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ABSTRACT

In this paper, we present an algorithm for blind equalization

i.e. equalization without training sequence. The proposed

algorithm is based on the reformulation of the equalization

problem in a set membership identification problem. Among

the Set Membership Identification methods, the chosen algo-

rithm is an optimal bounding ellipsoid type algorithm. This

algorithm has a low computational burden which allows to

use it easily in real time. Note that in this paper the equalizer

is a finite impulse response filter. An analysis of the algo-

rithm is provided. In order to show the good performance of

the proposed approach some simulations are performed.

Index Terms— Blind Equalization, FIR equalizer.

1. INTRODUCTION

The equalization problem is depicted on Fig. 1. It consists

in the estimation of a source sequence from the knowledge

of a received output sequence. Two main groups of methods

can be distinguished: equalization with training and equal-

ization without training. The first group needs the use of

training sequences known both to receiver and transmitter.

When it is not practical to use training sequences, the equal-

ization can only be made using the received signal. This cor-

responds to the second group of methods: blind equalization

methods. Blind equalization has received much interest for

the last decades as pointed out by the available contributions

(see [1], [2], [3], [4], [5], [6], [7], [8] and references therein).

Two specific groups of methods can be roughly distinguished:

(1-) Second-Order Statistics (SOS) methods ( [4], [5] [7]) and

(2-) Higher-Order Statistics (HOS) methods ( [2], [3], [8]). In

this paper we proposed a novel approach to blind equalization

for a SISO channel.

The suggested approach is based on one key idea: rewrite

the equalization problem as an identification problem in pres-

ence of bounded disturbances. Such an identification problem

can be solved using Set Membership Identification methods.

Among the Set Membership Identification methods, Optimal

Bounding Ellipsoid (OBE) algorithms represent a very pop-

ular class of recursive algorithms ( [9], [10], [11], [12], [13],

[14]). The proposed approach is based on such algorithms. It

is a recursive method with a low computational burden and it

is then suitable for real-time application.

The paper is organized as follows: in section 2 the channel

model is described and the problem of blind channel equal-

ization is formulated. Section 3 is devoted to the presentation

of the equalization algorithm: the principle and the algorithm

are stated in subsections 3.1 and 3.2, an analysis is provided in

3.3. Section 4 shows simulation results. Section 5 concludes

the paper.

2. PROBLEM FORMULATION

On Fig. 1 {sk} is the input sequence, {xk} is the received

sequence given by

xk =
∑

i

hisk−i + nk

where {hi} are the impulse response coefficients which en-

compasses the effects of the transmitter filter, unknown chan-

nel and receiver filter. {nk} is an unknown noise sequence,

{ŝk} denotes the output of the equalizer.

sk
✲ Channel FIR Equalizer✲ ✲❄

+ ✲

nk

xk ŝk

estimatesource received

Fig. 1. Equalization problem

The input sequence {sk} is supposed to be unobservable

and the objective in this paper is to propose a blind equaliza-

tion algorithm i.e. an algorithm which allows the estimation



of a deconvolution filter such that the transmitted sequence

{sk} can be reconstructed reliably.

The proposed algorithm is based on the following usual

assumptions:

A.1 The input sequence {sk} is supposed to be independent,

identically distributed;

A.2 The input sequence {sk} is drawn from a QAM constel-

lation CQAM ;

A.3 The noise sequence {nk} is supposed to be bounded via

|nk| ≤ δn;

A.4 Sequences {sk} and {nk} are independent;

A.5 There exists a L order Finite Impulse Response (FIR) de-

convolution filter Fo, characterized by a coefficient vector

θo, such that if nk = 0 then

sk =
L∑

i=0

fixk−i = ϕT
k θo

where

θo =




f0
...

fL


 and ϕk =




xk

...

xk−L




Assumption A.5 seems a bit hard nevertheless, due to the fact

that inaccuracy in the modeling can be included in the noise

nk, we have observed the algorithm to work well numerous

cases where this assumption was not satisfied (this is the case

in the example).

In the following we consider the function dec(.) defined

by

dec(y) =
arg min

z ∈ CQAM

{∣∣z − y
∣∣
2

}
(1)

dec(y) corresponds to the nearest symbol in CQAM from y.

3. EQUALIZATION ALGORITHM

3.1. Principle

Under assumptions listed in section 2 and in the case where

the noise sequence can be neglected (nk = 0), it is stated

in [15] that if we estimate a deconvolution filter F , defined by

a coefficient vector θ with the same dimension as θo and such

that the output ŝk belongs to CQAM , then there exists n ∈ N

such that

θ = ejn
π
2 θo

where θo is the equalizer coefficient vector of Fo defined in

assumption [A.5].

In the case where the noise can’t be neglected, the output
L∑

i=0

fixk−i of the filter Fo doesn’t belong to CQAM . A useful

elementary property on the output of the deconvolution filter

Fo in a noisy context is provided below.

Property 1

Consider assumptions stated in section 2. If the noise se-

quence {nk} satisfies |
L∑

i=0

fink−i| < 1 (with Fo defined in

assumption [A.5]) then we have

dec

(
L∑

i=0

fixk−i

)
= sk (2)

and

dec

(
L∑

i=0

fixk−i

)
=

L∑

i=0

fixk−i + vk (3)

where |vk| ≤ δv with

δv =
L∑

i=0

|fi|δn < 1 (4)

Proof 1

We have xk =
∑

i

hisk−i + nk and Fo such that

L∑

i=0

fi(xk−i − nk−i) = sk, it follows sk =
L∑

i=0

fixk−i −

L∑

i=0

fink−i. (2) is a consequence of the fact that sk is drawn

from a QAM constellation and |

L∑

i=0

fink−i| < 1. (3) follows

with vk = −
L∑

i=0

fink−i such that |vk| < 1.

This trivial property is important because this means that

at each time the output

L∑

i=0

fixk−i of Fo is close to a point

which belongs to the constellation and this point corresponds

to sk. This is illustrated on Fig. 2 for a 4-QAM modulation.

The proposed algorithm draws on (3) and (4): its aim is

the estimation of a deconvolution filter F such that the output

ŝk belongs to a neighborhood of the QAM constellation. This

corresponds to the estimation of a coefficient vector θ in such

a way that at each time ŝk = ϕT
k θ satisfies

dec(ŝk) = ŝk + ϵk



that’s to say

dec
(
ϕT
k θ
)
= ϕT

k θ + ϵk (5)

where |ϵk| ≤ δ with δv ≤ δ < 1. In the case where the

noise can be neglected (δv = δ = 0) this corresponds to the

principle stated in [15].

✻ δv

∑
L

i=0
fixk−i

✲

✻❄ ✻

✲

dec
(∑

L

i=0
fixk−i

)

j

11

j

Fig. 2. ŝk =
L∑

i=0

fixk−i in a neighborhood of dec(ŝk) for a

4-QAM modulation

Problem (5) is similar to an identification problem in pres-

ence of bounded disturbances. In this paper we shall investi-

gate an OBE type algorithm ( [11], [12], [14]), the reason is

that its computational complexity is low and it is adapted to an

identification problem in presence of bounded disturbances.

The algorithm is given in the next subsection.

3.2. Algorithm

θ̂k represents an estimation of the coefficient vector θ. Let us

define the a priori and a posteriori predictors as





ŝk/k−1 = ϕT
k θ̂k−1

ŝk/k = ϕT
k θ̂k

(6)

and their corresponding errors




ϵk/k−1 = dec(ŝk/k−1)− ŝk/k−1

ϵk/k = dec(ŝk/k)− ŝk/k

(7)

The equalization algorithm corresponds to an improved

weighted recursive least square algorithm. Its update equation

for θ̂k is as follows

θ̂k = θ̂k−1 + Γkϵk/k−1 (8)

with 



Γk = Pk−1ϕkσk

λ+ϕT
k Pk−1ϕkσk

P−1

k = λP−1

k−1
+ ϕkσkϕ

T
k

(9)

and ϵk/k−1 defined from (6) and (7).

The two weighting terms are λ and σk. 0 < λ ≤ 1 is the

forgetting factor fixed by the user to weight the past informa-

tion.

σk is a switching flag designed in the following manner:

σk =





λ
ϕT
k Pk−1ϕk

(∣∣ ϵk/k−1

δ

∣∣− 1
)

if
(∣∣ϵk/k−1

∣∣ > δ
)

and
(
ϕT
k Pk−1ϕk > 0

)

0
if
(∣∣ϵk/k−1

∣∣ ≤ δ
)

or
(
ϕT
k Pk−1ϕk = 0

)

(10)

The difference with algorithms proposed in [11], [12] and

[14] lies in the fact that, here, there is no reference signal. The

proposed equalization algorithm is a decision directed equal-

ization algorithm: the value of dec(ŝk/k−1) monitors the al-

gorithm behavior.

3.3. Analysis

The algorithm derived in subsection 3.2 is discussed in the

present subsection.

δ is a user defined scalar whose role is described below.

From (10), σk stops the updating of θ̂k if the arrival data are

meaningless (i.e. ϕT
k Pk−1ϕk = 0). In the following consider

the case where ϕT
k Pk−1ϕk > 0.

From the above expressions the prediction ŝk/k can be

written as

ŝk/k = ŝk/k−1 + ϕT
k Γkϵk/k−1

This gives the following error

dec
(
ŝk/k−1

)
− ŝk/k = (1− ϕT

k Γk)ϵk/k−1

Making use of the expression for Γk, it follows

dec
(
ŝk/k−1

)
− ŝk/k =

λ

λ+ ϕT
k Pk−1ϕkσk

ϵk/k−1

Two possible cases arise.

• If
∣∣ϵk/k−1

∣∣ > δ, then using the value of σk yields

dec
(
ŝk/k−1

)
− ŝk/k =

ϵk/k−1∣∣ ϵk/k−1

δ

∣∣

This gives

∣∣dec
(
ŝk/k−1

)
− ŝk/k

∣∣ = δ

We have δ < 1 consequently dec
(
ŝk/k

)
= dec

(
ŝk/k−1

)

and then we get

∣∣dec
(
ŝk/k

)
− ŝk/k

∣∣ = δ



• If
∣∣ϵk/k−1

∣∣ ≤ δ then σk = 0 thus the adaptation is frozen:

θ̂k = θ̂k−1

It follows that ŝk/k = ŝk/k−1 and dec
(
ŝk/k

)
= dec

(
ŝk/k−1

)

then we get

∣∣dec
(
ŝk/k

)
− ŝk/k

∣∣ ≤ δ

This clearly shows that, via the weighting term σk, the

proposed algorithm ensures the following property:

∀k such that ϕT
k Pk−1ϕk > 0 ; |ϵk/k| ≤ δ (11)

Consequently δ is a chosen bound on the a posteriori error

ϵk/k. This means that, for δ < 1, the output of the deconvo-

lution filter belongs to a neighborhood of the QAM constella-

tion. This neighborhood is defined by the bound δ.

The choice of the threshold δ determines the ability to

reach a deconvolution filter F such that the transmitted se-

quence {sk} can be reconstructed reliably. From (4) this

threshold depends on Fo and on δn:

δv ≤ δ < 1 (12)

with δv =
L∑

i=0

|fi|δn.

An underestimation of the bound δ is in contradiction with

condition (12) while with an overestimation the convergence

may be slower. In section 4, simulation experiments are per-

formed with δ = 0.99.
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Fig. 3. First simulation: SER for various data set size from

100 Monte Carlo simulations

4. SIMULATION RESULTS

In this section, different simulations are reported to illustrate

performance of the proposed method. We consider the 4-
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Fig. 4. First simulation: constellation of ŝk/k

QAM modulation case and a channel described by the fol-

lowing filter:

H(z) = −1.666 + 0.175 ∗ j + (0.288 + 0.726 ∗ j)z−1

+ (1.191 + 2.183 ∗ j)z−2 + (−0.038 + 0.114 ∗ j)z−3

In each experiment the order of the equalizer filter is L = 15.

The forgetting factor λ has been chosen equal to 0.99 in order

to reduce the impact of bad initial conditions and the threshold

δ has been chosen equal to 0.99.

{nk} is a white noise uniformly distributed with |nk| ≤
δn where δn is adjusted to have a desired Signal to Noise

Ratio (SNR). The proposed blind equalization algorithm has

been tested on the basis of Monte Carlo simulations of 100
experiments.

In a first simulation, we have investigated the influence

of the data-set size N in the equalization accuracy. Here

SNR= 20dB and N varied from 200 to 4000. The Sym-

bol Error Ratio (SER) is depicted in Fig. 3 as a function of

N . It appears an important improvement of performance as

N grows until N = 3000.

Fig. 4 shows the constellation of ŝk/k for N = 2000.

Each point is in a neighborhood of the 4-QAM constellation.

In the beginning, points are on boundaries, then after several

iterations they converge inside constellation circles.

In a second simulation, the number of available data was

N = 2000 and SNR varied from 5dB to 30dB. We compared

the proposed method against two methods:

• the Constant Modulus Algorithm (CMA) proposed in [2];

• the Stochastic gradient algorithm (SQD) proposed in [6].

Fig. 5 shows SER curves as a function of SNR. We observe

that the proposed algorithm enhances performance of CMA

and SQD for high and low SNR. Let us remark that the com-

putational time of the proposed method is less than 1s which
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Fig. 5. Second simulation: SER obtained with 3 approaches

for various levels of noise and from 100 Monte Carlo simula-

tions

demonstrates the low computational burden of the proposed

method.

5. CONCLUSION

In this paper we have investigated the blind channel equal-

ization problem. It is shown that this problem can be written

as an identification problem in presence of bounded distur-

bances. The proposed algorithm is based on a particular type

of ellipsoidal algorithms: OBE type algorithms. One impor-

tant contribution of this paper is the fact that few parameters

have to be chosen (the forgetting factor λ and the bound δ)

and systematic rules for their selection are provided. Simu-

lation results have demonstrated that the algorithm performs

better than some algorithms proposed in literature. In terms

of future research, we believe that the proposed algorithm can

be extended to other equalizer structures (such as infinite im-

pulse response representation) or to MIMO channel.
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