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Grenoble Traffic Lab

An experimental platform for advanced traffic monitoring and forecasting Carlos Canudas de Wit, Fabio Morbidi, Luis León Ojeda, Alain Y. Kibangou, Iker Bellicot, Pascal Bellemain "The start from the Ocean House was something marvelous to see. The drivers stormed and scolded, the women shrieked and cried, wheels locked at intervals of perhaps ten minutes.

Occasionally, too, a carriage would capsize, and be hauled over to the fence for repairs . . . [It was] like a huge funeral procession, crawling along at a snail's pace. It was a feat to get to the city at all." This is the report of newspaper The Examiner of what happened when a multitude of attendants and their carriages turned to leave at the same time after the end of a horse race at Ingleside Race Track near San Francisco, California, on November 16, 1873, probably one of the oldest traffic jams on record. Nowadays, motor traffic jams in road networks occur regularly and have a critical impact on modern cities in terms of productivity loss, air pollution and wasteful energy consumption [START_REF] Schrank | TTI's 2011 Urban Mobility Report[END_REF]. According to the INRIX Traffic Scorecard Report [2], in 2013 French drivers wasted, on average, 35 hours in traffic, and France tied for third place with Germany in Europe, in terms of traffic jams (after Belgium and the Netherlands). The situation is not better in the United States, where the top three worst traffic cities in 2013 were Los Angeles, Honolulu and San Francisco where drivers have spent 64, 60 and 56 hours in traffic jams, respectively. In order to address the traffic issue, since the '80s intelligent transportation systems (ITS) have emerged to enhance the infrastructure efficiency and provide congestion relief. ITS applications, such as 1 dynamic route guidance with variable message panels, highway access control and travel-time forecasting, are now being employed successfully worldwide.

Several technologies are available today for collecting traffic data: stationary detectors such as Doppler radars, single and double inductive-loop detectors, laser, infrared sensors, magnetometers and video cameras, are now routinely used in the field, and they have being gradually supplemented by a growing amount of data obtained from mobile detectors or tracing vehicles: this includes continuous tracers (floating car data, FCD, i.e. satellite geolocalization, and floating mobile data, FMD, i.e. localization via the mobile-phone network), and point-to-point tracers (Bluetooth tags from telephones and onboard radios, radio-frequency identification for electronic toll collection, WiFi positioning system, WPS, i.e. localization from WiFi hotspots) [START_REF] Geroliminis | Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings[END_REF]- [START_REF] Treiber | Traffic Flow Dynamics: Data, Models and Simulation[END_REF]. Data from stationary detectors, also known as "cross-sectional data", complements, in several respects, that coming from mobile detectors: in fact, while stationary sensors provide a better temporal coverage of traffic, continuous tracers are able to produce highly-accurate trajectories for single vehicles. However, the former are typically more expensive to install but easier to operate in the long term. The problems of fusing data from heterogeneous sources and of data assimilation have become increasingly important in recent years, and are the subject of active research, see [START_REF] Treiber | Traffic Flow Dynamics: Data, Models and Simulation[END_REF]Ch. 5.3] and [START_REF] Blandin | On sequential data assimilation for scalar macroscopic traffic flow models[END_REF]. Data assimilation is the process by which observations are incorporated into a model of a real system. It is a cyclic procedure: in each cycle, measurements of the current (and possibly past) state of a system are combined with the results from a model (the forecast) to produce an analysis, which is considered as the "the best" estimate of the current state of the system. The model is then advanced in time and its result becomes the forecast in the next analysis cycle [START_REF] Treiber | Traffic Flow Dynamics: Data, Models and Simulation[END_REF]. A major breakthrough in highway traffic modeling came from the discovery of a relationship between traffic density and flow at a certain location, through the fundamental diagram. This diagram is at the basis of the first fluid-dynamic macroscopic model proposed by Lighthill, Whitham and Richards in the '50s, the LWR model, for details, see "Fluid-Dynamic Macroscopic Models for Highway Traffic".

More recently, the cell transmission model (CTM) [START_REF] Daganzo | The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory[END_REF] and the related switching mode model (SMM) [START_REF] Munoz | Traffic density estimation with the cell transmission model[END_REF] have attracted considerable attention in the transportation and control literatures.

The SMM is a piecewise-affine state-dependent discrete-time system based on the CTM which is well suited for model-based traffic estimation [START_REF] Munoz | Traffic density estimation with the cell transmission model[END_REF]- [START_REF] Sun | A Distributed Local Kalman Consensus Filter for Traffic Estimation[END_REF] and control [START_REF] Sun | Highway traffic state estimation using improved mixture Kalman filters for effective ramp metering control[END_REF]- [START_REF] Ferrara | Freeways as Systems of Systems: A Distributed Model Predictive Control Scheme[END_REF]: in fact, it represents a good compromise between mathematical simplicity and modeling accuracy (see the second case study below).

In spite of the aforementioned technological and theoretical advances, the mathematical physics community, which has been developing increasingly-sophisticated dynamical traffic models, and the traffic engineering community, which is more concerned with the collection, statistical analysis and interpretation of real traffic data, have not been able to establish durable links and a common language so far. In particular, despite the numerous ITS initiatives worldwide, to the best of the authors' knowledge there do not exist, at present, easy-to-use experimental platforms which allow to test and compare the performance of advanced traffic management and monitoring algorithms on highway data. In order to fill this gap and provide a standardized testbed for the validation of new theoretical work, the NeCS team, a joint CNRS (GIPSA-lab) and Inria team-project, has recently developed the Grenoble traffic lab (GTL). A source of inspiration for GTL was Caltrans Performance Measurement System (PeMS) and Tools for Operational Planning (TOPL) [START_REF] Chow | TOPL: Tools for operational planning of transportation networks[END_REF], [START_REF] Kurzhanskiy | Active traffic management on road networks: a macroscopic approach[END_REF]. GTL is an innovative platform for online collection of traffic data coming from a dense wireless sensor network (130 magnetometers over 10.5 km) installed in the south ring of the city of Grenoble in France, "Rocade sud" in French. It is worth pointing out here that differently from a sophisticated and general-purpose system such as PeMS (which can be virtually operated in any road-network topology, directly imported from Google Maps), GTL works on a smaller scale and fully covers a single peri-urban corridor: however, this specificity constitutes also one of its distinctive strengths. GTL is the culmination of a four-year research effort and it became operative in winter 2013: the full potential of the system was demonstrated during a Show Day on traffic modeling, estimation and control, organized at Grenoble in May 2014.

The synergy with the local traffic authorities which endorsed the large-scale deployment of a novel sensor technology, and the characteristic daily congestion experienced at the interchange "Rondeau" (see Fig. 1), make the south ring of Grenoble well-suited for traffic studies and an attractive working environment for students, practitioners and researchers in the control, applied mathematics, and transportation communities.

The goal of this paper is to present the main functional components of GTL, with a special emphasis on traffic estimation and forecasting problems. Space constraints forced us to omit extensive research on ramp-metering control in the south ring, conducted with state-of-the-art traffic simulators [18]: for more details, the reader is referred to [START_REF] Pisarski | Optimal Balancing of Freeway Traffic Density: Application to the Grenoble South Ring[END_REF], [START_REF] Bianchi | Networked Model Predictive Traffic Control with Time Varying Optimization Horizon: The Grenoble South Ring Case Study[END_REF]. In what follows, we will proceed to describe in more detail the site of interest and the architecture of GTL.

After presenting the results of statistical analyses on the magnetometer data, we will focus on two relevant control systems applications, and conclude the article by highlighting some promising directions for future research.

Site of Interest and GTL Architecture

Grenoble covers an area of 18.13 km 2 and with a total population of 159953 (as of January 2014, source INSEE) is the 16th largest city in France. The city is relatively flat with an average elevation of 221 meters. The surface circulation is made difficult by the presence of mountains enclosing the city in the north, west, and south-east sides, and by the confluence of the Isère and Drac rivers in the north-west side in the direction of Lyon. These natural boundaries have prevented the construction of a highway surrounding the city, thus making vehicle circulation problematic especially during the peak hours: Grenoble was the third most congested city in France in 2013, with 41 hours wasted on average by the drivers in traffic [2].

The south ring of Grenoble, "route nationale 87", is a highway enclosing the southern part of the city from A41 to A480, completed in 1985. It consists of two carriageways with two lanes, it has 10 on-ramps and 7 off-ramps in the internal roadway, and it stretches between the satellite city of Meylan (45.20531 • N, 5.78353 • E), and the interchange Rondeau (45.15864 • N, 5.70384 • E), for an overall length of about 10.5 km, see Fig. 2. The south ring is a crucial transportation corridor for Grenoble. The total usage of both directions is about 90000 vehicles per day, with peaks of up to 110000. About 5% of the traffic is trucks. The highway is operated by the Direction Interdépartementale des Routes Centre-Est (DIR-CE) and the speed limit ranges between 70 km/h and 90 km/h. Because of its higher criticality for vehicular circulation and In the remainder of this section, we will describe the different functional levels of GTL.

The reader is referred to Fig. 3 for a workflow diagram of GTL architecture.

Level 1: Physical Layer

The south ring has been equipped with 54 pairs of Sensys Networks VDS240 3-axis wireless magneto-resistive sensors embedded in the middle of the fast/slow lanes 4.5 meters apart, plus 20 sensors in the on-/off-ramps (cf. Fig. 4 and Fig. 5, and I). Calibration issues related to the vehicle-counting task and problems of data consistency over time were also encountered, cf. the section "Platform Operation and Data Validation" below. I.

Level 2: Data Processing and Applications

Level 2 consists of an upper and lower layer, which are here described in detail. OPTICAL FIBER, "f", OR GPRS, "g".

• Upper layer: the raw macroscopic traffic data coming every 15 seconds from the Sensys magnetometers (see Level 1) are stored in a database and then passed through a suite of signal-processing algorithms (green box in Fig. 3), which perform:

-Imputation and diagnostics: if some data are lost or erroneous (for instance, as a result of communication problems or temporary sensor malfunction), suitable imputation algorithms [START_REF] Smith | Exploring Imputation Techniques for Missing Data in Transportation Management Systems[END_REF], [START_REF] Muralidharan | Imputation of Ramp Flow Data for Freeway Traffic Simulation[END_REF] are run for filling in the missing data with estimated values, see Level 3. In this respect, each magnetometer is evaluated not as a standalone but together with its neighbors and their past measurement history (see [START_REF] Ojeda | Short-term multi-step ahead traffic forecasting[END_REF] and "Vehicle counting" under "Data analysis" in [24]).

-Aggregation: high-resolution traffic data tend to be noisy. In order not to capture dynamics that are not physically meaningful, it is then fundamental to aggregate the data into time slots of 1, 5 or 6 minutes, depending on the scenario under investigation.

Even after the aggregation of the raw traffic data, high-frequency oscillations might still be present because of data-collection latency and intrinsic measurement noise: it may be then opportune to apply a low-pass filter with an appropriate cut-off frequency (e.g. a first-order low-pass Butterworth filter).

-Model calibration: if model-based algorithms are utilized in the lower layer for computing the traffic indicators (see below), the parameters of the (fluid-dynamic) models are automatically estimated from the data: for example, a least-squares based method inspired by [START_REF] Dervisoglu | Automatic calibration of the fundamental diagram and empirical observations on capacity[END_REF] is employed for computing the parameters of the fundamental diagram in the SMM, which is in turn used for traffic-density estimation.

• Lower layer: in this layer the pre-processed data is utilized to compute, at the present time [g/100km] emissions for an average family car and the safety index [s] (see the magenta boxes in Fig. 3). The fuel consumption and CO 2 emissions are estimated using a physicsbased modal consumption model [START_REF] Treiber | Traffic Flow Dynamics: Data, Models and Simulation[END_REF]Sect. 20.4] for a diesel-powered vehicle (61.3% of French private cars were diesel in January 2013, according to the INSEE), while for the NO x emissions we relied on the statistical modal model proposed in [START_REF] Int Panis | Modelling instantaneous traffic emission and the influence of traffic speed limits[END_REF]. Finally, the safety index is computed according to a constant time-headway spacing policy with a nominal time headway of two seconds as a reference [START_REF] Martinez | A safe longitudinal control for adaptive cruise control and stop-and-go scenarios[END_REF]. As it is known, the "twosecond distance rule" tells a driver the minimum distance needed to reduce the risk of collision with the vehicle directly in front, under ideal driving conditions: two seconds is a safety buffer, and the rule attempts to respect a distance which is consistent with human reaction time (approximately 1.5-2 s). For the sake of simplicity, the algorithms developed by the our group, are given in the forthcoming "Case studies" section.

Level 3: Results Display

The indicators computed by the algorithms in Level 2 can be visualized using different media, including a:

• Web interface: the interface includes four panels, see Fig. the user can select an on-ramp and an off-ramp of the south ring and compute the forecast arrival/departure times. Four alarms, in the form of flashing images, are also displayed in this portion of the interface. Finally, the lower-right panel, which has been partially built upon Google Maps, shows the collection points in the south ring, and the color-coded average traffic speed in each road segment. For demonstration purposes, the web interface is available at the address in [START_REF]GTL web interface[END_REF].

• Mobile device: an Android smartphone application called "GTLMobile" has been developed in collaboration with the Institut Carnot LSI of Grenoble, to display salient traffic information (forecast travel time and CO 2 emissions) to the drivers. The functionalities of the application have been defined by collecting the traveling preferences of over 200 commuters of the south ring via an online questionnaire.

• Showroom: the four panels of the web interface, plus additional diagnostic information about data quality (vehicle-counting performance), are displayed around the clock in seven monitors in a dedicated room at Inria Grenoble Rhône-Alpes.

Platform Operation and Data Validation

In this section we describe the traffic profiles of a typical weekday in the south ring, and present the results of a statistical data analysis that we conducted to test the performance of the network of magnetometers. These studies were instrumental in developing and setting up the GTL platform.

Analysis of Typical Traffic Patterns

In order to design effective and reliable traffic estimation and forecasting algorithms, it is crucial to be fully aware of the physical limits of the infrastructure and of recurrent traffic 3:00 in the morning and that four traffic regimes, R1, R2, R3, R4, can be identified in a typical working day (see Table II): regime R1 corresponds to light traffic conditions (early morning and late evening), R3 to the highway operating near the maximal capacity φ M , and R4 is relative to the morning and afternoon traffic peaks, where speed drops below 40 km/h. Finally, in the intermediate regime R2, the traffic load is moderate (see also "Speed calendar" under "Data analysis" in [24]). The four regimes are also displayed in Fig. 
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, where a (even), b, c, d are positive parameters to be determined. The tip of this curve approximately represents the maximal capacity of the highway at location 16, i.e. the maximal number of vehicles that can cross this location in one hour.

Magnetometers Versus Inductive-Loop Detectors: Performance Comparison

In order to assess the performance of the magnetic sensors, we compared the flow/speed measurements of Sensys magnetometers with the corresponding measurements of two SIREDO inductive double-loop detectors which belong to a nation-wide traffic-monitoring network [START_REF]' Écologie du Développement durable et de l' Énergie[END_REF].

These two detectors, which are not part of the GTL platform, are located between collection points 9 and 10, and 11o and 12, at 4.319 km and 5.9 km from Meylan, respectively.

They cover the fast and slow lanes, and provide independent flow, speed and occupancy measurements, with an aggregation time of 6 minutes. In our tests, we considered the days between September 2 and September 20, 2013, weekends excluded. During the working hours : however, the data from the loop detectors appeared to be, overall, more correlated and smoother. These findings are consistent with previously published studies [START_REF] Su | Evaluation of Sensys Networks Equipment: Stage 3, Tests on Monash Freeway[END_REF]- [START_REF]Count Accuracy Assessment of the Sensys TM Wireless Vehicle Detection System by the Texas Transportation Institute[END_REF].

Flow-Error Analysis

An additional test was performed to assess the counting performance of Sensys magnetometers in the south ring. In order to make the presentation of the results precise, it is convenient to introduce here some terminology regarding network flow theory [START_REF] Rockafellar | Network Flows and Monotropic Optimization[END_REF]. A network G is a triple consisting of two sets E and N , the set of arcs and of nodes, respectively, and a function that assigns to each j ∈ E a pair (i 1 , i 2 ) ∈ N ×N such that i 1 = i 2 . Node i 1 is called the initial node of j and i 2 the terminal node. The arc j is said to be incident to i 1 and i 2 , where these nodes, by virtue of the existence of such an arc, are said to be adjacent to each other. We henceforth Mathematically, the flow of an arc j is a real nonnegative number which we denote by φ j .

In order to analyze what happens to a flow at a certain node i, in particular if the node "leaks", it is useful to introduce the notion of divergence. Given a network G, the divergence of the flow at node i ∈ N , denoted by y i , is the quantity y i = j ∈ E e ij φ j , that is, the total flow departing from node i minus the total flow arriving at i. Let φ = [φ 1 , . . . , φ m ] T be the flow vector. A node i is said to be a source for the flow vector φ if y i > 0 and a sink if y i < 0. If y i = 0, the flow is conserved at i. Note that if we call y = [y 1 , . . . , y n ] T the divergence vector associated with the flow vector φ, we have that y = E φ. In a network, the total amount of flow created at the sources always equals the total amount destroyed at the sinks. This is expressed by the total divergence principle:

i ∈ N y i = 0 for y = E φ.
The flows φ in G such that E φ = 0, i.e. φ is conserved at every node, are called circulations (note that analogously, in physics, a vector field with constant zero divergence is called incompressible or solenoidal). The set of all circulations forms a linear subspace of IR m , the circulation space C = ker(E), where ker(•) denotes the kernel of a matrix.

Let us now return to the task of evaluating the counting performance of the magnetometers in the south ring of Grenoble. Consider the graphical representation of the south ring in Fig. 5(b), and assume that the 26 Sensys collection points represent the nodes of a network G SR and the arrows the arcs of G SR (through which vehicles flow). It is then easy to verify that the incidence matrix E of G SR has 26 rows and 70 columns, from which we can compute the daily divergences in the south ring by using the measured daily flows φ j , j ∈ {1, 2, . . . , 70}. In order to simplify the analysis, let us introduce the relative divergence of the daily flow at location i (in %)

y % r,i = 100 × y i max ¶ | j ∈ E : e ij = -1 e ij φ j | , j ∈ E : e ij = 1 e ij φ j © .
Note that according to this definition, y % r,i is a signed quantity. Unfortunately, we will never have y % r,i = 0 in the real world, since a counting error will always be present, due to the technological limitation of sensors or to vehicles stuck in a road section: we can then only hope that |y % r,i | < γ, ∀ i, where γ is a suitable small threshold. From an inspection of Table III in which we reported the average, standard deviation, minimal and maximal relative divergence of the daily flow over 10 days in February 2014 (because of the space constraints, Table III does not show the flow of all days), we can notice that except for two locations in which environmental disturbances and vehicle lane-changing are important sources of uncertainty, the absolute value of average relative divergence is always smaller than 7%, see "Vehicle counting" under "Data analysis"

in [24]. The counting performance appeared to significantly depend on the sensor calibration accuracy and, notably, on the sensitivity threshold over the three axes of the magnetometers.

Case studies

GTL provides direct access to real traffic data, which allows, in turn, to synthesize and test new algorithms with unprecedented rapidity and accuracy. In this section we report two examples of recently-developed algorithms which use tools of control systems theory: the first one relies on the adaptive Kalman filter and speed measurements for short-term multi-step ahead travel-time forecasting [START_REF] Ojeda | Online Dynamic Travel Time Prediction using Speed and Flow Measurements[END_REF], and the second one leverages a Luenberger-like observer based on the CTM for traffic-density estimation [START_REF] Canudas De Wit | Graph Constrained-CTM observer design for the Grenoble south ring[END_REF] in the south ring. The development of these algorithms has greatly benefited from the unique features of the GTL platform.

Multi-Step Ahead Travel-Time Forecasting

The problem of highway travel-time forecasting has been widely studied and several solutions have been proposed in the literature depending on how the available historical and current-time traffic information is handled [START_REF] Lin | A Gaussian maximum likelihood formulation for short-term forecasting of traffic flow[END_REF]- [START_REF] Ojeda | Adaptive Kalman Filtering for Multi-Step ahead Traffic Flow Prediction[END_REF]. In this section, we briefly present the main features of a novel travel-time forecasting algorithm based on the noise-adaptive Kalman filter (AKF) (for further details, see [START_REF] Ojeda | Short-term multi-step ahead traffic forecasting[END_REF], [START_REF] Ojeda | Online Dynamic Travel Time Prediction using Speed and Flow Measurements[END_REF]). Our algorithm considers progressive traffic conditions, i.e. it accounts for the spatial and temporal conditions encountered by a potential driver along the road, for details, see "Travel Time Forecasting". Fig. 9 shows the main functional blocks of the forecasting algorithm. Three typologies of data, obtained from the available speed measurements, feed the algorithm: the historical travel-time information ("Historical data") from all M = 21 links of the south ring (a link is defined as the stretch between two collection points, recall Table I), the travel-time information at present time k p in the link i, and the travel-time information from midnight of the current day up to time k p in the link i ("Sameday past data"). In order to reduce spatial complexity and maximize correlation, the historical data has been clustered into five time zones (00:00-7:00, 7:00-10:00, 10:00-16:00, 16:00-19:00, and 19:00-24:00) using the standard k-means algorithm (as a preliminary step, a separation into working and non-working days, i.e. Sundays and holidays, is also performed). The clustered data are used to produce pseudo-observations via two predictors which rely on the average of historical data, and on the data at the present time and historical increment, respectively, and to estimate the covariance matrix of the observation noise R(k) ∈ IR 2×2 for k ∈ {k p , k p + 1, . . . , k p + H}, where H is the forecasting horizon. Note that by introducing pseudo-observations the forecasting problem is conveniently converted into a standard filtering problem. Matrix R(k) and the covariance of the process noise q(k) ∈ IR, which is estimated from the forcing residuals [39, Sect. minutes. From the figures, we notice that the proposed method always outperforms the average of historical data, and that the congestion build-up and phase-out times are correctly captured by the algorithm. For cross-validating the proposed algorithm, let us now introduce the estimated cumulative travel time from the current link i to the destination link j (i = j ∈ {1, 2, . . . , M}) at when k p varies between 6:00 and 22:00 for 15 working days. As it is evident in Figs. 11(a)-(c), the smaller H the more accurate the forecasting: moreover, although the performance of the proposed algorithm is always comparable or superior than that obtained with the historical average, for large H, as expected, the differences between the two approaches become negligible.

Traffic-Density Estimation

In this final section, we illustrate the performance of a recently-developed Luenbergerlike traffic density estimator based on the graph-constrained SMM: for the detailed mathematical formulation, the reader is referred to [START_REF] Canudas De Wit | Graph Constrained-CTM observer design for the Grenoble south ring[END_REF], [START_REF] Morbidi | Robust mode selection for highway traffic density estimation[END_REF], [START_REF] Ojeda | Short-term multi-step ahead traffic forecasting[END_REF]. The south ring has been subdivided in 48 cells with average length of 220 meters and the density in each cell has been reconstructed using the model-based observer and the available flow measurements: the data have been aggregated to 1 minute and then resampled to 5 seconds, and the SMM has been automatically calibrated using a robust algorithm similar to the one proposed in [START_REF] Dervisoglu | Automatic calibration of the fundamental diagram and empirical observations on capacity[END_REF], cf. "Level 2" above. Figs. 12(b),(d) show the density contour estimated by the proposed observer on Friday, February 28, 2014 (the eve of French student holidays, when the south ring was heavily congested all afternoon), and on Friday, March 7, 2014, respectively. Figs. 12(a), (c) report the corresponding measured densities, that is the densities reconstructed from the available flow and speed measurements in the collection points of the south ring (our ground truth). The gray vertical stripes in Fig. 12(a) correspond to three collection points (Meylan, Gabriel Péri entrance 1, SMH Centre exit) which were not operative on February 28. In spite of the missing data, we observe a satisfactorily agreement between the measured and estimated densities.

Conclusions and Future Work

In this article we have described the Grenoble traffic lab (GTL), a novel experimental platform for advanced traffic research, and we have presented some activities built around it that our group has recently carried out.

GTL is an ongoing and living research project, which serves as a basis for more ambitious forthcoming undertakings: in the near future, we aim at customizing the GTL web interface for Researcher successively with the I3S Laboratory, Sophia Antipolis, the LAAS, Toulouse, and the GIPSA-lab, Grenoble. His research interests include distributed estimation, structural network analysis, multiway array data analysis, signal processing for communications, traffic prediction, system identification, nonlinear filtering, and consensus problems. This potentially makes the magnetometer as accurate as or better than an inductive loop detector at counting vehicles. However, magnetometers are not precise at locating the perimeter of a is the time at which the vehicle reaches the upstream boundary of rectangle i. Note that (S3) accounts for the traffic progression along the road. Equations ( S2) and (S3) define the progressive travel time (PTT). This differs from the instantaneous travel time (ITT), frequently encountered in the literature, which assumes that the conditions in each rectangle remain the same as at the entry time t p , i.e. t 0 = t p + n i=1 Δ x i v i (tp) (in other words, time is "frozen"). Note that while the PTT is consistent with the traffic conditions that a driver encounters along the road, the computation of ITT is based on an assumption that is not necessarily verified in the real world, and which becomes more critical as the width of the rectangles Δ x i increases. Let us now determine the forecast arrival time t f of the vehicle at the point x f , given the current time t 0 and current position x 0 (see Fig. S2). By using (S2) and (S3), and assuming a space discretization in M rectangles, we obtain

t f = t 0 + M i=1 Δ x i v i ( η(Δ x i )) , η(Δ x i ) = t 0 + i-1 j=1 Δ x j v j ( η(Δ x j ))
. By defining τ i (k) as the forecast PTT in rectangle i at the discrete time k, and τ x 0 →i (k) as the cumulative PTT from the entry point x 0 to the downstream boundary of rectangle i at the discrete time k, we

find τ x 0 →i (k) = τ x 0 → i-1 (k) + τ i (k + τ x 0 → i-1 (k)), τ i (k) = Δ x i v i ( τ x 0 → i-1 (k))
where i ∈ {1, . . . , M}, k ∈ {k 0 + 1, . . . , k 0 + H} and H is the forecasting horizon.
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  and in the future, several traffic indicators: the travel time [min], the number of vehicles, the congestion length [km], the fuel consumption [L/100km], and CO 2 [kg/100km], NO x

  that generate the aforementioned indicators are coded as Simulink blocks: MEX files are used to interface the blocks with the database on one side and with the result-visualization tools (see Level 3, below) on the other. The MATLAB/Simulink environment offers great flexibility and modularity, and allows the user to easily add or delete connections between the blocks and implement new traffic-management algorithms. The instantaneous and forecast indicators yielded by our Simulink blocks are stored in a dedicated database. More details about two algorithms for traffic density estimation and travel-time forecasting recently
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 66 Figure 6. The four panels of GTL web interface. Clockwise from top left: 1) gauges displaying
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 77 Figure 7. Typical traffic patterns in the south ring. (a) Speed contour of January 16, 2014:

  7(c), where we plotted vehicle speed against traffic flow (red dots) for five weekdays, January 7, 8, 9, 10 and 16, 2014, at location 16. The black curve in the figure has been obtained via least-squares fitting using an (implicit) exponential function of flow and speed, F (φ, v) = a exp Ä -b
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 8 00-18:00), we observed a good matching between the average-flow (Figs. 8(a), (c)) and average-speed measurements over the 15 days (Figs. 8(b), (d))

  assume that |N | = n and |E| = m, where | • | denotes the cardinality of a set. The node-arc incidence matrix E = [e ij ] of G is defined as follows: e ij = 1 if i is the initial node of the arc j, e ij = -1 if i is the terminal node of the arc j, and e ij = 0 otherwise. Note that E is an n × m matrix, and that each column of E has exactly one +1 and one -1. The flow of an arc is a variable that measures the quantity of material flowing through an arc of the network.
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 8 Figure 8. Magnetometers versus inductive-loop detectors. Comparison between the measure-
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 9 Figure 9. Block diagram of the traffic forecasting algorithm based on the Kalman filter from [23].
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 7 , are used to compute a revised gain K(k) ∈ IR 2×2 for the Kalman filter which outputs the estimated travel-time τ i (k) in link i for k ∈ {k p , k p + 1, . . . , k p + H}. Fig. 10 reports the results of several tests that we conducted under typical traffic conditions. In particular, Figs. 10(a), (c) show the forecast travel time provided by the proposed method (purple solid, circle) against the travel time computed from a simple average of the historical data (blue dashed, cross), and the ground truth (black solid, star) at k p = 8 : 45 on September 17, 2013 and at k p = 17 : 15 on September 11, 2013, respectively. Figs. 10(b), (d) report the corresponding forecast trajectories in the (space, time)-speed plane against the ground truth for departure times at intervals of 15

Figure 10 .

 10 Figure 10. Performance of the travel-time forecasting algorithm. (a) Forecasting at k p = 8 : 45 on September 17, 2013 (the forecasting step and horizon H are 5 and 45 minutes, respectively),

Fig. 11 reportsFigure 11 .

 1111 Fig. 11 reports the cumulative distribution function (CDF) of the APE for different forecasting horizons H's using the proposed algorithm (black) and the average of historical data (red),
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  scheme[S2]. The discrete version of the LWR model with triangular fundamental diagram, is

Figure S1 .Figure S2 .

 S1S2 Figure S1. From right to left: perturbation of Earth's magnetic field (red lines) produced by a

  

Table I

 I 

	), for details, see
	"How Do Magnetic Sensors Detect a Passing Vehicle?". The magnetometers have a sampling rate
	of 128 Hz and are powered with non-rechargeable primary lithium thionyl chloride (Li-SOCl 2 )
	3.6 V, 7.2 Ah batteries which guarantee 10 years of operation and up to 300 million vehicle
	detections. The magnetometers provide macroscopic information, such as flow φ [veh/h], time-
	mean speed v [km/h] and occupancy [%] (the fraction of time during which the cross-section
	is occupied by a vehicle) as well as microscopic information, such as single-vehicle speed,
	inter-vehicle time gap and vehicle length. The latter piece of information can be used, for
	example, for safety or vehicle-class distribution analyses: however, for the sake of simplicity,
	in the rest of this article we will exclusively deal with macroscopic data. Notice that since
	φ = ρ v, the density ρ [veh/km] can be estimated from the available flow and speed measurements.
	The magnetometers use an ultra-low power 2.4 GHz TDMA protocol to communicate with a
	nearby access point (configured and remotely operated with Sensys software "TrafficDOT2"),

Traffic regime Flow [veh/h] (2 lanes) Aver. speed [km/h] Approx. time interval

  

	R1, Light	0 ≤ φ < 1500	v > 60	21:00-7:00
	R2, Fluid	1500 ≤ φ < 2500	v > 60	9:30-13:00, 19:00-21:00
	R3, Intense	2500 ≤ φ ≤ φ M	v > 60	13:00-17:00
	R4, Congested	1500 ≤ φ ≤ φ M	v ≤ 60	7:00-9:30, 17:00-19:00

TABLE II THE

 II FOUR TRAFFIC REGIMES IN THE SOUTH RING.

15 Feb. 16 Feb. 17 Aver. Std

  

										Min Max
	1 → 2	n.a.	n.a.	• • •	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	2 → 3	0.1	0.5	• • •	0.9	0.1	0.4	0.04 0.57	-0.8	0.9
	3 → 4	0.5	-0.03 • • •	0.5	0.3	0.5	0.33 0.23 -0.04 0.7
	4 → 5	-0.1	0.1	• • •	0.1	-0.05	0.02	0.01	0.1	-0.19 0.1
	5 → 6	0.9	0.3	• • •	-7.6	0.2	-1.2	-0.94 2.51	-7.6	0.9
	6 → 7	n.a.	n.a.	• • •	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	7 → 8	n.a.	n.a.	• • •	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	8 → 9	-0.5	0.8	• • •	-13.6	-0.5	-3.4	-6.31 6.54 -15.4 0.8
	9 → 10	0.1	0.01 • • •	-0.2	-0.3	-0.2	-0.19	0.2	-0.5	0.1
	10 → 11	-0.6	-0.4	• • •	-0.1	-0.4	-0.6	-0.39 0.16	-0.6 -0.1
	11 → 11o	-2	-1.4	• • •	-1.9	-1.4	-0.4	-1.6	0.44	-2	-0.4
	11o → 12	2.9	2	• • •	2.4	2.1	0.8	2.14 0.52	0.8	2.9
	12 → 13	0.2	-0.04 • • •	0.1	0.2	0.1	0.01 0.23	-0.5	0.2
	13 → 14	-1.7	-1.5	• • •	13	-0.4	1	4.43 6.48	-1.7 13.2
	14 → 15	-3.1	-1.8	• • •	-14	-1	-4.9	-8.23 7.03	-19	-1
	15 → 15o	-1.3	-0.2	• • •	0.02	-0.04	-1.3	-0.75 0.53	-1.3 0.02
	15o → 16	0.4	0.2	• • •	0.2	-0.2	0.4	0.23 0.23	-0.2	0.6
	16 → 17	0.1	0.7	• • •	-11.5	-1	-2.1	-5.23	6.1	-13.7 1.7
	17 → 18	-1	-0.1	• • •	-0.7	-0.2	-0.5	-0.62 0.32	-1.1 -0.1
	18 → 19	-15.2	-19.8 • • •	-28	1.8	-6.8	-9.09 10.24 -28	9.5
	19 → 20	-23	16.8 • • •	23.6	-1.6	-25.5	-3.56 21.78 -50.5 23.6

Location Feb. 7 Feb. 8 • • • Feb.

TABLE III STATISTICAL

 III 

ANALYSIS OF THE RELATIVE DIVERGENCE OF DAILY FLOWS [%] IN THE SOUTH RING OVER 10 DAYS (FROM FEBRUARY 7 TO FEBRUARY 17, 2014). "n.a." STANDS FOR "NOT AVAILABLE".
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different categories of vehicles, e.g. fire trucks, ambulances, police and passenger cars. Looking further into the future, we also plan to extend our network of sensors to the major urban arterials of Grenoble in order to have a wider city-level coverage of traffic behavior, and to combine traffic data coming from heterogeneous sensors (e.g., magnetometers and GPS-equipped vehicles). By subdividing [x p , x 0 ] into n rectangles of width Δ x i and assuming that the speed is constant in each rectangle (see Fig. S2), we can rewrite equation (S1) as
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where v i (η(Δ x i )) is the space-mean speed in the i-th rectangle and