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Grenoble Traffic Lab

An experimental platform for advanced

traffic monitoring and control

Carlos Canudas de Wit, Fabio Morbidi, Luis León Ojeda, Alain Y. Kibangou,

Iker Bellicot, Pascal Bellemain

“The start from the Ocean House was something marvelous to see. The drivers stormed

and scolded, the women shrieked and cried, wheels locked at intervals of perhaps ten minutes.

Occasionally, too, a carriage would capsize, and be hauled over to the fence for repairs [. . . ]

(It was) like a huge funeral procession, crawling along at a snail’s pace. It was a feat to get to

the city at all.” This is the report of newspaper Examiner of what happened when a multitude

of attendants and their carriages turned to leave at the same time after the end of a horse

race at Ingleside Race Track near San Francisco, California, on November 16, 1873, probably

one of the oldest traffic jams on record. Nowadays, motor traffic jams in road networks occur

regularly and have a critical impact on modern cities in terms of productivity loss, air pollution

and wasteful energy consumption [1]. According to the annual INRIX Scorecard Report, in

2013 the French drivers have wasted, on average, 35 hours in traffic, and France tied for third

place with Germany in Europe, in terms of traffic jams (after Belgium and the Netherlands).

The situation is not better in North America, where the top three worst traffic cities in 2013

have been Los Angeles, Honolulu and San Francisco where drivers have spent 64, 60 and 56

hours in traffic jams, respectively.
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In order to address the traffic issue, since the ’80s intelligent transportation systems (ITS)

have emerged to enhance the infrastructure efficiency and provide congestion relief. ITS appli-

cations, such as dynamic route guidance with variable message panels, highway access control

and travel-time forecasting, are now started being successfully employed worldwide.

Several technologies are available today for collecting traffic data: stationary detectors

such as Doppler radars, single and double inductive-loop detectors, laser, infrared sensors,

magnetometers and video cameras, are now routinely used in the field, and they have being

gradually supplemented by a growing amount of data obtained from mobile detectors or tracing

vehicles: this includes continuous tracers (floating car data (FCD), i.e. satellite geo-localization,

and floating mobile data (FMD), i.e. localization via the mobile-phone network), and point-to-

point tracers (Bluetooth tags from telephones and onboard radios, radio-frequency identification

(RFID) for electronic toll collection, WiFi positioning system (WPS) i.e. localization from

WiFi hotspots) [2]–[4]. Data from stationary detectors (also known as “cross-sectional data”)

complements, in several respects, that coming from mobile detectors: in fact, while stationary

sensors provide a better temporal coverage of traffic, continuous tracers are able to produce

highly-accurate trajectories for single vehicles. However, the former are typically more expensive

to install but easier to operate in the long term. The problems of fusing data from heterogeneous

sources and of data assimilation have become increasingly important in recent years, and are

the subject of active research (see [4, Ch. 5.3] and [5]). Data assimilation is the process by

which observations are incorporated into a model of a real system. Data assimilation is a cyclic

procedure: in each cycle, measurements of the current (and possibly past) state of a system are

combined with the results from a model (the forecast) to produce an analysis, which is considered

as the “the best” estimate of the current state of the system. The model is then advanced in time

and its result becomes the forecast in the next analysis cycle [4]. A major breakthrough in
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highway traffic modeling came from the discovery of a relationship between traffic density and

flow at a certain location, through the “fundamental diagram”. This diagram is at the basis of

the first fluid-dynamic macroscopic model proposed by Lighthill, Whitham and Richards in the

’50s, the LWR model. More recently, the cell transmission model (CTM) [6] and the related

switching mode model (SMM) [7] have attracted considerable attention in the transportation and

control literatures: the SMM is a piecewise-affine state-dependent discrete-time system based on

the CTM which is well suited for model-based traffic estimation [7]–[9] and control [10], [11],

’For Details, see “Fluid-dynamic Macroscopic Models for Highway Traffic”’.

In spite of the aforementioned technological and theoretical advances, the mathematical

physics community (which has been developing growingly-sophisticated dynamical traffic

models) and the traffic engineering community (which is more concerned with the collection,

statistical analysis and interpretation of real traffic data) have not been able to establish durable

links and a common language so far. In particular, despite the numerous ITS initiatives worldwide,

to the best of the authors’ knowledge there do not exist, at present, experimental platforms

which allow to test and compare in real-time the performance of advanced traffic-management

algorithms on highway data. In order to fill this gap and provide a standardized testbed for the

validation of new theoretical work, the traffic research group of the NeCS team at Inria Grenoble

Rhône-Alpes has recently developed the Grenoble traffic lab (GTL). A source of inspiration for

GTL was Caltrans Performance Measurement System (PeMS) and Tools for Operational Planning

(TOPL) [12], [13]. GTL is a platform for real-time collection of traffic data coming from a dense

wireless sensor network (130 magnetometers over 10.5 km) installed in the south ring of the city

of Grenoble in France (“Rocade sud” in French). It is worth pointing out here that differently

from a sophisticated and general-purpose system such as PeMS (which can virtually operate

on any road-network topology, directly imported from Google Maps), GTL works on a smaller
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(a) (b)

Figure 1. The south ring of Grenoble. (a) View of a stretch of the south ring, direction north-east

towards Meylan (Image courtesy of DIR-CE); (b) Aerial view of the interchange “Rondeau” at the

west end of the south ring (left center in the image): this site experiences heavy traffic congestion

during the morning and afternoon rush hours (Image courtesy of Google Maps/Satellite).

scale and fully covers a single peri-urban corridor: however, this specificity constitutes also

one of its distinctive strengths. GTL is the culmination of a four-year research effort and has

become operative in autumn 2013. Because of its distinctive topology, car/truck distribution, and

daily heavy congestion experienced at the interchange “Rondeau” (see Fig. 1), the south ring of

Grenoble is well-suited for traffic research and offers an ideal working environment to both the

control and transportation communities.

In what follows, we will proceed to describe in more detail the site of interest and the

architecture of GTL. After presenting the results of statistical analyses on the magnetometer

data, we will illustrate two relevant control applications we recently developed, and conclude

the article by highlighting some promising directions for future research.
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Site of Interest and GTL Architecture

Grenoble covers an area of 18.13 km2 and with its 157,424 inhabitants (in 2011) is the

16th largest city in France. The city is relatively flat with an average elevation of 221 meters.

The surface circulation is made difficult by the presence of mountains enclosing the city in the

north, west and south-east sides, and by the confluence of rivers Isère and Drac in the north-

west side in the direction of Lyon. These natural boundaries have prevented the construction of

a highway surrounding the overall city until today, thus making vehicle circulation problematic

especially during the peak hours (Grenoble was the third most congested city in France in 2013,

with 42 hours wasted on average by the drivers in traffic). The south ring of Grenoble (“route

nationale 87”) is a highway enclosing the southern part of the city from A41 to A480, completed

in 1985. It consists of two carriageways with two lanes, it has 10 onramps and 7 offramps in the

internal roadway, and it stretches between the satellite city of Meylan (45.20531◦ N, 5.78353◦ E),

and the interchange Rondeau (45.15864◦ N, 5.70384◦ E), for an overall length of about 10.5 km

(see Fig. 2). The south ring is a crucial transportation corridor for Grenoble: around 90000

vehicles (5% trucks) with peaks of 110000, drive across it every day in both directions. The

highway is operated by the Direction Interdépartementale des Routes Centre-Est (DIR-CE) and

the speed limit ranges between 70 km/h (at the beginning and end of the highway) and 90 km/h.

In GTL, only the east-west direction of the south ring (the carriageway on the left in Fig. 1(a))

is considered. In fluid-traffic conditions the travel time from Meylan to Rondeau is around

7 minutes and 30 seconds (see Fig. 2(a)-(b)), while under heavy congestion the travel time can

grow up to 45 minutes and fuel consumption up to 80% (see Fig. 2(c)).

In the reminder of this section, we will describe the different functional levels of GTL.

The reader is referred to Fig. 3 for a workflow diagram of GTL architecture.
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Figure 2. Traveling the south ring of Grenoble. (a) Spatial trajectory, and (b) time evolution

of the position of a car in the south ring on Thursday, December 5, 2013 between 19:48,00 and

19:56,26, recorded with the GPS-based smart-phone application “My Tracks”: the average speed

of the car was 75 km/h; (c) Time-evolution of fuel consumption of a mid-size Diesel-powered

car in a day of severe congestion in February 2014, estimated using a physics-based modal

model (the black dashed line indicates the “nominal” consumption in light traffic conditions).

Level 1: Physical Layer

The south ring has been equipped with 54 pairs of Sensys Networks VDS240 3-axis

wireless magneto-resistive sensors embedded in the pavement along the fast/slow lanes 4.5 meters
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Figure 3. Three-level architecture of GTL. Level 1: physical layer, Level 2: data processing

and applications, Level 3: results display.

apart, plus 20 sensors in the on/offramps (see Fig. 4 and Fig. 5, and Table I), ’For Details,

see “How Do Magnetic Sensors Detect a Passing Vehicle?”’. The installation took over one

month and the configuration and validation phases lasted three months: the overall set of sensors

became fully operational after approximately one year. Since some of the sensors were installed
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(a) (b)

Figure 4. Magnetic sensors. (a) Sensys Networks VDS240 (With permission of Sensys

Networks, Inc.); (b) A magnetometer in its final location in the south ring, about 3 cm below the

road surface, before being covered with fast-drying epoxy (the arrow points in the direction of

traffic flow). A 2 Euro coin is shown near the sensor for comparison (the actual size is 7.4 cm

× 7.4 cm × 4.9 cm and the weight is 300 grams).

in the wrong lanes, a time-consuming statistical analysis of the speed profiles was necessary

in order to identify the misplaced magnetometers and adjust their labels (note that the sensors

sharing the same communication channel, have the same hexadecimal serial number or ID,

see Table I)). The magnetometers have a sampling rate of 128 Hz and are powered with

non-rechargeable primary Lithium Thionyl Chloride (Li-SOCl2) 3.6V, 7.2Ah batteries which

guarantee 10 years of autonomy and up to 300 million vehicle detections. The magnetometers

provide macroscopic information, such as flow φ [number of vehicles per hour, veh/h], time-

mean speed v [km/h] and occupancy [%] (the fraction of time during which the cross-section

is occupied by a vehicle) as well as microscopic information, such as single-vehicle speed,

inter-vehicle time gap and vehicle length. The latter information can be used, for example, for

safety or vehicle-class distribution analyses: however, for the sake of simplicity, in the rest

of this article we will exclusively deal with macroscopic data. Notice that since φ = ρ v,
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Figure 5. Sensor disposition in the south ring. (a) Location of the collection points (blue flags)

(Image courtesy of Google Maps); (b) Graphical representation of road interconnections: the

cyan disks correspond to the collection points and the arrows to the typology of lanes (fast,

slow, onramp, offramp, etc.) equipped with magnetometers (see Table I).

the density ρ [number of vehicles per kilometer, veh/km] can be estimated from the available flow

and speed measurements. The magnetometers use a ultra-low power 2.4 GHz TDMA protocol

to communicate with an access point (configured and remotely operated with Sensys software
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Name Lanes ID, Comm. Position [km]
1 Meylan Slow, Fast, Onramp 3356, f 0.000
2 A41 Grenoble Slow, Fast, Onramp 3354, f 0.405
3 Taillat (or Carronnerie) Slow, Fast 343c, f 1.168
4 Domaine Univ. (exit) Slow, Fast, Offramp 343b, f 1.770
5 Domaine Univ. (entrance) Slow, Fast, Onramp 343b, f 1.946
6 Gabriel Péri (exit) Slow, Fast, Offramp 3445, f 2.470
7 Gabriel Péri (entrance 1) Slow, Fast, Onramp 3445, f 2.604
8 Gabriel Péri (entrance 2) Slow, Middle, Fast, Onramp 1b67, g 2.803
9 SMH Slow, Fast 3357, f 3.619
10 SMH Centre (exit) Slow, Fast 0ddd, f 4.881
10q SMH Centre (queue) Onramp 1c9b, g 5.093
11 SMH Centre (entrance) Slow, Fast, Onramp 3355, f 5.406
11o SMH Centre (overequip.) Slow, Fast 3355, f 5.606
12 Eybens (exit) Slow, Fast, Offramp 21d1, f 6.291
12q Eybens (queue) Onramp 21d1, f 6.507
13 Eybens (entrance) Slow, Fast, Onramp 343f, f 6.770
14 Échirolles (exit) Slow, Fast, Offramp 1b5c, g 7.418
14q Échirolles (queue) Onramp left, Onramp right 1b5c, g 7.742
15 Échirolles (entrance) Slow, Fast, Onramp 25eb, f 7.981
15o Échirolles (overequip.) Slow, Fast 25eb, f 8.243
16 États Généraux (exit) Slow, Fast, Offramp 25ea, f 8.637
16q États Généraux (queue) Onramp 1cdd, g 9.015
17 États Généraux (entrance) Slow, Fast, Onramp 13c6, f 9.195
18 Libération (exit) Slow, Fast, Offramp 3444, f 9.645
19 Libération (entrance) Slow, Fast, Onramp 25ec, f 10.049
20 Rondeau Left, Middle, Right 343e, f 10.346

TABLE I

COLLECTION POINTS IN THE SOUTH RING (SEE FIG. 5). “ID” IS A HEXADECIMAL SERIAL

NUMBER ASSOCIATED TO GROUPS OF MAGNETOMETERS. THE COMMUNICATION IS VIA

FIBER OPTICS, “f”, OR GPRS, “g”.

“TrafficDOT2”), which sends the data to a server in the Grenoble traffic control center at the

DIR-CE via fiber optics, “f”, or via a wireless GPRS connection, “g” (see Table I). If the

magnetometer is outside a radius of 45 meters from the access point, a repeater (mounted on the
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vertical signage) is used to relay the signal to it. Overall, 19 access points and 21 repeaters are

active in the south ring. The traffic data are monitored and stored in a database (DB in short) at

DIR-CE, where every 15 seconds an FTP data exporter pushes them to a server located at Inria

Grenoble Rhône-Alpes (see Fig. 3).

Level 2: Data Processing and Applications

Level 2 consists of an upper and lower layer, which are described in detail below.

• Upper layer: the raw macroscopic traffic data coming every 15 seconds from the Sensys

magnetometers (see Level 1) are stored in a database and then passed through a suite of

signal-processing algorithms (green box in Fig. 3), which perform:

– Imputation and diagnostics: if some data are lost or erroneous (for instance, as a result

of communication problems or temporary sensor malfunction), suitable imputation

algorithms [14], [15] are run for filling in the missing data with estimated values

(see Level 3). In this respect, each magnetometer is evaluated not as a standalone but

together with its neighbors and their past measurement history (see [16] and “Data

analysis” in [17]).

– Aggregation: high-resolution traffic data tend to be noisy. In order to not capture

dynamics that are not physically meaningful, it is then fundamental to aggregate the

data into time slots of 1, 5 or 6 minutes, depending on the scenario under investigation.

Even after the aggregation of the raw traffic data, high-frequency oscillations might still

be present because of data-collection latency and intrinsic measurement noise: it may

be then opportune to apply a low-pass filter with an appropriate cut-off frequency.

– Model calibration: if model-based algorithms are utilized in the lower layer, for

computing the traffic indicators (see below), the parameters of the (fluid-dynamic)
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models are automatically estimated from the data (for example, a method inspired

by [18] is used for computing the parameters of the fundamental diagram in the CTM).

• Lower layer: in this layer the pre-processed data is utilized to compute, at the present

time and in the future, several traffic indicators: the travel time [min.], the number of

vehicles, the congestion length [km], the fuel consumption [L/100km], and CO2 [kg/100km],

NOx [g/100km] emissions for an average mid-size car and the safety index [s] (see the

magenta boxes in Fig. 3). The fuel consumption and CO2 emissions are estimated using

a physics-based modal consumption model [4, Sect. 20.4] for a Diesel-powered vehicle

(60% of the cars are Diesel in France), while for the NOx emissions we relied on the

statistical modal model proposed in [19]. Finally, the safety index is computed according

to a constant time-headway spacing policy with a nominal time headway of two seconds

(“two-second distance rule”) as a reference [20]. For the sake of simplicity, the algorithms

that generate the aforementioned indicators are coded as Simulink blocks: MEX files are

used to interface the blocks with the database on one side and with the result-visualization

tools (see Level 3, below) on the other. The real-time and forecasted indicators yielded by

our algorithms are stored in a dedicated database. More details about two algorithms for

traffic density estimation and travel-time forecasting developed by the NeCS team, are given

in the forthcoming “Case studies” section.

Level 3: Results Display

The indicators computed by the algorithms in Level 2 can be visualized using different

media, including a:

• Web interface: the interface includes four panels (see Fig. 6). In the upper-left panel, eight

gauges display the indicators relative to the instantaneous traffic conditions in the south ring
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Figure 6. The four panels of GTL web interface. Clockwise from top left: 1) gauges displaying

the indicators relative to the instantaneous traffic conditions, 2) space-time heat map relative

to the current and forecasted traffic indicators, and predicted time-indexed curves, 3) selection

of the onramp/offramp in the south ring and computation of the forecasted exit/entrance times,

4) visualization of the collection points in the south ring, and of color-coded average traffic

speed in each road segment (Image courtesy of Google Maps).

(together with the worst daily values: blue pointers). The upper-right panel reports space-

time heat maps relative to the current and forecasted traffic indicators, and by clicking

on the right top dialog box, predicted time-indexed curves are displayed. In the lower-left

panel, the user can select an onramp and an offramp of the south ring and compute the

forecasted arrival/departure times. Four alarms, in the form of flashing images, are also

displayed in this portion of the interface. Finally, the lower-right panel, which has been
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partially built upon Google Maps, shows the collection points in the south ring, and the

color-coded average traffic speed in each road segment. The web interface is available, for

demonstration purposes only, at the address: http://gtl4.inrialpes.fr/gtl/

• Mobile device: an Android smart-phone application called “GTLMobile” has been devel-

oped in collaboration with the Institut Carnot LSI of Grenoble, to display salient traffic

information (forecasted travel time, fuel consumption and CO2 emissions) to the users of

the south ring. The functionalities of the application have been defined by collecting the

traveling preferences of over 200 commuters of the south ring via an online questionnaire.

• Showroom: the four panels of the web interface, plus additional diagnostic information

about data quality (vehicle-counting performance), are displayed 24/7 in seven monitors in

a dedicated room at Inria Grenoble Rhône-Alpes.

Platform Operation and Data Validation

In this section we describe the traffic profiles of a typical weekday in the south ring, and

present the results of a statistical data analysis that we conducted to test the performance of the

network of magnetometers.

Analysis of Typical Traffic Patterns

In order to design effective and reliable traffic estimation and forecasting algorithms, it

is crucial to be fully aware of the physical limits of the infrastructure and of recurrent traffic

patterns. Fig. 7(a) reports the speed contour of the south ring for the fast and slow lanes for

Thursday, January 16, 2014: as it is evident in the figure (horizontal red stripes) heavy congestion

originating from the Rondeau interchange (a bottleneck where the speed limit decreases from

90 to 70 km/h and the highway branches off south, west and north) is experienced during the
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Figure 7. Typical traffic patterns in the south ring. (a) Speed contour of January 16, 2014:

the two red horizontal stripes correspond to the morning and afternoon rush hours; (b) Time

evolution of mainstream flow [veh/h] (black) and speed [km/h] (green) in location 16 on January

16, 2014; (c) Speed-flow diagram for location 16 on January 7, 8, 9, 10 and 16, 2014 (red dots).

In (b), (c), four traffic regimes, R1, . . . , R4, have been highlighted.

morning and afternoon rush hours. In Fig. 7(b), we reported the time evolution (from 2:00 a.m.

onward) of mainstream flow (black) and speed (green) in location 16 (États Généraux, exit) for
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Traffic regime Flow [veh/h] (2 lanes) Aver. speed [km/h] Approx. time interval

R1, Light 0 ≤ φ < 1500 v > 60 21:00-7:00

R2, Fluid 1500 ≤ φ < 2500 v > 60 9:30-13:00, 19:00-21:00

R3, Intense 2500 ≤ φ ≤ φM v > 60 13:00-17:00

R4, Congested 1500 ≤ φ ≤ φM v ≤ 60 7:00-9:30, 17:00-19:00

TABLE II

THE FOUR TRAFFIC REGIMES IN THE SOUTH RING.

January 16, 2014 (to improve the readability, the raw signals have been filtered using a first-order

low-pass Butterworth filter). From this figure we can notice that the minimal volume of traffic

is at 3:00 a.m. and that four traffic regimes, R1, . . . , R4, can be identified in a typical working

day (see Table II): regime R3 corresponds to the highway operating near the maximal capacity

φM and R4 is relative to the morning and afternoon traffic peaks (where speed drops below

40 km/h). The four regimes are also displayed in Fig. 7(c), where we plotted vehicle speed

against traffic flow for five weekdays (January 7, 8, 9, 10 and 16, 2014, red dots) at location

16. The black curve in the figure has been obtained via least-squares fitting using an (implicit)

exponential function of flow and speed, F (φ, v) = a exp
Ä−b

Ä
φ− c
v− d

äaä
, where a (even), b, c,

d are positive parameters to be determined. The tip of this curve approximately represents the

maximal capacity of the highway at location 16 (i.e. the maximal number of vehicles that can

cross location 16 in one hour).

Magnetometers versus Inductive-Loop Detectors: Performance Comparison

In order to assess the performance of the magnetic detectors, we compared the flow/speed

measurements of Sensys magnetometers with the corresponding measurements of two SIREDO
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inductive double-loop detectors which belong to a nation-wide traffic-monitoring network [21],

between September 2 and 20, 2013 (without weekends). These two detectors (which are not part

of the GTL platform) are located between collection points 9 and 10, and 11o and 12, respectively

(at 4.319 km and 5.900 km from Meylan, respectively), they cover the fast and slow lanes, and

provide independent flow, speed and occupancy measurements (aggregation time: 6 minutes).

During the central hours of the day, we observed a good matching between the average-flow

(Figs. 8(a), (c)) and average-speed measurements over the 15 days (Figs. 8(b), (d)): however,

the data from the loop detectors appeared to be, overall, more correlated and smoother. These

findings are consistent with previous studies in the literature [22]–[24].

Flow-Error Analysis

An additional test was performed to assess the counting performance of Sensys magne-

tometers in the south ring. In order to make the presentation of the results precise, it is convenient

to introduce here some terminology regarding network flow theory [25]. A network G is a triple

consisting of two sets E and N , the set of arcs and of nodes, respectively, and a function that

assigns to each j ∈ E a pair (i1, i2) ∈ N ×N such that i1 �= i2. Node i1 is called the initial node

of j and i2 the terminal node. The arc j is said to be incident to i1 and i2, where these nodes,

by virtue of the existence of such an arc, are said to be adjacent to each other. We henceforth

assume that |N | = n and |E| = m, where | · | denotes the cardinality of a set. The node-arc

incidence matrix E = [eij ] of G is defined as follows: eij = 1 if i is the initial node of the

arc j, eij = −1 if i is the terminal node of the arc j, and eij = 0 otherwise. Note that E is

an n×m matrix, and that each column of E has exactly one +1 and one −1. The flow of an

arc is a variable that measures the quantity of material flowing through an arc of the network.

Mathematically, the flow of an arc j is a real nonnegative number which we denote by φj .

17



0

50

100

150

200

250

300

350

400

450

0 4 8 12 16 20 24

Loop detector

Magnetometer

Time [h]

F
lo

w
 [v

eh
/h

]

(a)

40
4 8 12 16 20 24

50

60

70

80

90

100

110

Loop detector

Magnetometer

Time [h]

S
pe

ed
 [k

m
/h

]

0

(b)

0 4 8 12 16 20 24

Time [h]

0

50

100

150

200

250

300

350

400

450

F
lo

w
 [v

eh
/h

]

Loop detector

Magnetometer

(c)

Loop detector

Magnetometer

0 4 8 12 16 20 24

Time [h]

30

40

50

60

70

80

90

100

S
pe

ed
 [k

m
/h

]

(d)

Figure 8. Magnetometers versus inductive-loop detectors. Comparison between the measure-

ments of magnetometers (green) and inductive-loop detectors (blue) between September 2 and

20, 2013, without weekends. (a), (c) Average flows over the 15 days in correspondence to the

first and second loop detector; (b), (d) Average speeds over the 15 days in correspondence to

the first and second loop detector.

In order to analyze what happens to a flow at a certain node i, in particular if the node “leaks”,

it is useful to introduce the notion of divergence. Given a network G, the divergence of the flow

at node i ∈ N , denoted by yi, is the quantity yi =
∑

j ∈E eijφj , that is, the total flow departing

from node i minus the total flow arriving at i. Let φ = [φ1, . . . , φm]
T be the flow vector. A node

i is said to be a source for the flow vector φ if yi > 0 and a sink if yi < 0. If yi = 0, the flow

is conserved at i. Note that if we call y = [y1, . . . , yn]
T the divergence vector associated with
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the flow vector φ, we have that y = Eφ. In a network, the total amount of flow created at the

sources always equals the total amount destroyed at the sinks. This is expressed by the total

divergence principle: ∑
i∈N

yi = 0 for y = Eφ.

The flows φ in G such that Eφ = 0 (i.e. φ is conserved at every node) are called circulations

(note that analogously, in physics, a vector field with constant zero divergence is called

incompressible or solenoidal). The set of all circulations forms a linear subspace of IRm,

the circulation space C = ker(E). Let us now return to the task of evaluating the counting

performance of the magnetometers in the south ring of Grenoble. Consider the graphical

representation of the south ring in Fig. 5(b), and assume that the 26 Sensys collection points

represent the nodes of a network GSR and the arrows the arcs of GSR (through which vehicles

flow). It is then easy to verify that the incidence matrix E of GSR has 26 rows and 70 columns,

from which we can compute the daily divergences in the south ring by using the measured

daily flows φj , j ∈ {1, 2, . . . , 70}. In order to simplify the analysis, let us introduce the relative

divergence of the daily flow at location i (in %)

y%r,i = 100× yi

max
¶ | ∑

j ∈E : eij =−1
eij φj| , ∑

j ∈E : eij =1
eij φj

© .

Note that according to this definition, y%r,i is a signed quantity. Unfortunately, we will never have

y%r,i = 0 in the real world, since a counting error will always be present (due to the technological

limitation of sensors or to vehicles stuck in a road section): we can then only hope that |y%r,i| < γ,

∀ i, where γ is a suitable small threshold. From an inspection of Table III in which we reported

the average, standard deviation, minimal and maximal relative divergence of the daily flow over

10 days in February 2014 (because of the space constraints, Table III does not show the flow of

all days), we can notice that except for two locations (in which environmental disturbances and

vehicle lane-changing are important sources of uncertainty), the absolute value of average relative
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Location Feb. 7 Feb. 8 · · · Feb. 15 Feb. 16 Feb. 17 Aver. Std Min Max
1 → 2 n.a. n.a. · · · n.a. n.a. n.a. n.a. n.a. n.a. n.a.
2 → 3 0.1 0.5 · · · 0.9 0.1 0.4 0.04 0.57 -0.8 0.9
3 → 4 0.5 -0.03 · · · 0.5 0.3 0.5 0.33 0.23 -0.04 0.7
4 → 5 -0.1 0.1 · · · 0.1 -0.05 0.02 0.01 0.1 -0.19 0.1
5 → 6 0.9 0.3 · · · -7.6 0.2 -1.2 -0.94 2.51 -7.6 0.9
6 → 7 n.a. n.a. · · · n.a. n.a. n.a. n.a. n.a. n.a. n.a.
7 → 8 n.a. n.a. · · · n.a. n.a. n.a. n.a. n.a. n.a. n.a.
8 → 9 -0.5 0.8 · · · -13.6 -0.5 -3.4 -6.31 6.54 -15.4 0.8
9 → 10 0.1 0.01 · · · -0.2 -0.3 -0.2 -0.19 0.2 -0.5 0.1
10 → 11 -0.6 -0.4 · · · -0.1 -0.4 -0.6 -0.39 0.16 -0.6 -0.1
11 → 11o -2 -1.4 · · · -1.9 -1.4 -0.4 -1.6 0.44 -2 -0.4
11o → 12 2.9 2 · · · 2.4 2.1 0.8 2.14 0.52 0.8 2.9
12 → 13 0.2 -0.04 · · · 0.1 0.2 0.1 0.01 0.23 -0.5 0.2
13 → 14 -1.7 -1.5 · · · 13 -0.4 1 4.43 6.48 -1.7 13.2
14 → 15 -3.1 -1.8 · · · -14 -1 -4.9 -8.23 7.03 -19 -1
15 → 15o -1.3 -0.2 · · · 0.02 -0.04 -1.3 -0.75 0.53 -1.3 0.02
15o → 16 0.4 0.2 · · · 0.2 -0.2 0.4 0.23 0.23 -0.2 0.6
16 → 17 0.1 0.7 · · · -11.5 -1 -2.1 -5.23 6.1 -13.7 1.7
17 → 18 -1 -0.1 · · · -0.7 -0.2 -0.5 -0.62 0.32 -1.1 -0.1
18 → 19 -15.2 -19.8 · · · -28 1.8 -6.8 -9.09 10.24 -28 9.5
19 → 20 -23 16.8 · · · 23.6 -1.6 -25.5 -3.56 21.78 -50.5 23.6

TABLE III

STATISTICAL ANALYSIS OF THE RELATIVE DIVERGENCE OF DAILY FLOWS [%] IN THE

SOUTH RING OVER 10 DAYS (FROM FEBRUARY 7 TO FEBRUARY 17, 2014). n.a. STANDS FOR

“NO AVAILABLE” DATA.

divergence is always smaller than 7% (cf. “Data analysis” in [17]). The counting performance

appeared to significantly depend on the sensor calibration accuracy and, notably, on the sensitivity

threshold over the three axes of the magnetometers.

Case studies

GTL provides direct access to real-time traffic data, which allows, in turn, to synthesize

and test new algorithms with unprecedented rapidity and accuracy. In this section we report
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two examples of algorithms which our group has recently designed: the first one relies on

the adaptive Kalman filter and speed measurements for short-term multi-step ahead travel-time

forecasting [26], and the second one uses a Luenberger-like observer based on the CTM for

traffic-density estimation [8] in the south ring. The development of these algorithms has greatly

benefited from the unique features of GTL experimental platform.

Multi-Step Ahead Travel-Time Forecasting

The problem of freeway travel-time forecasting has been widely studied and several

solutions have been proposed in the literature depending on how the available historical and

current-time traffic information is handled [27]–[30]. In this section, we briefly present the

main features of a novel travel-time forecasting algorithm based on the noise-adaptive Kalman

filter (AKF) (for more details the reader is referred to [16], [26]). Our algorithm considers

progressive traffic conditions, i.e. it accounts for the spatial and temporal conditions encountered

by a potential driver along the road, ’For Details, see “Travel Time Forecasting”’. Fig. 9 shows

the main functional blocks of the forecasting algorithm. Three typologies of data (extracted

Kalman 
filter

 Estimate the covariance 
of process noise 

Compute the
Kalman gain

Estimate the covariance 
of observation noise 

Generate the
pseudo-observations

Same-day
past data

Historical
data

   Data at present
time 

clustering

Online cluster 
assignment

    Estimated
travel-time 

    Revised 
   gain 

Noise-adaptive Kalman filter

τ̂i(k)

kp

y(k)

R(k)

K(k)

q(k)

Figure 9. Block diagram of the traffic forecasting algorithm based on the Kalman filter from [16].
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from the available speed measurements) feed the algorithm: the historical travel-time information

(“Historical data”) in all the M = 21 links of the south ring (a link is defined as the stretch

between two collection points, recall Table I), the travel-time information at present time kp in

the link i, and the travel-time information from midnight of the current day up to time kp in the

link i (“Same-day past data”). In order to reduce the spatial complexity, the first two typologies

of data have been clustered into five time zones (00:00-7:00, 7:00-10:00, 10:00-16:00, 16:00-

19:00, and 19:00-24:00) using the standard k-means algorithm. The clustered data are used to

produce pseudo-observations via two predictors which rely on the average of historical data,

and on the current data and historical increment, respectively, and to estimate the covariance

matrix of the observation noise R(k) ∈ IR2×2 for k ∈ {kp, kp + 1, . . . , kp + H}, where H is

the forecasting horizon. Note that by introducing pseudo-observations the forecasting problem

is conveniently converted into a standard filtering problem. Matrix R(k) and the covariance of

the process noise q(k) ∈ IR, which is estimated from the forcing residuals [31, Sect. 4.7], are

used to compute a revised gain K(k) ∈ IR2×2 for the Kalman filter which outputs the estimated

travel-time τ̂i(k) in link i for k ∈ {kp, kp + 1, . . . , kp + H}. Fig. 10 reports the results of

several tests that we conducted under typical traffic conditions. In particular, Figs. 10(a), (c)

show the forecasted travel time provided by the proposed method (purple solid, circle) against

the travel time computed from a simple average of the historical data (blue dashed, cross), and

the ground truth (black solid, star) at kp = 8.45 on September 17, 2013 and at kp = 17.15 on

September 11, 2013, respectively. Figs. 10(b), (d) report the corresponding forecasted trajectories

in the (space, time)-speed plane against the ground truth for departure times at intervals of 15

minutes. From the figures, we notice that the proposed method always outperforms the average

of historical data, and that the congestion build-up and phase-out times are correctly captured by

the algorithm. For cross-validating the proposed algorithm, let us now introduce the estimated
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Figure 10. Performance of the travel-time forecasting algorithm. (a) Forecasting at kp = 8:45

on September 17, 2013 (the forecasting horizon H and forecasting step are 45 and 5 min.,

respectively), and (b) corresponding predicted trajectory for departure times at intervals of

15 min.; (c) Forecasting at kp = 17:15 on September 11, 2013, and (d) corresponding predicted

trajectory. The proposed method based on the adaptive Kalman filter (AKF) is shown in magenta.

cumulative travel time from the current link i to the destination link j (i �= j ∈ {1, 2, . . . , M}) at

time k, as τ̂i→j(k) �
∑j

�=i τ̂�(k�) where k� = k�−1+ τ̂�(k�−1), and the absolute percentage error

(APE) at time k in the overall south ring, as APE(k) � 100 |τ1→M(k) − τ̂1→M (k)|/τ1→M(k).

Fig. 11 reports the cumulative distribution function (CDF) of the APE for different forecasting
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Figure 11. Performance of the travel-time forecasting algorithm. Cumulative density function

(CDF) of the absolute percentage error using the proposed algorithm (AKF, black) and a simple

average of historical data (red), for different forecasting horizons: (a) H = 0 min. (present time);

(b) H = 15 min.; (c) H = 45 min.

horizons H’s using the proposed algorithm (black) and the average of historical data (red), when

kp varies between 6:00 and 22:00 for 15 working days. As it is evident in Figs. 11(a)-(c), the

smallerH the more accurate the forecasting: moreover, although the performance of the proposed

algorithm is always comparable or superior than that obtained with the historical average, for

large H , as expected, the differences between the two approaches become negligible.

Traffic-Density Estimation

In this final section, we illustrate the performance of a recently-developed Luenberger-like

traffic density estimator based on the graph-constrained SMM, a piecewise-affine state-dependent

discrete-time system derived from the CTM [7] (for the detailed mathematical formulation, the

reader is referred to [8], [9], [16]). The south ring has been subdivided in 48 cells with average

length of 220 meters and the density in each cell has been reconstructed using the model-based

observer and the available flow measurements (the data have been aggregated to 1 minute and
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Figure 12. Density reconstruction in the south ring using the CTM-based observer. (a) Measured

density, and (b) estimated density on February 28, 2014; (c) Measured density, and (d) estimated

density on March 7, 2014.

then resampled to 5 s, and the SMM has been automatically calibrated using a robust algorithm,

see “Level 2” above). Figs. 12(b), (d) show the density contour estimated by the proposed

observer on Friday, February 28, 2014 (the eve of French student holidays, when the south ring

was heavily congested all afternoon), and on Friday, March 7, 2014, respectively. Figs. 12(a), (c)

report the corresponding measured densities, that is the densities reconstructed from the available

flow and speed measurements in the collection points of the south ring (our ground truth). The

gray vertical strips in Fig. 12(a) correspond to three collection points (Meylan, Gabriel Péri

entrance 1, SMH Centre exit) which were not operative on February 28. In spite of the missing

data, we observe a satisfactorily agreement between the measured and estimated densities.
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Conclusions and Future Work

In this article we have described the Grenoble traffic lab (GTL), a novel experimental

platform for advanced traffic control research, and we have presented some activities built around

it that the NeCS team has recently carried out. GTL is an ongoing and living research project,

which serves as a basis for more ambitious forthcoming undertakings: in the near future, we aim

at extending our network of sensors to the major urban arterials of Grenoble in order to have a

wider city-level coverage of traffic behavior, and at fusing traffic data coming from heterogeneous

sensors (for example, static magnetometers and GPS-equipped vehicles). Farther into the future,

we also plan to design control algorithms to automatically regulate the traffic in the south ring

using the available actuators, i.e. the traffic lights in the onramps and the variable speed-limit

signs, in order to alleviate recurrent congestion.
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Université de Grenoble, GIPSA-lab, Département d’Automatique, July 2014.

http://necs.inrialpes.fr/media/documents/publications/theses/

Leon_Ojeda-thesis.pdf.

[17] NeCS team. Grenoble Traffic Lab (GTL). http://necs.inrialpes.fr/pages/

grenoble-traffic-lab.php.

[18] G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz, and P. Varaiya. Automatic calibration of

the fundamental diagram and empirical observations on capacity. In Transp. Res. Board

88th Annual Meeting, number 09-3159, 2009.

[19] L. Int Panis, S. Broekx, and R. Liu. Modelling instantaneous traffic emission and the

influence of traffic speed limits. Sci. Total Environ., 371(1):270–285, 2006.

[20] J.-J. Martinez and C. Canudas de Wit. A safe longitudinal control for adaptive cruise

control and stop-and-go scenarios. IEEE Trans. Contr. Syst. Tech., 15(2):246–258, 2007.
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Sidebar 1: Fluid-Dynamic Macroscopic Models for Highway Traffic

Macroscopic traffic models describe the evolution of vehicle positions in a highway in

term of macroscopic variables such as the density ρ(t, x) and average speed v(t, x) of the vehicles,

where t and x are the time and space indices, respectively. The simplest macroscopic model is

the scalar one proposed independently by Lighthill and Whitham in 1955 and by Richards in

1956 (the LWR model). It is based on the conservation law of vehicles and is described by

∂ ρ
∂ t

+ ∂ Φ(ρ,v)
∂ x

= 0 where ρ(t, x) ∈ [0, ρm] being ρm the maximal density of cars on the highway,

and the flux Φ(ρ, v) is given by ρ v. In most cases we can assume that the average speed v

depends only on the density of the vehicles (in fact, the vehicles tend to travel at an equilibrium

speed), thus Φ(ρ, v) = Φ(ρ) and its graph is called the “fundamental diagram”. For simplicity,
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it is typically assumed that Φ(ρ) is concave and has a unique maximum in (0, ρm) [S1]. In a

triangular fundamental diagram, one of the most used in the literature, there are only two distinct

propagation velocities of density variations, one for free traffic, v, and one for congested traffic, w.

The transition from a regime to the other is determined by the critical density ρc. The most

common integration method for the LWR model is the Godunov scheme [S2]. The discrete

version of LWR model with triangular fundamental diagram, is formulated as an iterated coupled

map with time and space discretized into time steps and cells, respectively, and supplemented by

a special “supply-demand” update rule to describe interactions between adjacent freeway cells

as well as shockwaves. This model is known as cell transmission model (CTM) [6].
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Sidebar 2: How Do Magnetic Sensors Detect a Passing Vehicle?

Magnetic sensors are passive devices that indicate the presence of a metallic object by

detecting the perturbation (known as a magnetic anomaly) in the Earth’s magnetic field created

by the object [S3]. Fig. S1 shows the distortion induced in the Earth’s magnetic field as a vehicle

enters and passes through the detection zone of a magnetic sensor embedded in the roadway.

In particular, Fig. S1(top) depicts the magnetic field as the vehicle approaches the sensor (gray

rectangle). Fig. S1(middle) shows the field lines of flux (red) as the vehicle begins to pass

through the sensor’s detection zone, and Fig. S1(bottom) illustrates the lines of flux when the
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Figure S1. From right to left: perturbation of Earth’s magnetic field (red lines) produced by a

vehicle approaching and passing through the detection zone of a magnetic sensor (gray rectangle).

entire vehicle is over the sensor. Two- and three-axis fluxgate magnetometers detect changes in

the vertical and horizontal components of the Earth’s magnetic field produced by a ferrous metal

vehicle and are able to identify stopped and moving cars. Two-axis fluxgate magnetometers

contain a primary winding and two secondary “sense” windings on a bobbin surrounding a high

permeability soft magnetic material core. In response to the magnetic field anomaly, i.e. the

magnetic signature of a vehicle, the magnetometer’s electronics circuitry measures the output

voltage generated by the secondary windings. The vehicle detection criterion is for the voltage

to exceed a predetermined threshold. Sensys Networks VDS240 are three-axis magneto-resistive

sensors that measure the x-, y-, and z-components of the Earth’s magnetic field. They are

installed by coring a 10-cm diameter hole approximately 6.5 cm deep, inserting the sensor into

the hole so that it is properly aligned with the direction of traffic flow, and sealing the hole with

fast drying epoxy. The sensor maintains two-way wireless communication with an access point

device over a range of 23 to 46 m. Since fluxgate magnetometers are passive devices, they do

not transmit an energy field and a portion of the vehicle must pass over the sensor for it to be

detected. Therefore, a magnetometer can detect two vehicles separated by a distance of 30 cm.

This potentially makes the magnetometer as accurate as or better than an inductive loop detector

at counting vehicles. However, magnetometers are not precise at locating the perimeter of a

vehicle: in fact, an uncertainty of about 45 cm is typically experienced. A single magnetometer
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is therefore seldom used for determining occupancy and speed in traffic management applications,

and two closely-spaced magnetometer sensors are usually preferred for that function.
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Sidebar 3: Travel Time Forecasting

Consider a vehicle traversing the road segment [xp, x0] ⊂ IR in the time interval [tp, t0]

(see Fig. S2). We are here interested in determining a formula for the exit time t0 (the current

time) given the entry time tp and the extrema of the segment. Note that if the velocity field v(t, x)

in [xp, x0] is known, then the infinitesimal travel time of the vehicle is given by dt = v(t, x) dx.

By writing this equation in integral form, we obtain the following expression for t0

t0 = tp +
∫ x0

xp

v(t, x) dx. (S1)

Since the velocity field v(t, x) is not known in general, but suitable measurement points are

available within the road segment, we can approximate v(t, x) by discretizing the interval [xp, x0].

By subdividing [xp, x0] into n rectangles of width Δ xi and assuming that the speed is constant

in each rectangle (see Fig. S2), we can rewrite equation (S1) as

t0 = tp +
n∑

i=1

Δ xi

vi(η(Δ xi))
, (S2)

where vi(η(Δ xi)) is the space-mean speed in the i-th rectangle and

η(Δ xi) = tp +
i−1∑
j=1

Δ xj

vj(η(Δ xj))
, (S3)
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Figure S2. Computation of forecasted progressive travel time.

is the time at which the vehicle reaches the upstream boundary of rectangle i. Note that (S3)

accounts for the traffic progression along the road. Equations (S2) and (S3) define the progressive

travel time (PTT). This differs from the instantaneous travel time (ITT), frequently encountered

in the literature, which assumes that the conditions in each rectangle remain the same as at the

entry time tp, i.e. t0 = tp+
∑n

i=1
Δxi

vi(tp)
(in other words, time is “frozen”). Note that while the PTT

is consistent with the traffic conditions experienced by a driver along the road, the computation

of ITT is based on an assumption that is not necessarily verified in the real world, and which

becomes more critical as the width of the rectangles Δ xi increases. Let us now determine the

forecasted arrival time t̂f of the vehicle at the point xf , given the current time t0 and current

position x0 (see Fig. S2). By using (S2) and (S3), and assuming a space discretization in M

rectangles, we obtain t̂f = t0 +
∑M

i=1
Δ xi

v̂i(η̂(Δ xi))
, η̂(Δ xi) = t0 +

∑i−1
j=1

Δ xj

v̂j(η̂(Δ xj))
. By defining

τ̂i(k) as the forecasted progressive travel time in rectangle i at the discrete time k and τ̂x0→i(k)

as the cumulative progressive travel time from the entry point x0 to the downstream boundary of

rectangle i at the discrete time k, we can find τ̂x0→i(k) = τ̂x0 → i−1(k)+τ̂i(k+τ̂x0 → i−1(k)), τ̂i(k) =

Δxi

v̂i(τ̂x0 → i−1(k))
where i ∈ {1, . . . ,M}, k ∈ {k0+1, . . . , k0+H} and H is the forecasting horizon.
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