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ABSTRACT. In [2], we proved a number of optimal rigidity results for Riemannian man-
ifolds of dimension greater than four whose curvature satisfy an integral pinching. In this
article, we use the same integral Bochner technique to extend the results in dimension
three. Then, by using the classification of closed three-manifolds with nonnegative scalar
curvature and a few topological considerations, we deduce optimal sphere theorems for
three-dimensional manifolds with integral pinched curvature.

1. INTRODUCTION

A celebrated result of R. Hamilton is the classification of closed three dimensional man-
ifolds (M3, g) endowed with a Riemannian metric with non negative Ricci curvature (see
[20] for metric with positive Ricci curvature and [21] for the case of nonnegative Ricci
curvature). The result is that such Riemannian manifold (M3, g) is either:

• a flat manifold,
• isometric to a quotient of the Riemannian product R × S2 where S2 is endowed

with a round metric of constant Gaussian curvature,
• or diffeomorphic to a space form: there is finite group Γ ⊂ O(4) acting freely on
S
3 such that M3 = S

3/Γ.

This classification has been obtained with the Ricci flow and this result is certainly the
first main milestone in the success of the Ricci flow.

In dimension four, a similar result has been obtained by C. Margerin [25]: a closed
4-manifold M4 carrying a Riemannian metric with positive scalar curvature and whose
curvature tensor satisfies :

(1.1) ‖Wg‖2 +
1

2
‖R̊icg‖2 ≤ 1

24
Scal2g

is either :

• isometric to P2(C) endowed with the Fubini-Study metric gFS ,
• isometric to a quotient of R × S3 where S3 is endowed with the round metric of

constant sectional curvature.
• or diffeomorphic to S4 or P4(R).

In the inequality (1.1), Wg denotes the Weyl tensor of the metric g and

R̊icg = Ricg −
1

4
Scalg g

is the traceless Ricci tensor. In fact, the above curvature pinching (1.1) implies that the
Ricci curvature of g is non-negative.

This result was a generalization of the classification of closed Riemannian 4-manifold
(M4, g) with positive curvature operator in [21]. This classification is now valid in all
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dimensions thanks to the work of C. Böhm, B. Wilking [1] and has been generalized by
S.Brendle and R.Schoen to others pinching conditions [4, 5].

These rigidity results, among many others in Riemannian geometry, involve what is
called a “pointwise curvature pinching” hypothesis. The curvature is supposed to satisfy
some constraint at every point of the Riemannian manifold, and strong restrictions on the
topology of the manifold follow.

Some of these results have been extended to manifolds that only satisfy the constraint in
an average sense, i.e. that satisfy an integral curvature pinching. For instance, Margerin’s
results was extended by A. Chang, M. Gursky and P. Yang in [10, 11], they show that if
(M4, g) is a closed Riemannian manifold with positive Yamabe invariant satisfying

(1.2)
∫

M

(
‖Wg‖2 +

1

2
‖R̊icg‖2

)
dvg ≤ 1

24

∫

M

Scal2g dvg,

then (M4, g) is either :

• conformal to P2(C) endowed with the Fubini-Study metric gFS ,
• conformal to a quotient of R × S3 where S3 is endowed with the round metric of

constant sectional curvature.
• or diffeomorphic to S4 or P4(R).

We recall that the Yamabe invariant of a closed Riemannian manifold (Mn, g) is the
conformal invariant defined as :

Y (Mn, [g]) = inf
g̃=efg

f∈C∞(M)

vol(M, g̃)
2
n
−1

∫

M

Scalg̃ dvg̃.

In fact, all the hypotheses of the theorem are conformally invariant: by using the Gauss-
Bonnet formula, the condition (1.2) is equivalent to

∫

M

‖Wg‖2dvg ≤ 4π2χ(M)

where χ(M) is the Euler characteristic of M .
In dimension three, integral versions of the result of Hamilton have also been proved.

For instance according to G. Catino and Z. Djadli [8] or Y. Ge, C-S. Lin and G. Wang [15],
a closed 3−manifolds (M3, g) with positive scalar curvature such that

(1.3)
∫

M

‖R̊icg‖2dvg ≤ 1

24

∫

M

Scal2g dvg

is diffeomorphic to a space form.
However, this result is not optimal, and doesn’t contain a caracterization of the equality

case.
The strategy of the proof of these two integral pinching sphere theorems is to solve a

fully nonlinear PDE in order to find a conformal metric ḡ = e2fg that satisfies Margerin’s
pointwise pinching in dimension 4 or that has positive Ricci curvature in dimension 3.
Then the conclusion follows from the original pointwise version of the theorem.

In [2], we used a Bochner method to extend a theorem of M. Gursky in dimension
four ([18]) to all dimensions greater than four: if (Mn, g) is a Riemannian manifold of
dimension greater that four with positive Yamabe constant such that

(1.4)

(∫

M

∥∥R̊icg
∥∥n/2dvg

)4/n

≤ 1

n(n− 1)
Y(Mn, [g])2,

then
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• either its first Betti number b1(Mn) vanishes,
• or equality is attained in (1.4), b1(Mn) = 1, and there is an Einstain manifold
(Nn−1, h) with positive scalar curvature such that (Mn, g) is isometric (or con-
formal in dimension four) to a quotient of the Riemannian product: R×Nn−1.

The proof of the first part or the result is essentially the following: we first prove that the
strict integral pinching implies that a certain Schrödinger operator �g (see its definition in
section 3) is positive, then we prove by a Bochner method that the positivity of the operator
forces harmonic forms to vanish. We rewrote it in this way in Section 3.

However, we couldn’t extent the result for three dimensional manifolds.
In this article, we obtain similar results in dimension three, for instance with a pinching

involving the operator norm of the Schouten tensor Ag = Ricg −
1

4
Scalg g :

|||Ag||| = max
v∈TxM\{0}

|Ag(v, v)|
|v2| ,

and we deduce sphere theorems for three dimensional manifolds that satisfy integral pinch-
ings.

For instance we obtain the following theorem :

Theorem A. If (M3, g) is a closed Riemannian manifold whose Schouten tensor satisfies

(∫

M

|||Ag|||
3
2 dvg

) 2
3

≤ 1

4
Y (M, [g])

then

• either M carries a flat Riemannian metric.
• or M is diffeomorphic to a space form M ≃ S3/Γ,
• or M is diffeomorphic to S1 × S2 or to S1 × P2(R) or to SO(3)#SO(3).

Alternative pinching results are presented in section 5. We first prove that when the
pinching holds, the Scrödinger operator �g is non negative. If �g is positive, it is also
positive on all finite covers of the manifold, so we obtain that the first Betti number of
all finite covers of the manifold vanishes. In dimension three, this is in fact sufficient to
caracterize the quotients of the sphere, according to the classification of closed Riemannian
manifolds with nonnegative scalar curvature.

Our proof use three main ingredients, the first and major one is the classification of
closed Riemannian manifold with positive scalar curvature initiated by R. Schoen and S-T.
Yau [33], M. Gromov and H-B. Lawson [16], and achieved by the fundamental work of G.
Perelman ([28, 29, 30]). The second one is the Bochner’s type argument that we used in
[2] (Section 3) and the last one is a topological observation about the virtual Betti number
of connected sum (Section 2).

In a certain extent, our argument is similar to the new proof of the conformal sphere
theorem of A. Chang, M. Gursky and P. Yang found recently by B-L. Chen and X-P. Zhu
[13]. They used a modified version of the Yamabe invariant, invented by M. Gursky ([19]),
in order to apply their classification of closed 4-manifold carrying a Riemannian metric
with positive isotropic curvature ([22] and [12]).

Acknowledgements. We would like to thank F. Laudenbach and S. Tapie for helpful discus-
sions. Moreover, the authors are partially supported by the grants ACG: ANR-10-BLAN
0105 and GTO: ANR-12-BS01-0004.
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2. TOPOLOGICAL CONSIDERATIONS

Theorem 2.1. Let Mn be a closed manifold of dimension n ≥ 3 admitting a connected
sum decomposition:

M = X1#X2

where X1 and X2 are not simply connected and where π1(M) is residually finite, then M

has a finite normal covering M̂ → M with positive first Betti number:

b1(M̂) ≥ 1.

Remark 2.2. We recall that a group π is residually finite if for any finite subset A ⊂ π\{e}
there is a normal subgroup Γ ⊳ π with finite index such that

A ∩ Γ = ∅.
A result1 of K.-W. Gruenberg shows that a free product π = Γ1 ∗ Γ2 of residually finite

group, (both Γj is residually finite) is residually finite (see [17] or [24]).

Proof. Let Σ ⊂ M be an embedded (n− 1)-sphere such that

M \ Σ = (X1 \ Bn) ∪ (X2 \ Bn) .

Let p ∈ Σ, we have
π1(M,p) = π1(X1, p) ⋆ π1(X2, p).

We choose ci : [0, 1] → Xi \ Bn a non trivial loop based at p such that ci(0) = ci(1) = p,
we can assume that

t ∈ (0, 1) ⇒ ci(t) 6∈ Σ.

We consider [γ] = [c1 ⋆ c2] ∈ π1(M,p) we have

γ(t) =

{
c1(2t) if t ∈ [0, 1/2]

c2(2t− 1) if t ∈ [1/2, 1]

Because π1(M,p) is assumed to be residually finite, we can find a normal subgroup

Γ ⊂ π1(M,p)

of finite index not containing [c1] and [c2]. We consider the quotient of the universal cover
M̃ → M by Γ:

π : M̂ = M̃/Γ → M.

We consider a lift γ̂ : R → M̃ of the continuous path t 7→ γ (tmod 1). That is to say :

π (γ̂(t)) = γ (tmod 1) .

We consider Σ̂ the lift of Σ such that

γ̂(0) ∈ Σ̂.

Let τ > 0 be the first positive time such that

γ̂(τ) = γ̂(0).

By construction, we know that τ ∈ 1
2N. Because we have assumed that [c1] and [c2] are

not in Γ, we have τ 6= 1
2 . Hence for all t ∈ (0, τ),

γ̂(τ) /∈ Σ̂.

1We are grateful to F. Laudenbach for these references.
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If we define γ̂red : R/τZ → M̂ by

γ̂red(t) = γ̂(t mod τZ) ,

then the intersection number between γ̂red and Σ̂ is ±1. Hence

H1(M̂,Z) 6= {0}.
�

Remark 2.3. Using a deep result of W. Lück, we can give another, more analytical, proof.
We can equipped M with a Riemannian metric g. Let M̃ → M be the universal cover
of M . According to the main result of the paper [23], we only need to show that the
universal cover of M carries some non trivial L2 harmonic 1-forms. But a lift of Σ to
M̃ separated M̃ into two unbounded connected components (because X1 and X2 are non
simply connected), hence M̃ has at least two ends. Moreover the injectivity radius of
(M̃, g) is positive. According to Brooks [6], if π1(M) is non amenable, then the Laplace
operator acting on functions on M̃ has a spectral gap, hence by [9, Proposition 5.1], M̃
carries a non constant harmonic function h with L2 gradient dh ∈ L2. Hence the result
holds when π1(M) is not amenable. But2 a non trivial free product π1(X1, p) ⋆ π1(X2, p)
is amenable only for Z2 ⋆Z2; as Z2 ⋆Z2 contains a normal subgroup of index 2 isomorphic
to Z, we see that in this remaining case, M will have a two fold cover with first Betti
number equals to 1.

3. A BOCHNER RESULT

In this section, we prove a Bochner result, which was almost contained in [2]: if the
operator�g = ∆g+

n−2
n−1ρ1 is positive, the first Betti number must vanish, and the equality

case is characterized.

3.1. Preliminaries. We consider a closed connected Riemannian manifold (Mn, g) of
dimension n ≥ 3.

We denote by ρ1 the lowest eigenvalue of the Ricci tensor of g. The function ρ1 : M →
R satisfies

∀x ∈ M, ∀v ∈ TxM, Ricg(v, v) ≥ ρ1(x)g(v, v) .

Then, we denote by �g the Schrödinger operator

�g := ∆g +
n− 2

n− 1
ρ1.

It is nonnegative if for any smooth function ϕ,
∫

M

(
|∇ϕ|2 + n− 2

n− 1
ρ1ϕ

2

)
dvg ≥ 0,

or equivalently if its lowest eigenvalue is nonnegative.

Lemma 3.1. Let (Mn, g) be a closed Riemannian manifold and let π : M̂ → M be a
cover of M .

If the operator �g is nonnegative, then the operator �π∗g is nonnegative.

2We are grateful to S. Tapie for explaining this to us. See [26, Lemma 2.28] for a proof.
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Proof. Let u ∈ C∞(M) be an eigenfunction associated to the lowest eigenvalue of �g .
We can suppose that u is positive. Then the function u ◦ π is an positive eigenfunction for
�π∗g. By a principle due to W.F. Moss and J. Piepenbrink and D. Fisher-Colbrie and R.
Schoen, ([27, 14] or [31, lemma 3.10]), we know that the bottom of the spectrum of �π∗g

is non negative.
�

Lemma 3.2. Let (Mn, g) be a closed Riemannian manifold. If ξ is a non trivial harmonic

one-form (i.e. dξ = 0 and δξ = 0), then the function u = |ξ|
n−2
n−1 satisfies in the weak

sense

�gu+ fξu = 0

where

fξ =

{
Ric(ξ,ξ)

|ξ|2
− ρ1 +

1
|ξ|2

(
|∇ξ|2 − n

n−1 |d |ξ||
2
)

where ξ 6= 0

0 where ξ = 0

is nonnegative on M .

Proof. The harmonic one-form ξ satisfies both the Bochner equation

〈∇∗∇ξ|ξ〉+Ric(ξ, ξ) = 0,

and the refined Kato inequality ([34, lemma 2], [3], [7])
n

n− 1
|d |ξ||2 ≤ |∇ξ|2 .

According to basic calculations (see [2], section 6), the function uǫ = (|ξ|2 + ε2)
n−2

2(n−1)

satisfies

∆guε +
n− 2

n− 1
(ρ1 + fξ) |ξ|2 u

− n
n−2

ε = 0

And since |ξ|2 u− n
n−2

ε = u .
(

|ξ|2

|ξ|2+ε2

) n
n−1 ≤ u, the function u satisfies

�gu+ fξu = 0,

in the weak sense. �

Finally, a twisted product S1×N is the quotient of R×N by the cyclic group generated
by a diffeomorphism

(t, x) 7→ (t+ l, f(x)))

where f : N → N is a diffeomorphism of N and l is a positive number. If f is isotopic to
the identity map then this twisted product is diffeomorphic to S1 ×N .

3.2. The Bochner result. We can reformulate a part of the Bochner result in [2] as fol-
lows:

Proposition 3.3. Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 3. If
the operator

�g = ∆g +
n− 2

n− 1
ρ1

is non negative then

• either the first Betti number of M vanishes : b1(Mn) = 0,
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• or Mn is isometric to a twisted product S1×Nn−1 endowed with a warped prod-
uct metric

(dt)2 + η2(t)h

where (Nn−1, h) is a closed Riemannian manifold with non negative Ricci curva-
ture.

Proof. We assume that the operator �g is nonnegative. If b1(M) > 0, according to the
deRham isomorphism and the Hodge theorem, we can find a non trivial harmonic one-form
ξ ∈ C∞(T ∗M) with integral periods:

dξ = 0, δξ = 0 and ∀γ ∈ π1(M) ,

∫

γ

ξ ∈ Z.

According to Lemma 3.2, the function u := |ξ|n−2
n−1 satisfies in the weak sense

�gu+ fξu = 0.

Integrating by parts, it follows that
∫

M

(
|∇u|2 + n− 2

n− 1
ρ1u

2

)
dvg ≤ −

∫

M

fξu
2dvg ≤ 0.

But as �g is nonnegative, we must have
∫

M

(
|∇u|2 + n− 2

n− 1
ρ1u

2

)
dvg = 0,

and therefore fξ = 0. It implies that at any point x where ξ(x) 6= 0, equality is attained in
the refined Kato inequality, and ξ is an eigenvector for the lowest eigenvalue of the Ricci
tensor.

As equality is attained in the refined Kato inequality, we know (see [2, Proposition 5.1])
that the normal cover (M̂, ĝ) associated to the kernel of the morphism

π1(M) → Z

γ 7→
∫
γ ξ,

is isometric to a warped product

(R×Nn−1, (dt)2 + η2(t)h),

where (Nn−1, h) is a closed Riemannian manifold.
Moreover, still according to [2, Proposition 5.1], the pullback π∗ξ of ξ on M̂ is a mul-

tiple of the derivative of the function

Φ(t, x) =

∫ t

0

dr

η(r)n−1
.

Therefore, π∗ξ is a multiple of dt
η(t)n−1 , and it implies that dt is an eigenvector associated

to the lowest eigenvalue of the Ricci tensor.
Then, we write the Ricci tensor of the warped product metric (dt)2 + η2(t)h:

Ric =

(
−(n− 1)η

′′

η 0

0 Rich
η2 − (n−2)(η′)2+η′′η

η2 Id

)
.

Since dt is an eigenvalue associated to the lowest eigenvalue of the Ricci tensor, we
must have:

Rich ≥ −(n− 2)
(
η′′η − (η′)2

)
h.
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If the Ricci tensor of h has a nonpositive eigenvalue, then η′′η − (η′)2 = η2 (ln(η))
′′

must be nonnegative, and the function ln(η) is convex.
But the function η is ℓ-periodic, where ℓZ is the range of the morphism

π1(M) → Z

γ 7→
∫
γ
ξ.

Therefore, either Rich is positive, or Rich is nonnegative and η is constant. �

According to Lemma 3.1, we obtain the following corollary:

Corollary 3.4. Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 3. If the
operator

�g := ∆g +
n− 2

n− 1
ρ1

is non negative then

• either the first Betti number of any finite normal cover of M vanishes.
• or M has a finite cover diffeomorphic to a twisted product S1× Nn−1, where
Nn−1 carries a metric of nonnegative Ricci curvature.

4. A SPHERE THEOREM FOR THREE-DIMENSIONAL MANIFOLDS

In this section, we show how to obtain a sphere theorem for integral pinched mani-
folds based on the classification of three-dimensional manifolds with nonnegative scalar
curvature.

The inequality Scalg ≥ nρ1 is always true. Therefore, if the operator �g is nonnegative
then the operator

∆g +
n− 2

n(n− 1)
Scalg

is also nonnegative. In dimension 3 and 4, it implies that the Yamabe operator

∆g +
n− 2

4(n− 1)
Scalg

is nonnegative.
As a result, if �g is nonnegative on a compact manifold of dimension 3 or 4, we can

find a metric g̃ = u
4

n−2 g conformal to g which has nonnegative scalar curvature.
But closed three dimensional manifolds carrying a metric with nonnegative scalar cur-

vature have been classified. After the results of R. Schoen and S-T. Yau [33] or M. Gromov
and H-B. Lawson [16], this classification is a consequence of the solution of the Poincaré
conjecture by G. Perelman ([28, 29, 30]). The Ricci flow with surgeries of Perelman also
provides a direct proof of this classification.

If M3 is a closed oriented three dimensional manifold which carry a metric of nonneg-
ative scalar curvature, then either M3 carries a flat metric or it admits a connected sum
decomposition

M3 = S1#S2# . . .#Sr#ℓ
(
S
1 × S

2
)
,

where each Sj with j ≥ 2 has a non trivial finite fundamental group Γj and is diffeomor-
phic to a lens space Sj ≃ S3/Γj .

According to this, we can prove the following theorem:
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Theorem 4.1. If (M3, g) is a closed manifold such that the operator

�g = ∆g +
1

2
ρ1

is non negative, then

• either M carries a flat Riemannian metric.
• or M is diffeomorphic to a space form M ≃ S3/Γ,
• or M is diffeomorphic to S1 × S2 or to S1 × P2(R) or to SO(3)#SO(3).

Proof. We consider the oriented cover M̄3 of M3.
Since �g is nonnegative, either M̄3 carries a flat metric or it admits a connected sum

decomposition

M̄3 = S1#S2# . . .#Sr#ℓ
(
S
1 × S

2
)
,

where each Sj with j ≥ 2 has a non trivial finite fundamental group Γj and is diffeomor-
phic to a lens space Sj ≃ S3/Γj .

Using Theorem 2.1 and Remark 2.2, if the first cohomology group of all finite normal
covers of M̄3 vanishes, then either M̄3 carries a flat metric, or (ℓ, r) = (0, 1) and M3 is a
space form, or (ℓ, r) = (1, 0) and M3 is a quotient of S2 × S

1.
Then, according to Corollary 3.4, if there exists a finite normal cover of M̄3 with posi-

tive first Betti number, M̄3 has a finite cover diffeomorphic to N2× S1, where N2 carries
a metric of positive Ricci curvature.

Therefore, either N2 carries a flat metric and M3 also carries a flat metric, or N2 is
a quotient of S2. In the second case, since M̄3 is oriented, N2 is diffeomeorphic to S2,
and the diffeomorphism f : S2 → S2 defining the twisted product N2× S1 preserves
orientation, hence is homotopic to the identity map. It follows that M3 is diffeomorphic to
a quotient of S2 × S

1.
Finally, the conclusion follows from the observation that the quotients of S2 × S1 are

diffeomorphic to S1 × S2, S1 × P2(R) or SO(3)#SO(3). �

5. CONDITIONS FOR THE OPERATOR �g TO BE NONNEGATIVE

Finally, we give several integral pinching conditions under which the operator �g is
nonnegative and deduce the sphere theorem implied by Theorem 4.1.

5.1. With a pinching involving the Schouten tensor. In dimension 3, the Riemann cur-
vature tensor of a Riemannian metric g has the following decomposition:

Rmg = Ag ∧ g,

where ∧ is the Kulkarni-Nomizu product and Ag is the Schouten tensor, which satisfies

Ag = R̊icg +
1

12
Scalg g = Ricg −

1

4
Scalg g.

We denote by a1 ≤ a2 ≤ a3 the eigenvalues of the Schouten tensor. Then

ρ1 = a1 +
1

4
Scalg

and therefore

�g = ∆g +
1

8
Scalg +

1

2
a1 =

1

8
Lg +

1

2
a1,

where Lg = ∆g +
1
8 Scalg is the Yamabe operator.
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We recall that the Yamabe constant Y (M, [g]) is the best possible constant in the Sobolev
inequality:

(5.1) ∀ϕ ∈ C∞(M), Y (M, [g]) ‖ϕ‖2L6 ≤
∫

M

(
8|dϕ|2 + Scalg ϕ

2
)
dvg.

Another interpretation of the Yamabe constant is given in more geometrical terms:

Y (M, [g]) = inf
g̃=efg

f∈C∞(M)

vol(M, g̃)−
1
3

∫

M

Scalg̃ dvg̃.

We define (a1)− = max{−a1, 0} and the operator norm |||Ag||| of the Schouten tensor
by:

|||Ag||| (x) = max
v∈TxM\{0}

|g(Agv, v)|
g(v, v)

The following inequality holds:

(a1)− ≤ |||Ag|||
and equality is attained if and only if a1 + a3 ≤ 0.

Proposition 5.1. If (M3, g) is a closed Riemannian manifold whose Schouten tensor sat-
isfies

‖(a1)−‖
L

3
2
≤ 1

4
Y (M, [g]) or |||Ag|||

L
3
2
≤ 1

4
Y (M, [g])

then the operator �g is nonnegative.

Proof. Since ρ1 = a1 +
1
4 Scalg , we get from the Sobolev’s type inequality (5.1) and the

Hölder inequality

8

∫

M

(
|dϕ|2 + 1

2
ρ1ϕ

2

)
dvg ≥

∫

M

(
8|dϕ|2 + Scalg ϕ

2 − 4 ((a1)−)ϕ
2
)
dvg

≥
(
Y (M, [g])− 4 ‖(a1)−‖

L
3
2

)
‖ϕ‖2L6 ,

(5.2)

�

According to Theorem 4.1, we obtain

Theorem 5.2. If (M3, g) is a closed Riemannian manifold whose Schouten tensor satisfies

‖(a1)−‖
L

3
2
≤ 1

4
Y (M, [g]) or |||Ag|||

L
3
2
≤ 1

4
Y (M, [g])

then

• either M carries a flat Riemannian metric.
• or M is diffeomorphic to a space form M ≃ S3/Γ,
• or M is diffeomorphic to S1 × S2 or to S1 × P2(R) or to SO(3)#SO(3).

Remark 5.3. The third case corresponds to the equality case in Proposition 3.3. Moreover,
equality must also be attained in (5.2), therefore the function u =

√
|ξ| must satisfy the

Yamabe equation 8∆gu+ Scalg u = Y (M, [g])u5.
It follows that in this case, the Riemannian metric g lifts to a metric

(dt)2 + η2(t)h

on S1 × S2, where h is the round metric of the sphere S2 and the function η−1 is a Yamabe
minimizer.



A SPHERE THEOREM FOR THREE DIMENSIONAL MANIFOLDS WITH INTEGRAL PINCHED CURVATURE 11

5.2. With a pinching involving the traceless Ricci tensor. Let r1 be the lowest eigen-
value of the traceless Ricci tensor defined by

R̊icg := Ricg −
1

3
Scalg g.

We always have

r21 ≤ 2

3
‖R̊icg‖2

where ‖R̊icg‖ is the Hilbert-Schmidt norm of the traceless Ricci tensor, and equality occurs
only when the spectrum of R̊icg is r1 and − r1

2 with multiplicity two.
Then we have

�g = ∆g +
1

6
Scalg +

1

2
r1.

We introduce the lowest eigenvalue µ(g) of the operator

4∆g + Scalg .

This quantity has the remarkable property of being nonincreasing along the Ricci flow (see
[28]).

Proposition 5.4. If (M3, g) is a closed Riemannian manifold whose traceless Ricci tensor
satisfies

‖r1‖L3 ≤ 1

3

√
Y (M, [g])µ(g) or ‖R̊icg ‖L3 ≤ 1√

6

√
Y (M, [g])µ(g),

then the operator �g is nonnegative.

Proof. For any ϕ ∈ C∞(M) we have by Hölder inequality

Y (M, [g])µ(g) ‖ϕ‖4L3 ≤ Y (M, [g]) ‖ϕ‖2L6 µ(g) ‖ϕ‖2L2

≤
(∫

M

[
8|dϕ|2 + Scalg ϕ

2
]
dvg

)(∫

M

[
4|dϕ|2 + Scalg ϕ

2
]
dvg

)

By using the inequality
√
AB ≤ 1

2 (A+B), we obtain the Sobolev inequality

∀ϕ ∈ C∞(M),
√
Y (M, [g])µ(g) ‖ϕ‖2L3 ≤

∫

M

[
6|dϕ|2 + Scalg ϕ

2
]
dvg.

Finally, since ρ1 = r1 +
1
3 Scalg, we have

6

∫

M

(
|dϕ|2 + 1

2
ρ1ϕ

2

)
dvg ≥

∫

M

(
6|dϕ|2 + Scalg ϕ

2 − 3r1ϕ
2
)
dvg

≥
(√

Y (M, [g])µ(g)− 3 ‖r1‖L3

)
‖ϕ‖2L3 ,

�

According to Theorem 4.1, we obtain

Theorem 5.5. Let (M3, g) be a closed Riemannian manifold and let µ(g) be the lowest
eigenvalue of the operator 4∆g + Scalg . If the traceless Ricci tensor satisfies

‖r1‖L3 ≤ 1

3

√
Y (M, [g])µ(g) or ‖R̊icg ‖L3 ≤ 1√

6

√
Y (M, [g])µ(g),

then

• either M carries a flat Riemannian metric.
• or M is diffeomorphic to a space form M ≃ S

3/Γ,
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• or M is diffeormophic to S1 × S2 or to S1 × P2(R) or to SO(3)#SO(3).

5.3. When the scalar curvature is nonnegative. We denote by κg the minimum of the
scalar curvature :

κg = min
x∈M

Scalg(x).

Proposition 5.6. If (M3, g) is a closed Riemannian manifold whose traceless Ricci tensor
satisfies

‖r1‖L2 ≤ 1

3
Y

3
4 (M, [g])κ

1
4
g or ‖R̊icg ‖L2 ≤ 1√

6
Y

3
4 (M, [g])κ

1
4
g

then the operator �g is nonnegative.

Proof. By using the same idea we have

Y
3
4 (M, [g])κ

1
4
g ‖ϕ‖2L4 ≤

(
Y (M, [g]) ‖ϕ‖2L6

) 3
4
(
κg ‖ϕ‖2L2

) 1
4

≤
(
Y (M, [g]) ‖ϕ‖2L6

) 3
4

(∫

M

Scalg ϕ
2dvg

) 1
4

≤
(∫

M

[
8|dϕ|2 + Scalg ϕ

2
]
dvg

) 3
4
(∫

M

Scalg ϕ
2dvg

) 1
4

Then, using the inequality A
3
4B

1
4 ≤ 3

4A+ 1
4B, we obtain

∀ϕ ∈ C∞(M), Y
3
4 (M, [g])κ

1
4
g ‖ϕ‖2L4 ≤

∫

M

[
6|dϕ|2 + Scalg ϕ

2
]
dvg.

Finally, we have

6

∫

M

(
|dϕ|2 + 1

2
ρ1ϕ

2dvg

)
≥
∫

M

(
6|dϕ|2 + Scalg ϕ

2 − 3r1ϕ
2
)
dvg

≥
(
Y

3
4 (M, [g])κ

1
4
g − 3 ‖r1‖L2

)
‖ϕ‖2L3 ,

�

According to Theorem 4.1, we obtain

Theorem 5.7. Let (M3, g) be a closed Riemannian manifold and let κ = min
x∈M

Scalg(x).

If the traceless Ricci tensor satisfies

‖r1‖L2 ≤ 1

3
Y

3
4 (M, [g])κ

1
4 or ‖R̊icg ‖L2 ≤ 1√

6
Y

3
4 (M, [g])κ

1
4

then

• either M carries a flat Riemannian metric.
• or M is diffeomorphic to a space form M ≃ Γ\S3,
• or M is diffeormophic to S1 × S2 or to S1 × P2(R) or to SO(3)#SO(3).

Remark 5.8. Remark 5.3 is also valid for Theorem 5.5 and Theorem 5.7. Moreover, since
equality must also be attained in the Hölder inequality, the function u =

√
|ξ| must be

constant. It implies that the Riemannian metric g lifts to a product metric on S1 × S2, and
that this metric is a Yamabe minimizer.

According to [32], it implies that the product metric on S1 × S2 is such that the length
of the circle S1 is below a certain bound.
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