads to a conservative
algorithm.

Here we use an adaptation filter so as to relax stability

condition. Let first define the a priori and a posteriori

0 cé (20)

« For A <1, there exists an ellipsoid such that

Mt = & 21
e (1) adaptation errors as
_ u Mjt—1= 11+ (F(@)—Tny ) &1
LP r?gf' h thatd € &_1 th have: R
¢ Lt O such haly € a1 Then we have: where F(q) is the adaptation filter designed by the user.
MO-8_1)TR-L(0-B_1)<Ap? , (22) These definitions allow us to propose a filtered parameter
adaptation algorithm by simply substituting in (3) and (4):
e 0 is such thatd € .44, it follows: e &1 DY N1 ande, by nyx;
AT . e Vi b such thatF( and@ by ¢F, such that
(yHAT ) A{z(ytque)gl }é(qﬁg — @ DI = @by o
t — .
NT i g The idea is to compensate the effectAffy) in (7) and (8).
If ot =0, then(ytque) Gt (Yt*(ﬂTe) l;:t—lztzﬁ Forai #0 Taking into account these adjustments, the two following
one gets for ally; — Te) Z%li)a:it;ﬁnms- sets summarize the proposed Filtered OE-OBE

T T
(yt*(b(Te) (At’z(ytfthe) Ut()’t @ 9) )(yt @ 9)§0 b= 1+ e

—~ —~T - -1
Me=R_ 1¢F10t<Alny+<th P[—l(PFtUt>

( T t/t 1%& /-1 (23) R=1 (In I’t(pF )FLl
ytfrife) (yt a ) e 23
t/t 18 £t/t 1 %/171:)’{:*@:1 b1

It follows: (25)



with 3) Apply the F-OE-OBE algorithm to get a ne@(q);
T ~\-1 4) Repeat steps 2 and 3 until convergence of step 3.
A F _a0F T A72 1/271
<(p (Ra? ‘) (a8 E/:ﬁ B ) o N the next section we illustrate this iterative scheme with
R (nt-l;t—lA{znt/t—l>l> and ((th H71¢Ft>0) (26)  simulation studies.
0 otherwise Remark 5:Note that if F(q) ~ A(q) it is possible to

It can easily be established that the following key propert;‘?hoOseAt =By In that case, from (32) we have

holds: ot # 0 = nj,Ar%m,=1 bearing in mind thaty is a lim¢_co =6
now a bound on the a posteriori adaptation erjof. o S ,
Here the equation of the a posteriori prediction error is: Where 8 is such thatn A, “ne < 1 with ne = F(q)& =

~T . n o
st/t:(A(q))*lﬁTé+(F(q))*1vt F(q) ( ¥ — ¢F, 6> =V — @ 6. Then the contribution of the

filter F(qg) is twofold: it relaxes stability condition of the

. . /\T 4 . . ~
which givesn; = F(q)(A(q)) 19", & +w. Using this last algorithm and it allows the estimation of a mod&{q) such
equation, the following result presents an analysis of thgat:

proposed F-OE-OBE algorithm. (ytié(q)ul)TA\EZ(yt7é(q)ul)sl (33)
Result 4: Consider the class of systems defined in sectiowhich is coherent with (1).
Il and the F-OE-OBE algorithm given by (25) and (26). IV. NUMERICAL EXAMPLE
Assume that
« F(q) is such that Numerical data have been generated according to (1). The
system is the following two inputs/two outputs system:

F(Q)=lny+F1q 24 +Fn g (27)
Alq)— 1 0 -16 0 . 06175 O L
with F € RY*™ and diagonal. (q)*< 0 1 >+< 0o -1 )q +< 0 o4 )q
« A(q) is such that B( :< 00175 0014 )+< 0 -0.0168 )qfl
[[tny =A@ (F(@) ]|, < 1 (28) oose od ° 0
where||.||, is thel; induced norm; The two inputsu! and u? are uncorrelated random binary
. Ais sucﬁ that: ' sequences of lengtNl = 2000. The noise components
andV? are generated as in [17] in the following manner:
& |la@E@) 1, . (29)
fmin> Ty A F@)-1]], 4/min ( v >_A ( 3 (et+sin(rt/10)) )
V2 "\ $(&+cost/15)

then for all initial conditions . . : o :
where gl and & are white noises uniformly distributed in

i i . 015 0
|&)*<n |G| 30) [-1:9] andA"‘:< 0o 025 )

It can easily be shown that condition (7) in result 1 is
If, furthermore,{q?)Et} is a persistently exciting Sequencenot satisfied in this example. However three identification

of orderoe > n, then the following properties hold: procedures have been tested:
. forallt>o0e+1 « Procedure 1: the development of (1) and (2) gives
18] < v At |G| (31) AQ¥=B(Q)u+A(@u=B(q)u+Y
« ForA <1 one has The first identification procedure consists in identifying
_ , this ARX model using linear OBE algorithm proposed
Mo gB My < 1 (32) in [2] and [3].
m « Procedure 2: even if condition (7) is not satisfied, we
Proof: The proof is similar to the proof of result 1m can try to use the OE-OBE algorithm to identify the
system. This is the second identification procedure.
It can be notice, of course, that the ideal filefq) is « Procedure 3: this third identification procedure is our

F(g) = A(q). Thus, conditions (28) and (29) are much milder ~ iterative scheme. This scheme uses the F-OE-OBE
than conditions (7) and (8) if a reasonable estimated model algorithm and has been applied over 20 iterations.
is available. This remark is the corner stone of an iterative For each procedure we have adjusted the threshokb

scheme proposed here. The strategy is the following: as to have the lowest threshold and in the same time a kind
1) Choose a high threshol and apply the OE-OBE Of stability on theN available data. This has lead to the
algorithm to getG(q); following choices:

2) Given this first estimation, design a filteq) = ﬂ(q) « Procedure 124 = A,,.
and choose a lowek; « Procedure 24 = 2A,,.
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++ estimation with procedure 1
estimation with procedure 2
estimation with procedure 3

a component of §* and §

500 1000 1500 2000
N

Fig. 2. Simulation results on the sixth component6of

identification algorithms which belong to the class of OBE
type algorithm are presented. Sufficient conditions fobista

ity and convergence of the first algorithm (conditions redat

to a condition on the system) have been established. These
conditions can be relaxed by introducing an adaptatiorr filte
which gives the second algorithm. This second algorithm
has been used in an iterative scheme which has lead to
a significant improvement of the estimation. In terms of
future research, it seems necessary to refine the process for
achieving relaxatior-(q) ~ A(q). We also believe that the
results developed in the paper can be extended to the closed

05

(1]

6" and 6

(2]

(3]
(4

-15F

2 i i i
0 5 10 15 20
iterations

Fig. 3. Improvement after each iteration with procedure 3 (5]
« Procedure 3A;: we have chosen a decreasing threshold.
At iterationi we choosen = (a{™ —a{"™)e-'+a{"™ with (6]
A™ = 5a, andA ™ = A,
The simulation results for procedure 1, 2 and 3 are showt’!
in Fig. 2. In this figure only the sixth component 6f and
its estimations appear. The other components have simildf]
behavior. Fig. 3 presents the improvement of the estimated
vector at the end of each iteration in the iterative scheme. I[9]
is clear that the iterative scheme proposed in this papeksvor
well. It increases estimation quality compared with thet firg -
estimated model and compared with the other procedures.
Fig. 4 presents thresholdsA,, and the output errorg; —  [11]
é(q)ut for each final model (final model for procedure 1,[12]
final model for procedure 2 and final model for procedure
3 at the 28" iteration). It appears that the model obtained
with the iterative scheme using the F-OE-OBE is the onlgll?’]
one satisfying (33).

V. CONCLUSION [14]

In this paper we have considered the identification problem
of an output error system with bounded disturbances. Twas]

[16]

T T T T T T T
Al
v
't

Al

)
procedure 1? [17]
procedure 2

procedure 3

1600 1650 1700 1750 1800 1850 1900 1950 2000
N

(18]

o R

s 02 \, H
= -2
& Y
© 0 procedure 1]
w‘\ procedure 2 N
= -02 procedure 3

[19]

[20]

1600 1650 1700 1750 1800 1850 1900 1950 2000

N
Fig. 4. Output errors and threshols,

loop identification problem.
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