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Output Reference Tracking of Input-Delayed Systems in Presence of Actuator Saturation

The problem of output-reference tracking is addressed for input-delayed linear systems, in presence of actuator saturation. It is dealt with using a saturated pole-placement regulator designed within the pseudo-polynomials ring. Using input-output stability tools, a neighborhood of the system poles is defined in which all closed-loop poles must be assigned. Then, if the reference signal is compatible with the input constraint, the output-reference tracking quality depends on the reference quadratic mean rate (RQMR). The smaller the RQMR is, the better the average tracking quality.

INTRODUCTION

Controlling input-constrained linear systems has become an active research area over the last two decades. However, most works have focused on delay-free systems. The inputconstrained control problem becomes rapidly complex in presence of system delays. Most existing works are concerned with local stabilization using the positive invariance, e.g. (Tarbouriech and Gomes da Silva, 2000), [START_REF] Liberzon | Quantization, time delays, and nonlinear stabilization[END_REF], [START_REF] Fridman | Control under quantization, saturation and delay: An lmi approach[END_REF]. In [START_REF] Zaccarian | L2 anti-windup for linear dead-time systems' systems and Control Letters[END_REF], sufficient conditions for solvability of the L 2 anti-windup problem are given for delayed systems.

The present paper is focusing on the problem of outputreference tracking for input-delayed nonminimum phase systems in presence of actuator saturation. It will be shown that quite interesting tracking results can be achieved with a saturated pole-placement type regulator. Input-output stability tools are resorted to characterize the domain where the closed-loop poles must be assigned. Then, it is demonstrated that the output-tracking tracking quality depends on the RQMR, whatever the reference signal nature. The smaller the RQMR is the better the average tracking quality. In the particular case of 2 L -rate reference signals, perfect output-reference tracking is asymptotically ensured.

The paper is organized as follows: Section 2 is devoted to formulating the control problem; the regulator design is dealt with in Section 3; the resulting closed-loop system is analyzed in Section 4.

CONTROL PROBLEM STATEMENT

We are considering continuous time SISO linear systems 1 : )

( ) ( ) ( ) (    t u s B t y s A ( R t  ) (1a) in presence of the input constraint: M u t u  ) ( (1b) 
with:

0 1 1 1 - n a s a ... a A(s)       n n s s (1c) 0 1 1 1 - n b s b ... B(s)      n s b
(1d) where u(t) and y(t) are the system input and output (respectively); M u denotes the maximal allowed control value; s refers as well to the differential operator dt d / and to the Laplace variable; the integer n and the real numbers ) ( i , i b a are the system order and parameters, respectively. The polynomial sA(s) is Hurwitz i.e. the system is BIBO stable. B(s) is arbitrary except that 0 ) 0 (  B i.e. the system static gain is non null. The stability assumption is required to make the system controllable in presence of the control limitation (1b).

The aim is to develop a regulator that makes the tracking error * y y e y  

(2) as small as possible, whatever the initial conditions, where * y is the output reference trajectory. The next definitions make precise the sense of reference compatibility and signal smallness in the mean [START_REF] Giri | Robust pole placement indirect adaptive control[END_REF]. In these definitions (and throughout L -stable operator  .

Definition 1. Let  be any real number and x be any real signal. x is said to be -small in the mean (briefly -SM), if for any R T  one has:

 dt t x T 1 T 0 T     ) ( sup lim .
For any real  , the set of -SM signals is denoted

) ( SM
. The mean magnitude of a signal x is defined as the smallest 1 Throughout the paper, R denotes the set of real numbers.

real  such that

) ( SM x 
. Similarly, its quadratic mean rate is the smallest real  such that

) ( ) ( 2  SM x   Definition 2. A reference output trajectory * y is compatible with the constraint (1b) if M t u t u    ) ( sup lim * w i t h * 0 0 * * ) 0 ( ) 0 ( y b a y B A u  
In the rest of the paper, the ideal output trajectory * y is supposed to be compatible with the constraint (1b). On the other hand, let  denotes the quadratic mean rate of * y .

According to definition 1,  is the smallest real such that

) ( 2  SM y *   i.e. for any R T  :  dt t y T 1 T 0 * T     2 ) ( sup lim  (3) 
The problem at hand is to develop, for the system (1a-d), a regulator that ensures the existence of real constants 0

*  K and 0 *   such that, if * 0     , then ) ( * 2  K SM e y  . Furthermore, if 2 * L y  
, then y e must vanish asymptotically.

REGULATOR DESIGN

The control design may be viewed as an extension, to the input-constrained case, of the finite spectrum assignment method presented in [START_REF] Brethé | A result that could bear fruit for the control of delay-differential systems[END_REF]) Let C(s) and Λ(s) be two Hurwitz polynomials of the form: that undergo the following Bezout equation:

0 1 c s c ... s c s C(s) 1 n 1 - n n       (4a) 0 1 n 1 - n n s ... s s (s)           1 (4b)
) ( ) ( ) ( ) ( ' ) ( ) ( ' s s C e s B s S s sA s R s      (5) The polynomials (s) R'
and (s) S' are not unique and their degrees are unknown. As sA(s) is monic, one can divide

(s) S' by ) (s sA , i.e. ) ( ) ( ) ( ) ( ' s S s sA s Q s S   , with n s S  ) ( deg
. Introduce also the notation:

 s e s B s Q s R s R    ) ( ) ( ) ( ' ) (
, Then, it follows from (5) that:

) ( ) ( ) ( ) ( ) ( ) ( s s C e s B s S s sA s R s      (6) As   1 2 ) ( ) ( deg    n e s B s S s , one has:     n s s C s sA s R 2 ) ( ) ( deg ) ( ) ( deg    and   1 ) ( deg   n s R . Furthermore, as ) (s sA and ) ( ) ( s s C 
are monic, ) (s R is also monic. In the light of the above observations, it is readily seen that R(s) and (s) S can be uniquely expressed as follows:

) ( ) ( ) ( 1 2 0 1 s R s e R s s R n i i s i n           (7a) ) ( ) ( ) ( 1 0 s S s e S s S i s n i i        (7b) where ) ( 1 s R  and ) ( 1 s S 
belong to ] [s G , the set of transfer functions of all distributed and punctual delay operators. For

0  i , ) (  s i e R  and ) (  s i e S  belong to ] [  s e  R
, the set of polynomials in  s e  . With the above notations, the saturated pole-placement regulator is defined as follows:

  ) ( ) ( ) ( ) ( ) ( ) ( ) ( t e s S t u s sR s t v s y      (8)   M u t v t v t v t u ), ( min )) ( sgn( )) ( sat( ) (   (9)
Remark 1. The saturated regulator ( 8)-( 9) coincides with the standard linear pole placement regulator 0

(t) ) ( ) ( ) (   y e s S t u s R s
, whenever the control signal stops saturating for a long time. Then, one can show that the tracking error undergoes the equation 0

) ( ) ( ) ( C   t e s s and so it vanishes exponentially fast because ) ( ) ( C s s  is Hurwitz.

ANALYSIS OF THE CLOSED LOOP SYSTEM

The closed-loop control system composed of the constrained system (1a-d) and the saturated regulator ( 8)-( 9), will now be analyzed. The outcome of such an analysis will help making suitable choices of the design parameters, namely the operators   s C and   s  , so that the control objective of Section 2 can be achieved. The next two technical facts will prove to be useful in the analysis.

Lemma 1. For any pseudo-polynomial P one has

] [ ) ( 0 s s p s P E   with R   ) 0 ( 0 P p 
This lemma can be easily proved by direct checking.

Lemma 2. Let   2 1 x x x, ,
be any real signals and

2 1 2 1 , , , , k k    be any real numbers. 1) If ) ( 1 2 1  SM x  and ) ( 2 2 2  SM x  then:   ) 2 2 ( 2 2 2 1 2 1 2 2 2 1 1   k k SM x k x k    2) If ) ( 2  SM x  then ) (  SM x  3) Let  be any 2 L -stable operator. If ) ( 2  SM x  then one has:         2 2 2 )) ( ( SM x 
Proof. Part 1 is obvious. Part 2 is obtained using the Hölder's inequality [START_REF] Vidyasagar | Nonlinear Systems Analysis[END_REF]. Accordingly, one has, for all R T  :

    2 / 1 0 2 / 1 0 2 0     T T T dt dt x(t) dt x(t)   2 / 1 2   T 0 dt x(t) T
Then, Part 2 follows dividing both sides of the above inequality by T and letting   T . Part 3 is also obtained using again Hölder's inequality, see [START_REF] Giri | Robust pole placement indirect adaptive control[END_REF] for details  4.1. Suitable feedback representation of the closed-loop system.

The closed-loop system will first be given a feedback representation that allows application of absolute stability theorems [START_REF] Vidyasagar | Nonlinear Systems Analysis[END_REF]. Combining (1a) with ( 8)) so that to eliminate y e yields:

) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( * sy s s S su s A s A s C sv      (10) 
Equation ( 9), together with the fact that

 v sat u  , can be given the feedback representation of Fig 1, with: ) ( ) ( ) ( * 1 sy s s S    (11)
and  is the (nonlinear) mapping: in ( 6) be chosen so that:

su sv  .
0 ) ( ) ( Re inf 0                j A j C (14)
Then, the feedback of figure 1 is L 2 -stable and, consequently, one has the following signal properties: 1) There exist a real constant 0 K , independent of  , such that he signals

2 * ) (su , 2 ) (sv , 2 ) (su , 2 ) (sy , 2 ) ( y se all belong to ) ( 0  K SM .
2) In case where 

  1 ) ( / )) ( ) ( ( Re inf 0       j A j A j C     . Then, as  belongs to the sector ] 1 0 [
, it follows applying the circle criterion (see e.g. [START_REF] Vidyasagar | Nonlinear Systems Analysis[END_REF]

) that the feedback of Fig 1 is L 2 -stable. Letting 1 K denote the 2 L gain of the mapping sv  1  , one has for any real 0  T : ) ( )) ( ( )) ( ( 1 0 2 1 1 0 2 T dt t s K dt t sv T T       (15) for some vanishing function ) ( 1 T  (i.e. 0 ) ( 1    T T 
).

On the other hand, as

) (s  is Hurwitz and ) ( / ) ( s s S
 is a proper transfer function, one has: 16), one readily gets that:

) ( )) ( ( )) ( ( 2 0 2 * 2 0 2 1 T dt t sy K dt t T T       ( 
) ( ) ( )) ( ( )) ( ( 1 2 1 0 2 * 2 1 0 2 T T K dt t sy K K dt t sv T T        (17) Using (3), it follows from (17) that:  * 2 1 0 2 )) ( ( 1 sup lim K K K dt t sv T T T     That is, ) ( ) ( 2  v K SM sv  with * 2 1 K K K K v  (18) su sv ) ( ) ( ) ( s A s A s C  0  + 1  + +  This also implies that: ) ( ) ( 2  u K SM su  with * 2 1 K K K K u  (19)
because, from ( 12)-( 13 Then, using the previously established results and (3), it follows that:

) ( ) ( 2  e y K SM se  with 2 2 * 3 2 1   K K K K K e (23)
Finally, from definition 2, one obtains:

* * ) 0 ( ) 0 ( sy B A su  (24)
Then, using (3), one gets

) ( ) ( 1 2 *  K SM su  with 2 1 )) 0 ( /( ) 0 ( ( B A K 
. This completes the proof of Part 1.

Proof of Part 2. From ( 16) and ( 17), it follows that 

L -and mean-smallness of the control saturation error

In this subsection, key 2 L -and mean-smallness properties of the control saturation error u v  will be established. These are formally described in proposition 3.

Proposition 3. Consider the closed-loop control system composed of the constrained system (1a-d) and the saturated regulator ( 8)-( 9) the polynomial  s C in ( 6) is chosen as in proposition 2. Then, one has the following properties: 1) There exists a real constant uv

K , independent of  , such that ) ( ) ( 2  uv K SM v u   . 
2) In the case where

2 * L sy  , one has 2 L v u   Proof. Part 1. From (8) one has: y e S u sR u v      * 0 0 * ) ( u Se A B b a u u A SBe u sR u s s                      3 2 * 0 0              u A Be s u A Be s u s s 4 3 2 * 0 0 0 0 0 0 0 0            u a b s u a b s u (25) with y se s s S su R    0 2     (26a) * 0 0 3 u Se A B b a s               (26b) ) ( * 0 0 0 0 0 4 u u a b s A Be s s                 (26c) Since  / R is strictly proper,  is Hurwitz and ) ( ) ( 2  u K SM su 
(by proposition 2, part 1), one obtains applying Lemma 2 (part 3) with Then, applying lemma 2 (part 3):

  / R  : ) ( 4 2   K SM su R        with 2 2 4                  R K K u (27) Similarly, as s s S / ) ( 0  is a pseudo-polynomial with degree 1  n ) 1 ) deg( (   S ,
) ( 5 2 0   K SM se s s S y         with 2 0 2 5                   s s S K K e (28)
From ( 28)-( 29) one obtains:

) ( 6 2 2   K SM  with 5 4 6 K K K  
(29) A similar mean smallness property will now be established for 3

 . To this end, equation (26b) is rewritten * 0 0 0 3 ) ( ) ( ) ( su Se s sA a s B a s A b s               (30) As ) (s A is Hurwitz, it is easily checked that the transfer function ) ( / )) ( ) ( ( 0 0 0 s A sa s B a s A b
 is strictly proper and asymptotically stable. The same property is shared by the transfer function

  / s Se 
. Consequently, the transfer function in (30), relating

* su to 3  , is 2 L -stable. Then, ) ( ) ( 0 2 *  K SM su  (by Proposition 2, part 1), it follows applying Lemma 2 (part 3) that ) ( 7 2 3   K SM  with 2 0 0 0 2 0 7 ) ( ) ( ) (                               s Se s sA a s B a s A b K K .
A similar smallness property will now be established for 4

 .

First, one has the following decomposition:

                     A a A b s e a B s s a b s A Be s s s s         0 0 0 0 0 0 0 0 0 0 0 0 1 1 ) ( ) ( 2 1 s T s T   (31a) with A a s b s s b e s a s T n i i i n i i i s      0 0 2 1 1 0 0 1 1 1 0 0 0 1 ) (           (31b)      ) , min( ) , 0 max( n i n i j j i j i a   (31c)            s e A b s s T s 1 ) ( 0 0 2   (31d)
In the light of (31a) and (26c), 4  assumes the following decomposition: is the transfer function of the linear operator H :

) ( ) ( * 2 * 1 4 su su T su su T      ( 
Hx x  with        t d t x h d t x t Hx 0 0 ) ( ) ( ) ( ) )( (       (33a)
where 

      otherwise if h 0 0 1 ) (    (33b)
  K SM  with   2 2 1 2 0 8 ( 2 T T K K    . Letting 4 3 2 5       
, it follows from the above argument that:

) ( 9 2 5   K SM  with        

Tracking error convergence analysis

In this subsection, the tracking capability of the saturated regulator defined by ( 8)-( 9) is analyzed. The main results are summarized in the following theorem.

Theorem 1. Consider the closed-loop control system composed of the constrained system (1a-d) and the saturated regulator ( 8)-( 9) where the polynomial  s C in ( 6) is chosen as in proposition 2. Then, one has the following properties: 1) There exist a real constant uy K , independent of  , such

that ) ( ) ( 2 *  uy K SM y y   . 
2) In the case where 

                                 C RA C Be K K
L u v  
, it is sufficient to show that v and u are continuous. From (10) one gets:

6 * ) ( ) ( ) ( ) ( ) (        y s s S u s A s A s C v (41)
where 6

 is a constant depending on initial conditions. Using (9), equation ( 61) can be rewritten as follows: 

 6 ) ( ) ( ) ( ) ( ) (         y s s S v sat s A s A s C v ( 42 
    z X g z X C sat H X A X def ,      ( 45 
)
The function g is Lipschitz because the operator (.) sat is so. Furthermore, z is continuous because  y and 6

 are so.

Then, it follows from the existence theorem (e.g. [START_REF] Khalil | Nonlinear Systems[END_REF]) that, for any initial conditions, the differential equation ( 45) has a unique solution X that is continuously derivable. This implies that the signal v , ) ( sat u  and u v  are all continuous. As the latter belongs to L 2 it converges to zero (by Barbalat's Lemma, e.g [START_REF] Khalil | Nonlinear Systems[END_REF]). Finally, it follows from (1) that y is continuous and in view of (2) so is y e . But this also belongs to L 2 . Then, using again 2) Condition ( 14) turned out to be crucial in achieving the above results. This positive real condition defines a neighborhood of the controlled system poles (i.e. the zeros of ) s ( A) in which those of the closed-loop system (i.e. the zeros of ) s ( C) should be assigned.

SIMULATIONS

The simulation results are omitted due to space limitations. They will be presented in the conference.

CONCLUSION

The problem of controlling input-delayed nonminimumphase linear systems is addressed in presence of actuator saturation constraint. The focus is made on output reference tracking using the pole-placement control design technique. It is shown that quite interesting tracking properties are achievable provided the positive real condition ( 14) is satisfied.

Fig 1 .

 1 Fig 1. Nonlinear feedback relating the signals sv and su

  L2-stability of the feedback of Fig 1 Proposition 1 will now be used to establish a sufficient condition, on the operator  s C , that ensures the L 2 -stability of the feedback system of Fig 1.

Proposition 2 .

 2 Let the polynomial  s C

  all above signals belong to 2 L Proof. Part 1. Using (10), one gets from (14) that

  as both transfer function on the right side of (40) are 2 L -stable, it follows that 2 L e y  . Proof of Part 2b. Let us first show that u v  vanishes asymptotically. As 2

Barbalat

  1 (Part 1) shows that the tracking quality depends on the quadratic mean rate  of the reference signal *y . The smaller the RQMR is, the better the mean tracking quality. Perfect asymptotic tracking is achieved when

  ),  denotes the linear space of all causal real signals (i.e.

	s	:	R 	R	) and p L is the subspace of 
	containing all signals with finite	p L -norm	1 (	 p			)	.
	Furthermore, the notation		( 2 	)	is used for the 2 L -gain of
	any 2							

(34) On the other hand, it follows from definition 2 that, there exists a finite time M t such that:

In the rest of the proof, it will be shown that:

, for all

It is clear that (36) holds when

, due to (9). To prove (36) in the case where

, notice that equation ( 25) can be rewritten:

using the fact that