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Abstract 

The Shuttle Radar Topography Mission (SRTM) has produced the most accurate nearly 

global elevation dataset to date. Over vegetated areas, the measured SRTM elevations are the 

result of a complex interaction between radar waves and tree crowns. In this study, 

waveforms acquired by the Geoscience Laser Altimeter System (GLAS) were combined with 

SRTM elevations to discriminate the five forest landscape types (LTs) in French Guiana. Two 

differences were calculated: (1) penetration depth, defined as the GLAS highest elevations 

minus the SRTM elevations, and (2) the GLAS centroid elevations minus the SRTM 

elevations. The results show that these differences were similar for the five LTs, and they 

increased as a function of the GLAS canopy height and of the SRTM roughness index. Next, 

a Random Forest (RF) classifier was used to analyze the coupling potential of GLAS and 

SRTM in the discrimination of forest landscape types in French Guiana. The parameters used 

in the RF classification were the GLAS canopy height, the SRTM roughness index, the 
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difference between the GLAS highest elevations and the SRTM elevations and the difference 

between the GLAS centroid elevations and the SRTM elevations. Discrimination of the five 

forest landscape types in French Guiana was possible, with an overall classification accuracy 

of 81.3% and a kappa coefficient of 0.75. All forest LTs were well classified with an accuracy 

varying from 78.4% to 97.5%. 

Finally, differences of near coincident GLAS waveforms, one from the wet season and one 

from the dry season, were analyzed. The results showed that the open forest LT (LT12), in 

some locations, contains trees that lose leaves during the dry season. These trees allow LT12 

to be easily discriminated from the other LTs that retain their leaves using the following three 

criteria: (1) difference between the GLAS centroid elevations and the SRTM elevations, (2) 

ratio of top energy in the wet season to top energy in the dry season, or (3) ratio of ground 

energy in the wet season to ground energy in the dry season. 

 

Keywords: SRTM DEM; ICESat/GLAS; Tropical forest; French Guiana 
 

1. Introduction 

The assessment of forest landscape types and the monitoring of their dynamics are essential 

requirements for the sustainable management of forest resources, and the relevance of remote 

sensing in the creation of forest landscape databases is very apparent (e.g., Gond et al., 2011; 

Bartholomé et al., 2004; Mayaux et al., 2004). Forest landscape classification also plays a 

major role in the methods for estimating forest aboveground biomass (AGB), which has 

become a serious challenge in the past few decades for scientists studying the global 

conservation of carbon sinks. Indeed, many studies have found that AGB estimation models 

are more relevant when including forest types (Zheng et al., 2004; Chave et al., 2005; Ni-

Meister et al., 2010; Mitchard et al., 2012; Addo-Fordjour and Rahmad, 2013). Zheng et al. 

(2004) found that the coupling of tree metrics acquired from field measurements and various 
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indices derived from Landsat 7 ETM± substantially improved AGB estimates when 

separating hardwood from pine forests. Chave et al. (2005) tested several models for AGB 

estimation in old growth, dry, moist, wet, montane and mangrove forests. Their results 

indicated that one of the most important factors for AGB estimation is forest type. The results 

also indicated that the best predictive models were forest-type dependent. Ni-Meister et al. 

(2010) developed an AGB estimation model that uses a fusion of LiDAR and optical sensors 

(to provide the vegetation type) in conifer/softwood and deciduous/hardwood forests. Their 

results indicated that vegetation-type-dependent models provide better AGB estimates in 

comparison to vegetation-type-independent models. Mitchard et al. (2012) found a ±25% 

uncertainty in the estimation of AGB in Lope National Park (Gabon) using LiDAR data and a 

vegetation structures map extracted from radar images. Finally, Addo-Fordjour and Rahmad 

(2013) developed AGB estimation models for different species of lianas. Their results 

indicated that forest type has a significant influence on the allometric relationships used in 

AGB estimation, which led to forest-type-specific equations. 

Currently, land and forest cover classifications over large areas are made using high temporal 

frequency data provided by moderate spatial resolution sensors with a spatial resolution 

ranging from a few hundred meters (MODIS) to one kilometer (VEGETATION/SPOT). 

Nevertheless, the characterization and quantification of broad-scale forest land cover remains 

a major challenge for remote sensing scientists (Harding et al., 2001). Mayaux et al. (2004) 

produced a land-cover map of Africa using the spectral response and the temporal profile of 

the vegetation cover. In their study, radar data and thermal sensors were also used for specific 

land-cover classes. In the Guiana Shield, Gond et al. (2011) interpreted 33 remotely sensed 

landscape types (LTs) using VEGETATION/SPOT. Five of the 33 classes occupied 78% of 

the forests in the area. The method used by Gond et al. (2011) used a multivariate analysis of 

remote sensing data, field observations and environmental data. However, due to LiDAR’s 
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ability to provide detailed information on the vertical structure of forests (canopy height, tree 

crown, etc.) in comparison to optical sensors, LiDAR appears to be one of the most applicable 

remote sensing techniques for forest monitoring (Dubayah and Drake, 2000; Hudak et al., 

2008; Duong et al. 2009). Conversely, optical sensors provide extensive coverage of forests 

on the horizontal plane but are less sensitive to forest vertical structure variations (Ali et al., 

2008). Generally, to better classify forest structures, canopy information on both the 

horizontal and vertical planes are required. In fact, studies that use LiDAR datasets in 

conjunction with optical data show better classification accuracy of forest structures (Mundt 

et al., 2006; Dalponte et al., 2008; Ali et al., 2008). Indeed, in Mundt et al. (2006), the fusion 

of LiDAR and multispectral data provided an increase in the detection of sagebrush by 15% 

in comparison to using multispectral data alone. Dalponte et al. (2008) used a fusion of 

LiDAR and hyperspectral data to classify complex forest areas with more than 20 tree 

species, with several similar tree species and with no preordered spatial distribution of trees. 

In their study, an increase of up to 9% in the classification accuracy was noted when adding 

LiDAR data. Finally, Ali et al. (2008) fused LiDAR and multispectral data for the 

classification of three Eucalyptus types. Their results indicated an increase of 23% in the 

classification accuracy when using LiDAR data. 

Our study uses the interaction between the Shuttle Radar Topography Mission (SRTM) data 

and vegetation in the five forest landscape types in French Guiana to assess the potential of 

the SRTM to identify these five forest types. This was accomplished by comparing SRTM 

elevations with elevations extracted from NASA’s Geoscience Laser Altimeter System 

(GLAS) full waveform data, namely, the highest (most likely canopy top) and centroid 

(distance-weighted average) elevations.  

Comparisons between the GLAS and SRTM elevations have been investigated in numerous 

studies, mainly for studying the SRTM penetration levels over different landscape types and 
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using different elevation levels within the GLAS waveforms (highest, centroid and lowest) 

(e.g., Bhang et al., 2007; Rodriguez et al., 2006; Hofton et al., 2006; Becek, 2008; and 

Carabajal and Harding, 2008). Calculating the bias (the difference between the SRTM 

elevations and the GLAS centroid elevations), Bhang et al. (2007) found that elevation bias is 

dependent on the landscape type and the terrain relief. Bias increased from -1.5 m for bare 

terrain to -1 m for agricultural areas and 0.9 m for forested areas. Rodriguez et al. (2006) 

compared the SRTM elevations with field measurements in different regions around the globe 

and found an elevation bias between the SRTM and field measurements that varied with each 

location. In their study, they compared the difference between the SRTM and the Land, 

Vegetation, and Ice Sensor (LVIS) canopy top elevations across five different regions in the 

USA (Maine, Maryland, Massachusetts, New Hampshire, and Costa Rica) and found a 

maximum elevation bias difference of 54% between two regions (Costa Rica and Maryland). 

Becek (2008) found a linear relationship between the magnitude of the elevation bias of the 

SRTM in comparison to reference field data and the percentage of tree cover. The bias 

increased from 4.8 m for 0% tree cover to 11 m for 100% tree cover. Carabajal and Harding 

(2006) compared the highest, centroid and lowest GLAS elevations with the SRTM for 

different regions around the world (Amazon, Africa, Asia, Australia, and Western USA) and 

found different elevation biases (difference between GLAS highest and SRTM) that varied 

with region (a maximum difference of 16.6 m was found between Australia and Western 

USA). 

In addition, bias appeared to be correlated with the GLAS waveform extent and the roughness 

index (bias increases with increasing waveform extent and roughness index). The GLAS 

waveform extent represents the distance between the laser signal start and the signal end. In 

vegetated areas, laser signal start corresponds to the highest canopy surface large enough to 

yield a return signal. Signal end corresponds to the lowest detected ground elevation. In 
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vegetated areas, roughness represents the combined effect of topographic relief (top of 

canopy) and the interaction of the C-band microwaves with the vegetation (Carabajal and 

Harding, 2006). 

Seasonal changes in the GLAS signal over different forest types have also been studied. 

Duong et al. (2009) used the differences between overlapping pairs of GLAS footprints in 

different seasons (winter and summer) to differentiate between different forest structures. 

Their study showed promising results for identifying conifer, deciduous and mixed 

conifer/deciduous forests.  

The objective of this study was to analyze the potential for forest landscape type mapping 

using the coupling of GLAS and SRTM data in French Guiana. First, the penetration depth of 

the SRTM radar wave corresponding to the difference between the GLAS highest elevations 

and the SRTM elevations, as well as the difference between the GLAS centroid elevations 

and the SRTM elevations, was analyzed over the different forest landscape types obtained in 

the study of Gond et al. (2011). Next, the behavior of these two variables was studied for the 

different LTs as a function of the GLAS canopy height and the SRTM roughness index. The 

classification potential for the five forest landscape types (LTs) using the coupling of GLAS 

and SRTM was assessed using the Random Forest algorithm. This classification was 

conducted using the penetration depth, the difference between the GLAS centroid elevations 

and the SRTM elevations, the GLAS canopy height and the SRTM roughness index. Finally, 

using the changes in the GLAS signal in different seasons, the potential for LT discrimination 

using these changes was studied. A description of the dataset is presented in section II, 

followed by the processing of the GLAS waveforms and the methodology used to assess the 

potential of GLAS and SRTM in the discrimination of forest landscape types in section III. 

The results and discussion are given in section IV, and, finally, the conclusion is given in 

section V. 
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2. Dataset description 

2.1 Study area  

French Guiana is situated on the northern coast of the South American continent, bordering 

the Atlantic Ocean as well as Brazil and Suriname (Figure 1.a). French Guiana’s area is 

approximately 83,534 km2, and forest occupies approximately 80,820 km2 or approximately 

96.75% of its total size. The terrain is mostly low-lying, rising occasionally to small hills and 

mountains, with an altitude ranging from 0 to 851 m. In addition, 67.8% of its slopes are 

lower than five degrees, 24.0% are between five and ten degrees and 8.2% are higher than ten 

degrees (derived from the SRTM elevations). Dense tropical forests predominate outside the 

coastal plain and cover more than four-fifths of the land area. Other vegetation types also 

exist, such as savannas and agricultural crops. French Guiana has an equatorial climate with 

two main seasons, the dry season, from August to December, and the rainy or wet season, 

from December to June. 

 

INSERT FIGURE 1 HERE 

 

2.2. ICESat/GLAS 

LiDAR data were acquired from the GLAS on board the Ice, Cloud, and Land Elevation 

Satellite (ICESat) between 2003 and 2009. The GLAS laser footprints have a nearly circular 

shape of approximately 70 m in diameter and a footprint spacing of approximately 170 m 

along their track. The data were acquired during 18 missions using three on-board lasers with 

orbit cycles repeating between 57 and 197 days. Over French Guiana, GLAS data acquisition 

time coincides with the wet (Feb-March and May-June) and dry (October-November) 

seasons.   
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The horizontal geolocation error of the ground footprints is less than 5 m, on average, for all 

ICESat missions (http://nsidc.org/data/icesat/laser_op_periods.html). Several studies (e.g., 

Carabajal and Harding, 2006; Huang et al., 2011) have estimated the vertical accuracy of the 

GLAS to be between 0 and 3.2 cm over flat surfaces, on average. 

From the 15 data products available from the ICESat GLAS, the GLA01 and GLA14 data 

products were used in this study. The GLA01 comprises the full waveform data, and GLA14 

comprises the global land surface altimetry data. Over flat terrain, the waveforms acquired 

over vegetated areas are bimodal distributions, with the first peak representing reflections 

from the canopy top and the last peak representing the ground (Figure 2). To exclude 

unreliable GLAS data (i.e., data affected by atmospheric conditions, clouds, etc.), several 

filters were applied. (1) Signals with high noise were removed when the signal to noise ratio 

was higher than 15 (e.g., Carabajal and Harding, 2006; Chen 2010; and Lee et al., 2011). This 

filter removed 36.4% of the data. (2) The GLAS waveforms with delays from either saturation 

or atmospheric forward scattering were removed (14.1% of the data). Only cloudless 

waveforms were kept using the cloud detection flag (FRir_qaFlag = 15). This filter removed 

32.4% of the data. Saturated signals were identified using the GLAS flag (SatNdx > 0). (3) 

The waveforms with a centroid elevation significantly higher or lower than the corresponding 

SRTM elevation were removed (|SRTM - GLAS| > 100 m) (Baghdadi et al., 2013). This filter 

removed 2% of the data. (4) The GLAS footprints with SRTM values higher than the GLAS 

canopy top elevation and lower than the GLAS ground elevation were also removed, which 

accounted for 33.4% of the data. Both the FRir_qaFlag and SatNdx flags were found in the 

GLA14 product. From the original database of 101312 footprints, 12238 footprints that 

satisfied the 4 filters conditions were kept (Figure 1.a). Finally, the GLAS data referenced to 

the TOPEX/Poseidon were converted to WGS84 by subtracting 70 cm from the elevation 
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values. The conversion between the two ellipsoids also depends on latitude; however, as this 

change is smaller than the horizontal accuracy of the GLAS, it was omitted 

  

INSERT FIGURE 2 HERE 

 

2.3 SRTM DEM 

The Shuttle Radar Topography Mission (SRTM) acquired a digital elevation model of the 

earth’s surface on a nearly global scale (50oS to 60oN). The vertical accuracy of the SRTM 90 

m DEM is 16 m with a 20 m horizontal accuracy 

(http://www2.jpl.nasa.gov/srtm/datafinaldescriptions.html). In this study, the SRTM 90 m 

DEM currently available for French Guiana was used. Over French Guiana, Bourgine and 

Baghdadi (2005) found that the accuracy of the SRTM DEM was approximately 10 m 

(standard deviation of error). 

The SRTM data are available as orthometric heights, with WGS84 as the horizontal datum 

and the Earth Gravitational Model (EGM96) geoid as the vertical datum. To compare the 

ICESat/GLAS and SRTM elevations, the SRTM geoidal heights were converted to ellipsoidal 

heights by adding the EGM96 geoidal undulations. The geoidal undulations are available on a 

0.1x0.1-degree grid interpolated onto the pixel coordinates. The SRTM dataset was 

interpolated onto each ICESat/GLAS footprint using bilinear interpolation. 

 

2.4 French Guiana landscape classes  

The forest landscape classes in French Guiana were defined in a study carried out by Gond et 

al. (2011). The method Gond et al. (2011) used was based on the analysis of one year of daily 

data from the VEGETATION/SPOT sensor. This dataset has a spatial resolution of 1 km with 

a geometric accuracy of vegetation data on a day-to-day basis between 300 and 465 m for the 
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absolute location and from 325 to 625 m for multi-temporal superimposition  

(Sylvander etal.,2000). The dataset was then analyzed with the ISODATA unsupervised 

classification scheme. The results were pixel clusters called remotely sensed landscape classes 

(RSLC). The RSLC comprise 33 classes combined into 12 landscape types (LTs) (Table 1). In 

this study, only LTs 8 to 12 were studied because 93% of the ICESat/GLAS footprints over 

French Guiana correspond primarily to these five LTs. 

LT8 represents dense, closed-canopy forest with small crowns of the same canopy height and 

small gaps mixed with regular canopies with well-developed crowns of almost the same 

canopy height without large gaps interlaced with flooded savannas (10%). LT9 is a closed 

canopy forest dominated by well-developed crowns of almost the same canopy height without 

large gaps. LT10 is an irregular- and disrupted-canopy forest where the trees have very 

different heights and different crown diameters with large gaps mixed with closed-canopy 

forest dominated by well-developed crowns at almost the same elevation without large gaps. 

LT10 is also interlaced with liana forests. LT11 is similar to LT10 with more liana forest and 

non-forest land covers. LT12 is an open forest associated with wetlands and bamboo thickets. 

The dataset was already geo-referenced using the WGS84 geodesic system, so no further 

transformations were needed. 

 

INSERT TABLE 1 HERE 

 

3. Materials and methods 

3.1 Methodology 

To assess the potential of the GLAS and SRTM data to discriminate the five main forest 

landscape types in French Guiana, the difference between the GLAS highest elevations and 

the SRTM elevations was investigated, as well as the difference between the GLAS centroid 
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elevations and the SRTM elevations. Figure 1b shows the profile of the GLAS (highest and 

centroid) and the SRTM elevations along the track from A to B (Figure 1b). First, the 

differences between the GLAS (highest and centroid) and SRTM elevations were analyzed for 

each forest landscape type. Next, because of the influence of canopy height (Hc) and the 

roughness index (R) on the penetration depth of the SRTM radar wave in the canopy, the 

differences between the GLAS and SRTM elevations were studied according to the classes of 

canopy height and the roughness index. Four canopy height classes (Hc < 10 m, 10 m ≤ Hc < 

20 m, 20 m ≤ Hc < 30 m, and Hc ≥ 30 m) and three roughness index classes (R < 5 m, 5 m ≤ 

R < 10 m, R ≥ 10 m) were chosen for each forest landscape type. 

To analyze the potential for discrimination of the five main forest landscape types (LTs) using 

the coupling of the GLAS and SRTM data, a classification of the GLAS footprints based on 

the Random Forest algorithm was conducted using the penetration depth, the difference 

between the GLAS centroid elevations and the SRTM elevations, the GLAS canopy height 

and the SRTM roughness index.  

Several classifiers, such as CART (Classification And Regression Trees), SVM (Support 

Vector Machines), logistic regression, and the Random Forest classifier, were tested in this 

study. However, Random Forest represents the statistical mode of many classification and 

regression trees (CART); hence, it is a more robust model than a single tree (Breiman, 2001). 

In addition, Random Forest does not over-fit, even if more trees are added, it always 

converges, it produces error estimates of the predictions and of the importance of the 

variables, and it handles weak explanatory variables. The variable importance index it 

produces is very important, as it allows an understanding of the relative values of the 

predictors used in the classification and therefore removes unnecessary predictors. Variable 

importance is based on two measures (Liaw and Wiener, 2002). The first is a measure of 

accuracy obtained by quantifying the mean squared error increase in the model by the 
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removal of a variable. The other importance measure is the Gini index, which quantifies the 

degree to which a variable produces terminal nodes in the classification forest. Finally, the 

Random Forest classifier is less sensitive to outliers and noise (the 10 m vertical accuracy of 

the SRTM data in our case) in comparison to other classification routines (Breiman, 2001). 

The Random Forest (RF) algorithm is also known to be a powerful classification method that 

is becoming widely used by the remote sensing community for land-cover classification (e.g., 

Rodriguez-Galiano et al., 2012; Immitzer et al., 2012; and, Kankare et al., 2013). RF is 

designed to produce accurate and robust predications without over-fitting the data while being 

insensitive to outliers and noise in comparison to single classifiers (Breiman 2001). Random 

Forest is called an ensemble classifier because it uses a tree-based classifier multiple times 

and aggregates the results. However, each tree is grown using a randomized subset of 

predictors. The final prediction decision is based on a voting system of all the predictions 

from the decision trees that have been created. Furthermore, because of the inability to 

examine the decision trees directly, Random Forest is considered more of a “black box” 

approach. However, several metrics are available to aid in the interpretation, one of which is 

the variable importance, which is evaluated based on the increase in the error in the prediction 

when removing a certain variable.  

Finally, a comparison between the GLAS waveforms acquired at the same location in the dry 

and wet seasons was carried out to analyze its potential in the discrimination between the 

different forest LTs. The overlapping GLAS footprints, one from the wet season and one from 

the dry season, were compared against their corresponding SRTM elevations. However, to 

quantify the changes between the dry-wet season pairs, further processing of the waveforms 

was required. The first step was to obtain the waveform pairs. This was based on the 

geographic coordinates of each footprint (ellipse center) found in the GLA14 product. Two 

footprints from the wet/dry seasons, according to Duong et al. (2009), were considered a pair 

in : International Journal of Applied Earth Observation and Geoinformation, vol. 33, n° 1 , 2014



 13 

if the distance between their centers was equal to or less than the sum of the footprints’ radii 

divided by 2 (the two footprints were partly overlapping). Next, due to the different intensity 

returns caused by the laser output and/or different atmospheric conditions, the waveform pairs 

were normalized to enable comparison between them (Duong et al., 2009). The normalization 

procedure requires the division of each received bin voltage (Vi) by the total energy of the 

waveform Vt, where    ∑       , with N being the number of waveform bins (544 or 1000 

bins, depending on the GLAS mission). Finally, due to technicalities with the receiver, the 

recording of a pair of waveforms did not start at the same local time, even if they were similar 

in structure, thus producing a time lag, and hence, a shifting operation was needed. According 

to Hofton and Blair (2002), the shift operation can be performed on the complete waveform.  

The time shift needed to match a pair of coincident waveforms was determined by the 

maximum of the cross correlation  ̂    defined by (m=1,...,2N-1): 

 ̂    { ∑                  
                   ̂                                                  

 

(1) 

Ww and Wd represent the normalized signals from the wet and dry season, respectively. 

The results of the shifting algorithm are shown in Figure 3. As illustrated in Figure 3, two 

waveforms recorded in different seasons (wet and dry) and at approximately the same location 

do not match. The waveform from the dry season was shifted 43 ns to the right of the 

waveform from the wet season. Therefore, using the cross-correlation technique described 

above, it was possible to match them for further comparisons. The flowchart summarizing the 

processing of the SRTM and GLAS data is shown in Figure 4. 

 

INSERT FIGURE 3 HERE 

INSERT FIGURE 4 HERE 
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3.2 GLAS waveform processing 

To conduct a full comparison between the GLAS and SRTM elevations, several parameters 

needed to be extracted from the GLAS waveforms: signal start and end, ground peak position, 

highest, centroid and lowest elevations, and tree heights. 

 GLAS’s signal start and end are defined as the first and last locations where the waveform 

intensity exceeds a certain threshold level (n.σb, where σb is the standard deviation of the 

background noise) above the mean background noise (µb) (e.g., Chen, 2010; Lefsky et al., 

2005). Both µb and σb are found in the GLA14 product. However, there are no consistent 

optimal thresholds that can be used for all study areas (Chen, 2010). Different thresholds have 

been used in different studies, including 3σb in Sun et al. 2008, 3.5σb in Xing et al. 2010, 4σb 

in Lefsky et al. 2005 and 4.5σb in Baghdadi et al. 2013. In this study, a threshold of 4.5σb 

was used. The difference between the signal end and signal start is called the waveform 

extent. The ground peak is identified using either the last peak (e.g., Sun et al., 2008; Xing et 

al., 2010) or the strongest in amplitude between the last two peaks (e.g., Rosette et al., 2008; 

and Hofton et al., 2002). After close examination of the GLAS waveforms in French Guiana, 

the ground peak was identified using the Gaussian peak representing the highest amplitude 

from the last two peaks.  

The GLAS product only provides the centroid elevation in a footprint. To estimate the highest 

and lowest elevations, the following approach was used. First, the position of the centroid 

within the waveform over the relative time axis was determined. Then, to determine the 

highest elevation, the difference between the position of the centroid and the signal start was 

added to the centroid elevation. Similarly, the lowest elevation was determined by subtracting 

the difference between the position of the centroid and the ground peak from the centroid 

elevation. The lowest elevation is less accurate than the top elevation because the 

identification of the ground peak is more error prone than the identification of the signal start.  
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3.3 Canopy height and roughness index estimations 

The GLAS canopy heights (Hc) were estimated using the most commonly used method in 

areas of low relief, introduced by Lefsky et al. (2005), which uses the difference between the 

signal start (Hs) and the ground peak (Hg).  

Hc = Hg – Hs (2) 
 

The roughness index (R), according to Carabajal and Harding (2006), was defined as the 

standard deviation of the values of the SRTM elevation data in a 3x3 window. 

 

4. Results and discussion 

In this section, we analyze the possibility for the discrimination of the different forest 

landscape types using the GLAS and SRTM data. First, in section 4.1, the discrimination 

potential for the different forest LTs is analyzed using the SRTM penetration in the canopies 

(GLAS highest - SRTM). Then, section 4.2 analyzes the discrimination potential according to 

two added parameters, canopy height (Hc) and the roughness index (R). The differences 

between the GLAS and SRTM elevations are grouped for each LT into four canopy height 

classes and three roughness index classes. Next, in section 4.3, all the parameters (Hc, R and 

the differences between the GLAS and SRTM elevations) are used in the Random Forest 

classifier to classify the GLAS footprints into the five different forest LTs. Finally, section 4.4 

uses the variation in the GLAS waveforms captured from two seasons (wet and dry) to 

classify the different forest LTs. 

 

4.1 Global analysis of the differences between the GLAS and SRTM elevations 

Several studies, such as Bhang et al. (2007), Rodriguez et al. (2006), and Hofton et al. (2006), 

have demonstrated that the penetration depth of the SRTM wave (GLAS highest – SRTM 
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elevation) is affected by the type of surface it interacts with (forest, agricultural areas, etc.). In 

this section, the differences between the GLAS (highest and centroid) and SRTM elevations 

are tested for each forest landscape type (LT) to ascertain the potential of the SRTM to 

discriminate between these five LTs. 

Table 2 shows that using either the penetration depth of the SRTM radar signal or the 

difference between the GLAS centroid elevations and the SRTM elevations alone is not 

sufficient for discriminating the five forest landscape types (LTs). Indeed, penetration is 

similar for LT8 and LT10 (approximately 11.0 m) and for LT9 and LT11 (12.5 m). However, 

the characterization of these two classes (LT8 and LT10) is very different in terms of 

structure. LT8 is closed, regular canopy, and LT10 is composed of high canopy with large 

emergent trees making it very irregular. Moreover, forest LT12 has a slightly lower 

penetration, with an average of 9.3 m. The difference between the GLAS centroid elevations 

and the SRTM elevations is also of the same order for LT8, LT9, LT10 and LT11 

(approximately -5 m) and is lower for LT12 (-7.1 m). The same order of penetration for all 

LTs can be attributed, according to Carabajal and Harding (2006), to the following reasons: 

(1) the penetration of the SRTM varies with canopy height, which is not the same for all 

forest LTs, and (2) the roughness index plays a major role in the variability of the SRTM 

penetration. In the next section, the differences between the GLAS and SRTM elevations will 

be analyzed according to the GLAS canopy height (Hc) and the SRTM roughness index (R) 

to investigate if the use of additional metrics improves the discrimination between the 

different forest LTs. 

 

INSERT TABLE 2 HERE 

 

4.2 Analysis of the differences between the GLAS and SRTM according to Hc and R 
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Section 4.1 showed that it was impossible to discriminate the five forest landscape types using 

the differences between the GLAS and SRTM elevations alone. According to some studies, 

other variables, such as canopy height (Hc) and the roughness index (R), might contribute to 

the variability in the SRTM signal’s penetration depth. Carabajal and Harding (2006), Bhang 

et al. (2007), and Huang et al. (2011) studied the penetration depth of the SRTM as a function 

of canopy height, and their results showed that penetration depth is dependent on canopy 

height (increases with an increase in Hc). Carabajal and Harding (2006) and Bhang et al. 

(2007) also studied the behavior of penetration depth as a function of the roughness index, 

which appear to be positively correlated. To better analyze the effect of canopy height and 

roughness index on the discrimination of different LTs, the GLAS footprints were regrouped 

for each LT, first into four canopy height classes and then into three roughness index classes. 

 

4.2.1 Differences between the GLAS and SRTM according to Hc 

The results indicate that the discrimination of the five forest LTs is not possible using only 

canopy height in the analysis of the difference between the GLAS highest elevations and the 

SRTM elevations (same penetration of the SRTM signal for the five forest LTs in each Hc 

class). Figure 5a shows that the difference between the GLAS highest elevations and the 

SRTM elevations increased with increasing Hc. This difference increased in LT8, LT9, LT11 

and LT12 from approximately 3 m when Hc was less than 10 m to approximately 14 m when 

Hc was greater than 30 m. LT10 showed an increase in the SRTM penetration from 4.4 m 

when Hc < 10 m to approximately 14 m when Hc > 30 m. This slightly higher SRTM 

penetration for LT10 with Hc < 10 m was due to the mean canopy height being greater than 

that in the other LTs (8.5 m versus 5.5 m). The increase in the SRTM penetration with the 

increase in canopy height was due to the C-band phase center (the position of the dominant 

backscattering level), which, on average, becomes increasingly biased below the canopy top 
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with increasing waveform extent (Becek, 2008). These results comply with the study by 

Carabajal and Harding (2006). Similar findings were observed in the analysis of the 

difference between the GLAS centroid elevations and the SRTM elevations according to Hc. 

Figures 6a and 6b show, respectively, the spatial distributions of the canopy height (Hc) and 

the penetration percentage (penetration depth divided by canopy height) in French Guiana. 

Figure 6a shows that over the coastal area, canopy heights tend to be no higher than 20 m 

(mangrove forest). The highest canopies are concentrated in the center of French Guiana, with 

heights mostly above 30 m. In the south of French Guiana, canopy heights are shorter, 

ranging between 20 and 30 m, and are mostly classified as LT11 and LT12. Figure 6b shows 

that the penetration percentage is the highest (> 30%) in the center of French Guiana, which 

mostly contains classes LT8, LT9 and LT10. For the coastal area and the south of French 

Guiana (mostly LT11 and LT12), the lowest penetration percentage (< 30%) was observed. 

 

4.2.2 Differences between the GLAS and SRTM according to R 

In addition, the results also show that it is possible to discriminate LT10 from LT8, LT9 and 

LT11 when R > 10 m (no available data for LT12 with R > 10 m). It is also possible to 

discriminate LT12 from the other classes when R < 5 m. This ability to discriminate LT12 

from the other LTs is due to the fact that LT12 is structurally different from the other LTs 

(open forest with shorter canopy heights, on average). Figure 5b, which represents the 

difference between the GLAS highest elevations and the SRTM elevations as a function of the 

roughness index, shows that LT12 presents the lowest SRTM penetration when R is less than 

5 m (4.9 m versus ~8 m for the other LTs). This can be explained by the denser and relatively 

shorter canopy forest represented within the fragmented horizontal structure of LT12 in 

comparison to other forest LTs. Furthermore, the difference between the GLAS highest 

elevations and the SRTM elevations increased significantly with increasing R for all forest 
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LTs. For LT8, LT9 and LT11, the mean difference between the GLAS highest elevations and 

the SRTM elevations increased as a function of R from approximately 8 m when R was less 

than 5 m to approximately 16 m when R was greater than 10 m. For LT10, the average 

difference between the GLAS highest elevations and the SRTM elevations increased from 

approximately 8 m when R was less than 5 m to approximately 12 m when R was greater than 

10 m. This is most likely due to the irregular heights of the canopies in this forest LT (high 

forest with disrupted canopy). Moreover, the average difference between the GLAS centroid 

elevations and the SRTM elevations showed low dependency on the roughness index, with an 

average between -4 m and -7 m for different R classes and forest LTs. 

The spatial distribution of the roughness index presented in Figure 6c shows that the lowest 

roughness index values were observed on the coastal area, ranging mostly below 5 m, where 

they are attributed mostly to LT8 (very regular canopy roof). Low to moderate roughness 

index values, ranging between 0 and 10 m, were located in the south, where they are 

attributed to LT11 and LT12. The center of French Guiana presents the highest values of the 

roughness index (> 10 m).  

In conclusion, these results confirm that the discrimination between the five forest LTs 

requires the combination of several variables. Using the difference between the GLAS and 

SRTM elevations, it was not possible to classify the different LTs as a function of Hc because 

of the effects of the roughness index. The same thing applies when attempting to classify 

different LTs as a function of R because of the effects of canopy height.   

 

INSERT FIGURE 5 HERE 

INSERT FIGURE 6 HERE 

 

4.3 Random Forest classification results 
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The Random Forest (RF) classification was performed using the differences between the 

GLAS (highest and centroid) and the SRTM elevations, the GLAS canopy height, and the 

SRTM roughness index to analyze the discrimination between the different forest LTs. The 

results show that all forest LTs were well classified with good accuracy, according to the map 

by Gond et al. (2011). The Random Forest classification results summarized in Table 3 show 

an overall accuracy of 83.3% (kappa coefficient of 0.75). Moreover, the producer’s accuracies 

ranged between 78.4% (LT11) and 97.5% (LT12), and the user’s accuracies ranged between 

77.3% (LT9) and 96.3% (LT12). The results show that the coupling between the GLAS and 

SRTM elevations allows better distinction between forests that are quite different (LT8, 

LT10, and LT12), and the most misclassifications were observed between LT9 and LT11 

(approximately 12%).  

The observed misclassifications between LT9 and LT11 could be explained by their similar 

characteristics and proximity and by the LT spatial distribution map used as a reference in our 

analysis (Gond et al., 2011), which has a sample size of 1 square-kilometer, whereas the 

GLAS footprints are, at most, 100 m in diameter. This difference in spatial scale could have 

had an effect on the classification results.  

Our dataset contained forest LTs with uneven sample counts (LT9 represents more than 58% 

of the total dataset). The use of a dataset with uneven class sizes will result in a classifier 

biased towards the majority class (Huang et al., 2005). Therefore, a random under-sampling 

technique is often used (Kotsiantis et al., 2003). This technique balances the dataset by 

removing samples randomly from the majority class. However, the elimination of samples 

from a class could eliminate useful samples. Thus, it is recommended that the majority class 

be under-sampled into several subsets (Liu et al., 2009). Then, the classifier is trained and 

validated using each of the subsets, and the results of all the classifiers are averaged. In this 

study, the majority class LT9 was under-sampled into four subsets (each with 1788 points).  
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After the sub-setting, the subsets were each randomly divided into 90% training and 10% 

validation data samples. The prediction error based on a 10-fold cross-validation was 

estimated to validate the generalization performance of the Random Forest algorithm. The 

importance of the variables used in the Random Forest algorithm was also assessed. The 

results show that the difference between the GLAS highest elevations and the SRTM 

elevations was the most important variable, followed by canopy height and the roughness 

index. The difference between the GLAS centroid and the SRTM showed the lowest 

importance. 

The influence of the size of the training dataset on the behavior of the Random Forest 

classifier was subsequently assessed using three cases: (1) only 20 samples were used for each 

forest LT (the draw of the 20 random samples for each LT was repeated 100 times), (2) 243 

samples were used for each forest LT, corresponding to the lowest class size in our dataset 

(LT12), and (3) all samples available in our dataset were used with uneven class sizes 

between the LTs, with 243 samples from LT12 and 7151 samples from LT9. The results show 

that RF has a low sensitivity to the training dataset size reduction, with an overall 

classification accuracy slightly lower for the case with 20 samples for each LT (case 1) in 

comparison to the other two cases (approximately 78.0% for case 1 and 84% for cases 2 and 

3). The kappa coefficient was also of the same order for the three cases, with values of 

approximately 0.7 for cases 1 and 3 and 0.8 for case 2. In addition, the producer’s and user’s 

accuracies were similar for all forest LTs, except for LT10 and LT11, where the accuracies 

were lower by approximately 20% for case 1 in comparison to cases 2 and 3 (approximately 

64% for case 1 and 84% for cases 2 and 3). This result shows that LT10 and LT11 most likely 

have high intra-class variability, and for this reason, it is necessary to use a larger number of 

training samples for these forest LTs (Rodriguez-Galiano et al., 2012).  
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Finally, to ensure that RF is not over-fitting, an additional test was carried out. First, for each 

of the three cases described above, the explanatory variables (differences between the GLAS 

and SRTM elevations, the roughness index, and canopy height) were randomly permuted. 

Then, the classifier was trained and tested on the new dataset. Next, the predictions obtained 

from the 1000 datasets resulting from the permutation allowed the calculation of the 95% 

confidence interval for the different elements in a confusion matrix. The results show that at a 

95% confidence interval, the user’s and producer’s accuracies were less than 25%, except for 

LT9 in case 3, where the user’s and producer’s accuracies were approximately 54%, and 91%, 

respectively. Classifiers trained with unequal class sizes have a tendency to classify the 

majority of the samples in the majority class to lower the classifier’s error rate (Liu et al., 

2009). In this study, LT9 contains approximately 58% of all the samples, so the classifier, in 

order to obtain the lowest classification error rate, classified most of the samples in LT9. The 

classification results are shown in Figure 7. 

 

INSERT TABLE 3 HERE 

INSERT FIGURE 7 HERE 

 

4.4. Effect of the GLAS acquisition season 

A study by Duong et al. (2009) demonstrated the potential to classify broad-leaved, mixed 

and needle-leaved trees using GLAS footprint pairs taken from two seasons (dry and wet 

seasons). Two waveforms, one from the dry season and one from the wet season, were 

considered a pair if the distance between the footprint centers was less than or equal to the 

sum of their radii divided by 2. In this section, waveform pairs from the wet (December to 

June) and dry (August to December) seasons are compared to show the potential for 

discriminating different forest LTs using five criteria: (1) difference between the GLAS 
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highest elevations and the SRTM elevations, (2) difference between the GLAS centroid 

elevations and the SRTM elevations, (3) penetration percentage in each season, (4) ratio of 

the canopy top energy in the wet season to the canopy top energy in the dry season, and (5) 

ratio of the ground energy in the wet season to the ground energy in the dry season. The 

canopy top energy is defined by Duong et al. (2009) as the energy from signal start to end 

from the vegetated part of the canopy, and the ground energy corresponds to the energy from 

the ground peak. 

The analysis of the difference between the GLAS (highest and centroid) and the SRTM 

elevations, conducted separately for the GLAS footprints acquired during the wet and the dry 

seasons, showed similar differences for both seasons (Table 4). The difference between the 

GLAS highest elevations and the SRTM elevations for all LTs varied from 9.1 to 12.3 m in 

the wet season and from 9.6 to 12.9 m in the dry season. The difference between the GLAS 

centroid elevations and the SRTM elevations varied between -3.1 and -6.7 m in the wet 

season and between -4.7 and -7.7 m in the dry season. This slight difference between the two 

seasons could be due to some trees losing leaves in the dry season, meaning the GLAS 

waveform penetrates more into the canopy in the dry season compared to the same canopy in 

the wet season. 

The waveform pairs were next separated into two categories. The first, called leaf-on 

corresponds to the waveforms without changes between the two seasons (trees with leaves in 

both seasons). The second category, called leaf-off, represents trees that shed their leaves in 

the dry season. Leaf-off trees were identified from the GLAS waveform pairs that showed 

changes in the amplitudes of the canopy top and ground peaks from one season to another (the 

distance between footprint pairs should be lower than half the sum of their radii). The 

threshold was set to be half of the reference top and ground peaks. In general, when trees shed 

their leaves in the dry season, the GLAS waveform reflections from the ground are more 
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prominent. This causes an increase in the amplitude of the ground peak with a decrease in the 

amplitude of the canopy top in comparison to the waveforms from the wet season. In total, 71 

waveform pairs were identified for LT8 (all leaf-on), 62 pairs for LT10 (all leaf-on), and 70 

pairs from LT12 (7 leaf-on and 33 leaf-off) (Table 5).  

The ratio of the energies from the canopy tops in the wet and dry seasons ቀ        ቁ, as well as 

the ratio of the energies from the ground in both seasons ቀ              ቁ, were calculated (Table 

5). On average, the largest change was detected in the leaf-off pairs of LT12, with a ቀ        ቁ of 

2.4, as opposed to 1.1 for LT8, 0.9 for LT10, and 1.2 for the leaf-on LT12. Moreover, Table 5 

shows that the ratio ቀ              ቁ is similar for LT8, LT10 and the leaf-on LT12, with a value of 

approximately 1.1. A lower ratio value was obtained for the leaf-off LT12 (0.7) because 

canopies in the leaf-off class of LT12 appear to shed their leaves in the dry season, allowing a 

greater reflection from the ground surface. Table 5 also quantifies the changes in the 

waveform centroid elevations in comparison with the SRTM. For the pairs in LT8, LT10 and 

the leaf-on LT12, the difference between the GLAS centroid elevations and the SRTM 

elevations is similar for the data in both the dry and wet seasons, with values between -4.3 

and -6.3 m for the wet season and between -4.7 and -5.8 m for the dry season. Conversely, 

this difference increases for the leaf-off pairs of LT12, from -5.8 m in the wet season to -9.6 

m in the dry season. This difference means that the GLAS is able to penetrate the forest to a 

deeper depth in the dry season if the forest characteristics (leaves) change between the 

seasons. In conclusion, LT12, a deciduous forest type, could efficiently be discriminated 

based on the seasonal variation of the GLAS signal. Pennec et al. (2011) found that in 

comparison to other LT types, LT12 has the highest enhanced vegetation index (EVI) all year 

round. This high EVI could be caused by under-canopy activity. This result is very important 

because it shows the utility of multi-season LiDAR data for mapping forest types that lose 
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their leaves in the dry season, which is not possible with the optical imagery typically used. 

Figure 8 shows the locations of the leaf-on and leaf-off pairs in French Guiana, revealing that 

the majority of the leaf-off pairs are located in the same area in the south of French Guiana. 

 

INSERT TABLE 4 HERE 

INSERT TABLE 5 HERE 

INSERT FIGURE 8 HERE 

 

5. Conclusion 

In this study, the coupling of the GLAS LiDAR and the SRTM DEM elevations (GLAS 

highest - SRTM and GLAS centroid - SRTM) was assessed for its potential to discriminate 

different forest landscape types in French Guiana. A dataset of 12238 GLAS elevations 

calculated from GLAS waveforms, namely, the highest and centroid elevations was compared 

to SRTM elevations. Based on the VEGETATION-SPOT-derived forest landscape types from 

Gond et al. (2011), GLAS footprints and their corresponding SRTM elevations were analyzed 

according to the five forest landscape types. 

The results show that the mean differences between the GLAS and SRTM elevations were of 

the same order for all forest landscape types (LTs). Furthermore, these differences increased 

as a function of GLAS canopy height and SRTM roughness index in all forest landscape types 

(LT). Hence, discrimination between the different forest LTs requires other variables in 

addition to the differences between the GLAS and SRTM elevations, such as canopy height 

and the roughness index. 

A classification based on the Random Forest algorithm using the differences between the 

GLAS and SRTM elevations, as well as canopy height and the roughness index, was 

conducted. All forest LTs were well classified with accuracies between 78.4% and 97.5%. 
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Furthermore, the classification was achieved with an overall accuracy of 81.3% (kappa 

coefficient of 0.75).  

Coincident GLAS footprints, one from the wet season and one from the dry season, were 

analyzed to study their potential for discriminating different forest LTs according to the 

changes occurring between the GLAS waveforms pairs. The results show that the open forest 

LT (LT12), which is known to be mostly deciduous, was discriminable from other forest LTs 

using one of the following three criteria: (1) difference between the GLAS centroid elevations 

and the SRTM elevations, (2) ratio of energy from the canopy top in the wet season to energy 

from the canopy top in the dry season, or (3) ratio of ground energy in the wet season to 

ground energy in the dry season. 

The results of this study show that discrimination between different forest landscape types is 

possible using the SRTM and GLAS data. Moreover, the results indicate that LiDAR data 

allow a better characterization for certain forest types in comparison to optical images. 

Indeed, in our study (section 4.4), multi-season LiDAR data were capable of distinguishing 

forest types that lose their leaves in the dry season (LT12).  

Finally, the SRTM and GLAS data could be used in conjunction with other remote sensing 

data (radar or optical data) to produce more accurate land-cover maps of large areas with a 

better resolution in comparison to current land-cover maps. 
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Figures 

 
Figure 1. Location of ICESat/GLAS tracks over our study site (a) and ICESat/GLAS highest, 
centroid and SRTM elevations along a profile track (A to B) across the study site (b). Central 
coordinates of French Guiana are 5°15’N and 52°55’W. 
 
 

 
   (a) 

 

 
(b) 
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Figure 2. A typical GLAS waveform acquired over a vegetated area on a flat terrain. 
 

 
 
 
 
 
 

Figure 3. Typical GLAS waveform acquired during the wet season (grey) used as a 
reference for the shifting of the same waveform acquired during the dry (dashed), and 
the shifted waveform from the dry season (black). 
 

 
 
 

 

 

 
Figure 4. Flowchart of the processing steps for the GLAS and SRTM DEM data 
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Figure 5. Differences between GLAS elevations (highest and centroid) and SRTM 
elevations for each forest landscape type (LT) according to four canopy height (Hc) 
classes (a) and three roughness index (R) classes (b). Only statistics with a count greater 
than 20 were used. 
 

 
(a) 

 
(b) 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 6. Spatial distribution of canopy heights (a), penetration percentage (b), and roughness 
index (c) over French Guiana. 
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(a) 

 
(b) 

 
(c) 
 
 

Figure 7. Classification of GLAS footprints into five forest landscape types using Random 
Forest algorithm. 
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Figure 8. Spatial location of leaf-on and leaf-off GLAS footprint pairs over French Guiana. 
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Tables 

Table 1. Landscape types (LT) in the study area according to Gond et al. (2011), with DCF, 
RCF and ICF representing the percentage of dense canopy forests, regular canopy forests and 
irregular canopy forests, respectively. 
 

LT code Landscape type RSLC code DCF RCF ICF 
1 Permanent/temporary water body 2 to 13, 27, 29, 31, 33 - - - 
2 Agriculture settlement / city 32 - - - 
3 Grassland / Savanna 28, 30 - - - 
4 Tree / Savanna 25, 26 - - - 
5 Woodland savanna / Dry forest 23, 24 - - - 
6 Flooded forest / Montane thicket 16, 17 - - - 
7 Swamp / Montane bog 14, 15 - - - 
8 Low dense forest / Included savanna 18 44.1 32.7 6.4 
9 High forest with regular canopy 19 9.0 56.9 26.2 
10 High forest with disrupted canopy 20 33.5 49.6 3.5 
11 Mixed high and open forest 21 3.9 27.9 45.4 
12 Open forest / Euterpe palm forest 22 5.5 18.5 27.0 

 
 
 
Table 2. Statistics (mean ± standard deviation) of the difference between GLAS highest and 
SRTM elevations for each of the five forest landscape types (LT). 
 

LT Highest – SRTM (m) Centroid – SRTM (m) Count 
8 11.0±12.3 -4.2±12.1 1421 
9 12.2±13.0 -5.0±13.1 7151 
10 11.0±9.4 -5.5±11.4 1195 
11 12.8±12.2 -5.1±12.0 2228 
12 9.3±7.4 -7.1±7.2 243 

 
 
 
 
Table 3. Random Forest classification results for the five forest landscape types. 
 

 Reference Classes  

Classified Classes LT8 LT9 LT10 LT11 LT12 
Classification 

overall 
Producer’s accuracy 

(Omission error) 

LT8 1166 79 53 123 0 1421 82.1% 

LT9 78 1382 58 267 3 1788 77.3% 

LT10 52 77 966 99 1 1195 80.8% 

LT11 100 221 66 1839 2 2228 82.5% 

LT12 0 3 1 5 234 243 96.3% 

Truth overall 1396 1762 1144 2333 240 6875  

User’s accuracy 
(Commission error) 

83.5% 78.4% 84.4% 78.8% 97.5%  

Overall classification accuracy = 81.3% and kappa κ = 0.75  
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Table 4. Statistics (mean ± standard deviation) of the difference between GLAS (highest and 
centroid) and SRTM elevations for each of the forest landscape type (LT) in each season. 
 

Wet season 
LT Highest – SRTM (m) Centroid – SRTM (m) Count 
8 11.4±12.1 -3.1±11.1 430 
9 11.8±12.7 -4.7±12.7 1885 
10 10.9±9.8 -5.3±9.4 374 
11 12.3±11.7 -4.8±11.7 584 
12 9.1±7.5 -6.7±8.0 152 

Dry season 
LT Highest – SRTM (m) Centroid – SRTM (m) Count 
8 10.9±12.4 -4.7±12.4 991 
9 12.3±13.0 -5.1±13.2 5266 
10 10.9±10.3 -6.0±11.1 821 
11 12.9±12.4 -5.2±12.1 1644 
12 9.6±7.4 -7.7±5.4 91 

 

 
 
Table 5. Comparison between wet and dry seasons for different forest LTs (no data for LT9 
and LT11). Topw and Topd represent the energy of the signal reflected from the canopy top for 
the wet and dry seasons, respectively. Groundw and Groundd represent the energy of the signal 
reflected from the ground for the wet and dry seasons, respectively. 
 

LT 
Pairs 

number 
Season 

Highest – SRTM 
(m) 

Centroid – SRTM 
(m) 

         
               

8 71 
Wet 11.5±15.0 -4.3±14.9 

1.1±0.5 1.2±0.6 
Dry 11.2±14.4 -4.7±14.6 

10 62 
Wet 10.9±14.3 -6.3±13.9 

0.9±0.5 1.1±0.5 
Dry 11.0±14.7 -5.8±14.3 

12 (leaf-
on) 

7 
Wet 9.5±13.3 -5.5±13.0 

1.2±0.4 1.1±0.7 
Dry 9.9±15.2 -4.9±15.3 

12 (leaf-
off) 

33 
Wet 9.3±12.3 -5.8±12.1 

2.4±1.2 0.7±0.5 
Dry 9.7±14.4 -9.6±14.7 

 
 

 

in : International Journal of Applied Earth Observation and Geoinformation, vol. 33, n° 1 , 2014


