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Output error identification for multi-input multi-output systems with bounded disturbances

In this paper, we present the adaptation of an Optimal Bounding Ellipsoid (OBE) type algorithm for output error systems with unknown but bounded disturbances. Two identification algorithms are derived in a multi-input multi-output context and the paper proposed stability and convergence analysis. An iterative scheme is introduced and simulation are performed, showing the excellent performance of the proposed approach.

I. INTRODUCTION

All practical identification algorithms have to deal with measurements corrupted by noise. In some cases (unknown probability distribution of the disturbances, modeling inaccuracy) the noise can't be modeled as a stochastic process, then the bounded noise assumption seems to be more appropriate. In this context, the use of classical identification schemes ( [START_REF] Ljung | System identification: theory for the user[END_REF]) is limited and in contrast Set Membership Identification (SMI) algorithms are interesting alternative approaches. Indeed these approaches are considered to be more appropriate to handle the identification problem in presence of bounded disturbances. Their principe consists in the estimation of a feasible set of parameters which must be consistent with the measurement data and the model structure. Important contributions have been presented in [START_REF] Milanese | Estimaton theory and uncertainty intervals evaluation in presence of unknown but bounded errors. linear families of models and estimators[END_REF], [START_REF] Fogel | On the value of informaton in system identification -bounded noise case[END_REF], [START_REF] Mo | Fast and robust algorithm to compute exact polytope parameters bounds[END_REF], [START_REF] Vicino | Sequential approximation of parameter sets for identification with parametric and nonparametric uncertainty[END_REF], [START_REF] Garulli | Error bounds for conditional algorithms in restricted complexity set membership identification[END_REF], [START_REF] Vicino | Conditional central algorithms for worst-case set membership indentification and filtering[END_REF] and [START_REF] Casini | On input design in l1 conditional set membership identification[END_REF]. Among the SMI type methods, OBE type algorithms represent a very popular class of recursive algorithms ( [START_REF] Fogel | On the value of informaton in system identification -bounded noise case[END_REF], [START_REF] Dasgupta | Asymptotically convergent modified recursive least square with data-dependent updating and forgetting factor for systems with bounded noise[END_REF], [START_REF] Lozano-Leal | Reformulation of the parameter identification problem for systems with bounded disturbances[END_REF], [START_REF] Canudas-De-Wit | A modified EW-RLS algorithm for systems with bounded noise[END_REF], [START_REF] Nayeri | An interpretable and converging setmembership algorithm[END_REF], [START_REF] Durieu | Trace versus determinant in ellipsoidal outer bounding, with application to state estimation[END_REF], [START_REF] Favier | Review and comparison of ellipsoidal algorithms[END_REF], [START_REF] Tan | Identification for systems with bounded noise[END_REF], [START_REF] Nagaraj | Bounded error estimation: set theoric and least squares formulations[END_REF], [START_REF] Sun | Comments on "identification for systems with bounded noise[END_REF], [START_REF] Boutayeb | Recursive identification of linear multivariable systems with bounded disturbances[END_REF]). These methods have been mainly motivated by a low computational complexity and robustness to measurement noise.

To the best of our knowledge, most of the existing works in the OBE algorithms literature aim at designing identification algorithm adapted to equation error models: stability and convergence properties are established in particular for affine-in-parameters model. Less attention has been focused on the output error systems with bounded disturbances ( [START_REF] Ferreres | Estimation of output error models in the presence of unknown but bounded disturbances[END_REF]) and our goal in this paper is to adapt an OBE algorithm to this type of systems. The main contribution of this note is the extension of some stability and convergence results ( [START_REF] Canudas-De-Wit | A modified EW-RLS algorithm for systems with bounded noise[END_REF], [START_REF] Tan | Identification for systems with bounded noise[END_REF], [START_REF] Nagaraj | Bounded error estimation: set theoric and least squares formulations[END_REF], [START_REF] Sun | Comments on "identification for systems with bounded noise[END_REF], [START_REF] Boutayeb | Recursive identification of linear multivariable systems with bounded disturbances[END_REF]) to output error systems context and the derivation of an algorithm which relaxes the stability and convergence conditions.

The paper is organized as follows: in section II the model structure is presented. In section III, some algorithms are proposed and their convergence analysis are addressed. A geometrical interpretation is also presented in this section. Some simulation results are given in section IV. Finally, section V concludes the paper.

II. PROBLEM FORMULATION

Consider a discrete-time multi-input multi-output stable system of the form

y t =G(q)u t +v t v T t ∆ -2 v t v t ≤1 (1) 
where u t ∈ R n u and y t ∈ R n y are respectively the system inputs and outputs vector. v t ∈ R n y is an unknown and bounded disturbing term (noise measurement, state disturbances, modeling inaccuracy, etc.) and ∆ v t is a symmetric positive definite known matrix which reflects a known upper bound on v t .

The identification problem treated in this paper is stated as: estimate the parameters of system (1) described by

G(q)=(A(q)) -1 B(q) (2)
where A(q) and B(q) are unknown matrix polynomials of the form:

A(q)=I ny +A 1 q -1 +•••+A na q -na B(q)=B 0 +B 1 q -1 +•••+B n b q -n b
with A i ∈ R n y ×n y and diagonal, B i ∈ R n y ×n u . Note that this description of the behavior of the system may not be a minimal realization.

This structure of the plant is called an output error model structure. The vector of coefficients of the plant is

Θ * = A 1 ••• A na B 0 ••• B n b
and the one-step-ahead output predictor is defined bearing in mind the optimal predictor structure (see [START_REF] Ljung | System identification: theory for the user[END_REF]), namely

ŷt =y t -v t =Θ * ϕ t with ϕ T t = -ŷT t-1 • • • -ŷT t-na u T t • • • u T t-n b
. This can be rewritten as ŷt = φ T t θ * (see [START_REF] Ljung | System identification: theory for the user[END_REF]) with

θ * =vect(Θ * ) φ t =ϕ t ⊗I ny
where vect(.) denotes the vectorization of a matrix, ⊗ the Kronecker product and θ * ∈ R n is the unknown parameters vector to be identified with n = (n a n y + (n b + 1)n u )n y the number of parameters.

A key observation is that the output predictor ŷt is not linear in the system parameters. This will have a strong impact on the form of the estimation algorithm.

III. IDENTIFICATION ALGORITHMS

A. The OE-OBE (Output Error -OBE) algorithm.

Our aim in this paper is to design an iterative identification algorithm for the system described by (1) and [START_REF] Boutayeb | Recursive identification of linear multivariable systems with bounded disturbances[END_REF]. Before introducing the parameter adaptation algorithm, let us define the well known a priori and a posteriori predictors as

ŷt/t-1 = φ T t θt-1 ŷt/t = φ T t θt
θt represents the estimation of the parameters vector at the actual time t while φt is an estimate of the prediction data vector φ t which is simply obtained by replacing the unknown components ŷ(ti) by their a posteriori estimates ŷ(t

-i/t - i): φt = φt ⊗ I n y with φT t = -ŷT t-1/t-1 • • • -ŷT t-na/t-na u T t • • • u T t-n b
Here again, the predictor ŷt/t is not linear in θt .

The estimated parameters vector has to maintain the output error below a bound defined from the upper bound on the disturbance v t . Generalization of some results performed in [START_REF] Canudas-De-Wit | A modified EW-RLS algorithm for systems with bounded noise[END_REF], [START_REF] Tan | Identification for systems with bounded noise[END_REF], [START_REF] Sun | Comments on "identification for systems with bounded noise[END_REF] and [START_REF] Boutayeb | Recursive identification of linear multivariable systems with bounded disturbances[END_REF], the following Output Error -OBE algorithm provides such estimation:

       θt = θt-1 +Γ t ε t/t-1 Γ t =P t-1 φt σ t (λIn y + φ T t P t-1 φt σ t ) -1 P t = 1 λ (In-Γt φ T t )Pt-1 ε t/t-1 =y t -φ T t θt-1 (3) 
where 0 < λ ≤ 1 is a design parameter forgetting factor that will be used to monitor the parameter adaptation dynamics. σ t is a switching flag given by:

σ t =        λ ( φ T t P t-1 φt ) -1 (ε T t/t-1 ∆ -2 t ε t/t-1 ) 1/2 -1 if ε T t/t-1 ∆ -2 t ε t/t-1 >1 and ( φ T t P t-1 φt >0) 0 otherwise (4)
∆ t is a user defined symmetric positive definite matrix whose role will be specify below.

ε t/t-1 is the a priori prediction error. From (3) the a posteriori prediction error ε t/t = y t -φ T t θt can be written as:

ε t/t =λ (λIn y + φ T t P t-1 φt σ t ) -1 ε t/t-1 (5) 
Using the value of σ t for σ t = 0 (5) yields:

ε T t/t ∆ -2 t ε t/t =1
This clearly shows that the OE-OBE algorithm ensures the following key property:

σ t =0 =⇒ ε T t/t ∆ -2 t ε t/t =1
∆ t is then a bound on the a posteriori adaptation error which has to be specified taking into account the bound ∆ v t . Remark 1: From the expression (3) it is apparent that the parameter adaptation is frozen when σ t = 0. This occurs whenever the a priori prediction error is less than the threshold ∆ t (i.e. the algorithm doesn't have to update the parameters vector) or the observation vector is no longer persistently exciting (i.e. the algorithm doesn't have enough informations to realize an update).

Before providing a first result, let consider the following observation on the a posteriori prediction error ε t/t = y t -ŷt/t . Bearing in mind structures of φ T t and φ T t , ε t/t becomes

ε t/t =(A(q)) -1 φ T t θt +v t (6)
with θt = θ * -θt . This equation has the typical form encountered in pseudolinear regression. The stability analysis with an equation of the form ε t/t = φ T t θt + v t has been already investigated in [START_REF] Canudas-De-Wit | A modified EW-RLS algorithm for systems with bounded noise[END_REF], [START_REF] Tan | Identification for systems with bounded noise[END_REF], [START_REF] Sun | Comments on "identification for systems with bounded noise[END_REF] and [START_REF] Boutayeb | Recursive identification of linear multivariable systems with bounded disturbances[END_REF]. The following result presents a stability analysis for the form [START_REF] Durieu | Trace versus determinant in ellipsoidal outer bounding, with application to state estimation[END_REF].

Result 1: Consider the class of systems defined in section II and the OE-OBE algorithm given by ( 3) and ( 4). Assume that

• A(q) is such that I ny -A(q) 1 < 1 (7)
where . 1 is the l 1 induced norm; • ∆ t is such that:

δ t/min ≥ A(q) 1 1-In y -A(q) 1 δ v t /min (8) 
where δ t/min is the minimal singular value of ∆ t and δ v t /min the minimal singular value of ∆ v t . then for all initial conditions

• | θt | 2 ≤γ 1 | θ0| 2 (9) 
with γ 1 = λ max( P -1 0 )

λ min( P -1 0 )

.

where λ max P -1 0 and λ min P -1 0 are respectively the maximum and the minimum eigenvalues of P -1 0 .

If, furthermore, { φt } is a persistently exciting sequence of order o e ≥ n, i.e there exist α > 0 and β > 0 such that for all t

αI n ≤ ∑ oe-1 i=0 φt+i σ t+i φ T t+i ≤ β I n ( 10 
)
Then the following properties hold:

• for all t ≥ o e + 1 | θt | 2 ≤ γ 2 λ t | θ0| 2 ( 11 
)
with γ 2 =      λmax(P -1 0 ) α λ -oe -1 λ -1 -1 if λ <1 λmax(P -1 0 ) α if λ =1 . • For λ < 1 one has lim t→∞ ε T t/t-1 ∆ -2 t ε t/t-1 ≤ 1 ( 12 
)
Proof: • Consider the following Lyapounov function:

V t = θ T t P -1 t θt
In a first time we are going to show that V t ≤ λV t-1 if conditions ( 7) and ( 8) hold. From (3) and ( 5) we have:

θt-1 = θt +P t-1 φt σ t λ ε t/t then V t-1 = θ T t P -1 t-1 θt + 2 λ θ T t φt σ t ε t/t + 1 λ 2 ε T t/t σ t φ T t P t-1 φt σ t ε t/t
After a few lines of calculation we show that V t =λV t-1 +q t with

q t = θ T t φt σ t φ T t θt -2 θ T t φt σ t ε t/t - 1 λ ε T t/t σ t φ T t P t-1 φt σ t ε t/t • If σ t = 0, then q t = 0 and V t =λV t-1
• Let consider the case where σ t = 0 and let define b t = φ T t θt . After a few lines of calculation we show that q t ≤ 0 provided that:

ε t/t -b t T ∆ -2 t ε t/t -b t ≤1 (13)
ε t/t is such that ε t/t = (A(q)) -1 b t + v t , thus Condition (13) becomes:

I ny -A(q) ε t/t +A(q)v t T I ny -A(q) ε t/t +A(q)v t ≤δ 2 t/min
where δ t/min is the minimal singular value of ∆ t . From triangular inequality, one obtains the following condition:

((In y -A(q))ε t/t ) T ((In y -A(q))ε t/t ) 1/2 +((A(q)v t ) T (A(q)v t ))
1/2 ≤δ t/min [START_REF] Mo | Fast and robust algorithm to compute exact polytope parameters bounds[END_REF] Let define . 1 the l 1 induced norm and suppose condition (7) to be true. Equation [START_REF] Mo | Fast and robust algorithm to compute exact polytope parameters bounds[END_REF] holds if:

I ny -A(q) 1 (ε T t/t ε t/t ) 1/2 + A(q) 1 (v T t v t ) 1/2 ≤δ t/min ( 15 
)
We know that ε T t/t ∆ -2 t ε t/t ≤ 1 and v T t ∆ -2 v t v t ≤ 1. It can be easily shown that inequality [START_REF] Nagaraj | Bounded error estimation: set theoric and least squares formulations[END_REF] holds if:

I ny -A(q) 1 δ t/min + A(q) 1 δ v t /min ≤δ t/min
where δ v t /min is the minimal singular value of ∆ v t . Finally one obtains the following inequality:

δ t/min ≥ A(q) 1 1-In y -A(q) 1 δ v t /min
ensuring q t ≤ 0 and then V t ≤ λV t-1 .

• Henceforth we know that in each cases (σ t = 0 or σ t = 0) one has V t ≤ λV t-1 (if conditions [START_REF] Favier | Review and comparison of ellipsoidal algorithms[END_REF] and ( 8) are satisfied). This gives:

V t ≤λ t V 0
For lack of space we do not present the proof of the results (9), [START_REF] Ljung | System identification: theory for the user[END_REF] and [START_REF] Lozano-Leal | Reformulation of the parameter identification problem for systems with bounded disturbances[END_REF]. These demonstrations are based on the previous result.

Remark 2:

The conditions ( 7) and ( 8) are only sufficient conditions and since they are conservative we have observed the algorithm to work well in some cases where these conditions are not satisfied. In general, more poles are slow more the condition [START_REF] Favier | Review and comparison of ellipsoidal algorithms[END_REF] might not be verified, this leads to an increased risk of instability of the algorithm.

Remark 3:

The ability to seek the true parameters vector depends on the threshold ∆ t , thus its specification proves to be particularly crucial. If ∆ t is too large, the OE-OBE algorithm will be stable but the update will be frozen too early. If ∆ t is too small, stability conditions will not be satisfied. Actually the choice of the threshold depends on the system throughout the matrix A(q) (which is an unknown object) and the disturbances effects throughout the weighting matrix ∆ v t . A dichotomy-based procedure could be used to get an appropriate value for ∆ t using all the a priori knowledge on the system. In subsection III-C a modified algorithm will be proposed to relax conditions [START_REF] Favier | Review and comparison of ellipsoidal algorithms[END_REF] and [START_REF] Ferreres | Estimation of output error models in the presence of unknown but bounded disturbances[END_REF].

B. Geometrical interpretation.

In order to provide some useful insights on the parameters estimation algorithm, let us define for each time t:

• the observation set S t

S t = θ ∈R n , y t -φ T t θ T ∆ -2 t y t -φ T t θ ≤1 • the ellipsoid E t-1 E t-1 ={θ ∈R n ,(θ -θt-1 ) T P -1 t-1 (θ -θt-1 )≤ρ 2 t-1 } where ρ 2
t-1 is a scalar such that θ * belongs to the ellipsoid E t-1 . Given (y t , φt ), S t is the set of all possible θ which are consistent with the chosen threshold ∆ t . An essential property of that observation set is given in the following result.

Result 2: If condition ( 7) and ( 8) in result 1 hold then θ * ∈ S t [START_REF] Nayeri | An interpretable and converging setmembership algorithm[END_REF] Proof: If θ * ∈ S t then it means that

y t -φ T t θ * T ∆ -2 t y t -φ T t θ * ≤1 (17) 
y t is such that y t = φ T t θ * + v t , thus ( 17) is true if:

(φ t -φt ) T θ * +v t T ∆ -2 t (φ t -φt ) T θ * +v t ≤1
Bearing in mind structures of φ t and φt this can be rewritten as:

I ny -A(q) ε t/t +A(q)v t T ∆ -2 t I ny -A(q) ε t/t +A(q)v t ≤1
In the proof of result 1 it is shown that this last relation is satisfied provided condition ( 7) and ( 8) hold.

The following result provides a geometrical interpretation of the adaptation algorithm. It shows that the parameters vector θt estimated at the actual time t is included in both the subset S t and the ellipsoid E t-1 . Generally, (S t E t-1 ) is not a regular convex set, the result provides another ellipsoid 1) and the parameters vector θ * too.

S t E t E t-1 Fig. 1. 2-Dimensional example: (S t ∩ E t-1 ) ⊂ E t E t which contains the intersection (S t E t-1 ) (figure
Result 3: Consider the class of systems defined in section II and the OE-OBE algorithm given by ( 3) and (4). Assume ( 7), ( 8) and θ * ∈E t-1 [START_REF] Sun | Comments on "identification for systems with bounded noise[END_REF] then for all initial conditions

• An outer bounding ellipsoid of (S t ∩ E t-1 ) is given by the following ellipsoid E t :

E t ={θ ∈R n ,(θ -θt ) T P -1 t (θ -θt )≤ρ 2 t } (19) 
with

ρ 2 t = λ ρ 2 t-1 + ε T t/t-1 σ t ε t/t-1 ε T t/t-1 ∆ -2 t ε t/t-1 -λ ε T t/t-1 λ I ny + φ T t P t-1 φt σ t -1 σ t ε t/t-1 • θ * ∈E t ( 20 
)
Moreover if condition [START_REF] Garulli | Error bounds for conditional algorithms in restricted complexity set membership identification[END_REF] in result 1 holds then we have:

• For λ < 1, there exists an ellipsoid E such that

lim t→∞ E t = E (21) 
Proof: • Let θ such that θ ∈ E t-1 then we have:

λ (θ -θt-1 ) T P -1 t-1 (θ -θt-1 )≤λ ρ 2 t-1 ( 22 
)
• θ is such that θ ∈ S t , it follows:

y t -φ T t θ T ∆ -2 t y t -φ T t θ ≤1 If σ t = 0, then y t -φ T t θ T σ t y t -φ T t θ ≤ ε T t/t-1 σ t ε t/t-1 ε T t/t-1 ∆ -2 t ε t/t-1
. For σ t = 0 one gets for all (y t -φ T t θ ):

y t -φ T t θ T ∆ -2 t y t -φ T t θ T σ t y t -φ T t θ -σ t y t -φ T t θ ≤0
It follows:

y t -φ T t θ T σ t y t -φ T t θ ≤ ε T t/t-1 σ t ε t/t-1 ε T t/t-1 ∆ -2 t ε t/t-1 (23) • Therefore if θ ∈ (S t ∩ E t-1
), then it comes from ( 22) and (23):

λ (θ -θt-1 ) T P -1 t-1 (θ -θt-1 )+ y t -φ T t θ T σ t y t -φ T t θ ≤λ ρ 2 t-1 + ε T t/t-1 σ t ε t/t-1 ε T t/t-1 ∆ -2 t ε t/t-1 (24)
After a few lines of calculation this gives

(θ -θt ) T P -1 t (θ -θt ) ≤λ ρ 2 t-1 + ε T t/t-1 σ t ε t/t-1 ε T t/t-1 ∆ -2 t ε t/t-1 -λ ε T t/t-1 λ I ny + φ T t P t-1 φt σ t -1 σ t ε t/t-1
This corresponds to the ellipsoid E t described by equation [START_REF] Tan | Identification for systems with bounded noise[END_REF].

• From result 2 we have θ * ∈ S t Together with ( 18) it gives: 12) in result 1 lim t→∞ σ t = 0, thus for t ≫ 1 θt = θt-1 , P -1

θ * ∈ (S t ∩ E t-1 ) ⊂ E t . • E t is described by E t ={θ ∈R n ,(θ -θt ) T P -1 t (θ -θt )≤ρ 2 t }. From (
t =λ P -1 t-1 and ρ 2 t =λ ρ 2 t-1 and E t becomes E t ={θ ∈R n ,(θ -θt-1 ) T P -1 t-1 (θ -θt-1 )≤ρ 2
t-1 }=Et-1 This shows convergence on E t and concludes the proof.

Remark 4: This result is a generalization to the output error systems framework and the MIMO case of some results established in the linear prediction framework and SISO case. More precisely, if n u = n y = 1 and A(q) = 1, then our result is equivalent to results in [START_REF] Tan | Identification for systems with bounded noise[END_REF] and [START_REF] Nagaraj | Bounded error estimation: set theoric and least squares formulations[END_REF].

C. The F-OE-OBE (Filtered -OE-OBE) algorithm.

In a number of case it may be interesting to remove the condition (7) required for stability. This needs a modification of the parameter adaptation algorithm. In [START_REF] Ferreres | Estimation of output error models in the presence of unknown but bounded disturbances[END_REF] an estimation algorithm adapted to output error systems is derived from the substitution of the observation set S t by an extended observation set S ′ t ⊃ S t . However this leads to a conservative algorithm.

Here we use an adaptation filter so as to relax stability condition. Let first define the a priori and a posteriori adaptation errors as

η t/t-1 =ε t/t-1 +(F(q)-I ny )ε t/t η t/t =F(q)ε t/t
where F(q) is the adaptation filter designed by the user. These definitions allow us to propose a filtered parameter adaptation algorithm by simply substituting in (3) and ( 4):

• ε t/t-1 by η t/t-1 and ε t/t by η t/t ; • y t by y F t such that F(q)y F t = y t and φt by φ F t such that F(q) φ F t = φt . The idea is to compensate the effect of A(q) in ( 7) and [START_REF] Ferreres | Estimation of output error models in the presence of unknown but bounded disturbances[END_REF].

Taking into account these adjustments, the two following equations sets summarize the proposed Filtered OE-OBE algorithm:

           θt = θt-1 +Γ t η t/t-1 Γ t =P t-1 φ F t σ t λ I ny + φ F T t P t-1 φ F t σ t -1 P t = 1 λ I n -Γ t φ F T t P t-1 ε t/t-1 =y F t -φ F T t θt-1 (25) 
with

σ t =            λ φ F T t P t-1 φ F t -1 (η T t/t-1 ∆ -2 t η t/t-1 ) 1/2 -1 if η T t/t-1 ∆ -2 t η t/t-1 >1 and φ F T t P t-1 φ F t >0 0 otherwise (26) 
It can easily be established that the following key property holds:

σ t = 0 =⇒ η T t/t ∆ -2 t η t/t =1
bearing in mind that ∆ t is a now a bound on the a posteriori adaptation error η t/t .

Here the equation of the a posteriori prediction error is:

ε t/t =(A(q)) -1 φ F T t θt +(F(q)) -1 v t which gives η t/t = F(q)(A(q)) -1 φ F T t θt + v t .
Using this last equation, the following result presents an analysis of the proposed F-OE-OBE algorithm.

Result 4: Consider the class of systems defined in section II and the F-OE-OBE algorithm given by ( 25) and (26). Assume that

• F(q) is such that F(q)=I ny +F 1 q -1 +•••+F n f q -n f (27)
with F i ∈ R n y ×n y and diagonal.

• A(q) is such that

I ny -A(q)(F(q)) -1 1 < 1 (28) 
where . 1 is the l 1 induced norm; • ∆ t is such that:

δ t/min ≥ A(q)(F (q)) -1 1 1-In y -A(q)(F (q)) -1 1 δ v t /min (29) 
then for all initial conditions

• | θt | 2 ≤γ 1 | θ0| 2 (30) 
If, furthermore, { φ F t } is a persistently exciting sequence of order o e ≥ n, then the following properties hold:

• for all t ≥ o e + 1 | θt | 2 ≤ γ 2 λ t | θ0| 2 (31) 
• For λ < 1 one has

lim t→∞ η T t/t-1 ∆ -2 t η t/t-1 ≤ 1 ( 32 
)
Proof: The proof is similar to the proof of result 1.

It can be notice, of course, that the ideal filter F(q) is F(q) = A(q). Thus, conditions (28) and (29) are much milder than conditions [START_REF] Favier | Review and comparison of ellipsoidal algorithms[END_REF] and [START_REF] Ferreres | Estimation of output error models in the presence of unknown but bounded disturbances[END_REF] if a reasonable estimated model is available. This remark is the corner stone of an iterative scheme proposed here. The strategy is the following:

1) Choose a high threshold ∆ t and apply the OE-OBE algorithm to get G(q); 2) Given this first estimation, design a filter F(q) = A(q)

and choose a lower ∆ t ;

3) Apply the F-OE-OBE algorithm to get a new G(q); 4) Repeat steps 2 and 3 until convergence of step 3. In the next section we illustrate this iterative scheme with simulation studies.

Remark 5: Note that if F(q) ≃ A(q) it is possible to choose ∆ t = ∆ v t . In that case, from (32) we have

lim t→∞ θt = θ
where θ is such that η T t ∆ -2 v t η t ≤ 1 with η t = F(q)ε t = F(q) y F t -φ F T t θ = y t -φ T t θ . Then the contribution of the filter F(q) is twofold: it relaxes stability condition of the algorithm and it allows the estimation of a model G(q) such that:

(yt-G(q)u t )

T ∆ -2 v t (yt-G(q)u t )≤1 (33) 
which is coherent with (1).

IV. NUMERICAL EXAMPLE Numerical data have been generated according to (1). The system is the following two inputs/two outputs system:

       A(q)= 1 0 0 1 + -1.6 0 0 -1 q -1 + 0.6175 0 0 0.41 q -2
B(q)= 0.0175 0.014 0.082 0.41 + 0 -0.0168

0 0 q -1
The two inputs u 1 t and u 2 t are uncorrelated random binary sequences of length N = 2000. The noise components v 1 t and v 2 t are generated as in [START_REF] Rao | Recent developments in optimal bounding ellipsoidal parameter estimation[END_REF] in the following manner: .

v 1 t v 2 t = ∆ v t 1 2 (e
It can easily be shown that condition [START_REF] Favier | Review and comparison of ellipsoidal algorithms[END_REF] in result 1 is not satisfied in this example. However three identification procedures have been tested:

• Procedure 1: the development of (1) and (2) gives A(q)y t =B(q)u t +A(q)v t =B(q)u t +v ′ t The first identification procedure consists in identifying this ARX model using linear OBE algorithm proposed in [START_REF] Boutayeb | Recursive identification of linear multivariable systems with bounded disturbances[END_REF] and [START_REF] Canudas-De-Wit | A modified EW-RLS algorithm for systems with bounded noise[END_REF].

• Procedure 2: even if condition [START_REF] Favier | Review and comparison of ellipsoidal algorithms[END_REF] is not satisfied, we can try to use the OE-OBE algorithm to identify the system. This is the second identification procedure. • Procedure 3: this third identification procedure is our iterative scheme. This scheme uses the F-OE-OBE algorithm and has been applied over 20 iterations. For each procedure we have adjusted the threshold ∆ t so as to have the lowest threshold and in the same time a kind of stability on the N available data. This has lead to the following choices: At iteration i we choose

• Procedure 1: ∆ t = ∆ v t . • Procedure 2: ∆ t = 2∆ v t .
∆ (i) t = ∆ (ini) t -∆ ( f in) t e -i +∆ ( f in) t with ∆ (ini) t = 5∆ v t and ∆ ( f in) t = ∆ v t .
The simulation results for procedure 1, 2 and 3 are shown in Fig. 2. In this figure only the sixth component of θ * and its estimations appear. The other components have similar behavior. Fig. 3 presents the improvement of the estimated vector at the end of each iteration in the iterative scheme. It is clear that the iterative scheme proposed in this paper works well. It increases estimation quality compared with the first estimated model and compared with the other procedures. Fig. 4 presents thresholds ±∆ v t and the output errors y t -G(q)u t for each final model (final model for procedure 1, final model for procedure 2 and final model for procedure 3 at the 20 th iteration). It appears that the model obtained with the iterative scheme using the F-OE-OBE is the only one satisfying (33).

V. CONCLUSION

In this paper we have considered the identification problem of an output error system with bounded disturbances. Two identification algorithms which belong to the class of OBE type algorithm are presented. Sufficient conditions for stability and convergence of the first algorithm (conditions related to a condition on the system) have been established. These conditions can be relaxed by introducing an adaptation filter which gives the second algorithm. This second algorithm has been used in an iterative scheme which has lead to a significant improvement of the estimation. In terms of future research, it seems necessary to refine the process for achieving relaxation F(q) ≃ A(q). We also believe that the results developed in the paper can be extended to the closed loop identification problem.
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