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INTRODUCTION

The equalization problem is depicted on Fig. 1. It consists in the estimation of a source sequence from the knowledge of a received output sequence. Two main groups of methods can be distinguished: equalization with training and equalization without training. The first group needs the use of training sequences known both to receiver and transmitter. When it is not practical to use training sequences, the equalization can only be made using the received signal. This corresponds to the second group of methods: blind equalization methods. Blind equalization has received much interest for the last decades as pointed out by the available contributions (see [START_REF] Sato | A method of self-recovering equalization for multilevel amplitude-modulation[END_REF], [START_REF] Godard | Self-recovering equalization and carrier tracking in twodimensional data communication systems[END_REF], [START_REF] Treichler | A new approach to multipath correction of constant modulus signals[END_REF], [START_REF] Tong | Blind identification and equalization based on second-order statistics: a time domain approach[END_REF], [START_REF] Moulines | Subspace methods for the blind identification of multichannel FIR filters[END_REF], [START_REF] Lazaro | Stochastic blind equalization based on pdf fitting using parzen estimator[END_REF], [START_REF] Diamantaras | An efficient subspace method for the blind identification of multichannel FIR systems[END_REF], [START_REF] Abrar | Blind equalization of square-QAM signals: a multimodulus approach[END_REF] and references therein). Two specific groups of methods can be roughly distinguished: (1-) Second-Order Statistics (SOS) methods ( [START_REF] Tong | Blind identification and equalization based on second-order statistics: a time domain approach[END_REF], [START_REF] Moulines | Subspace methods for the blind identification of multichannel FIR filters[END_REF] [START_REF] Diamantaras | An efficient subspace method for the blind identification of multichannel FIR systems[END_REF]) and (2-) Higher-Order Statistics (HOS) methods ( [START_REF] Godard | Self-recovering equalization and carrier tracking in twodimensional data communication systems[END_REF], [START_REF] Treichler | A new approach to multipath correction of constant modulus signals[END_REF], [START_REF] Abrar | Blind equalization of square-QAM signals: a multimodulus approach[END_REF]). In this paper we proposed a novel approach to blind equalization for a SISO channel.

The suggested approach is based on one key idea: rewrite the equalization problem as an identification problem in presence of bounded disturbances. Such an identification problem can be solved using Set Membership Identification methods. Among the Set Membership Identification methods, Optimal Bounding Ellipsoid (OBE) algorithms represent a very pop-ular class of recursive algorithms ( [START_REF] Fogel | On the value of information in system identification -bounded noise case[END_REF], [START_REF] Dasgupta | Asymptotically convergent modified recursive least square with datadependent updating and forgetting factor for systems with bounded noise[END_REF], [START_REF] Canudas-De-Wit | A modified EW-RLS algorithm for systems with bounded noise[END_REF], [START_REF] Tan | Identification for systems with bounded noise[END_REF], [START_REF] Boutayeb | Recursive identification of linear multivariable systems with bounded disturbances[END_REF], [START_REF] Pouliquen | Output error identification for multi-input multi-output systems with bounded disturbances[END_REF]). The proposed approach is based on such algorithms. It is a recursive method with a low computational burden and it is then suitable for real-time application.

The paper is organized as follows: in section 2 the channel model is described and the problem of blind channel equalization is formulated. Section 3 is devoted to the presentation of the equalization algorithm: the principle and the algorithm are stated in subsections 3.1 and 3.2, an analysis is provided in 3.3. Section 4 shows simulation results. Section 5 concludes the paper.

PROBLEM FORMULATION

On Fig. 1 {s k } is the input sequence, {x k } is the received sequence given by

x k = ∑ i h i s k-i + n k
where {h i } are the impulse response coefficients which encompasses the effects of the transmitter filter, unknown channel and receiver filter. {n k } is an unknown noise sequence, { s k } denotes the output of the equalizer. The input sequence {s k } is supposed to be unobservable and the objective in this paper is to propose a blind equalization algorithm i.e. an algorithm which allows the estimation of a deconvolution filter such that the transmitted sequence {s k } can be reconstructed reliably.

s k ✲ Channel FIR Equalizer ✲ ✲ ❄ + ✲ n k x k s k estimate source received
The proposed algorithm is based on the following usual assumptions: A.1 The input sequence {s k } is supposed to be independent, identically distributed;

A. 

s k = L ∑ i=0 f i x k-i = ϕ T k θ o where θ o =    f 0 . . . f L    and ϕ k =    x k . . . x k-L   
Assumption A.5 seems a bit hard nevertheless, due to the fact that inaccuracy in the modeling can be included in the noise n k , we have observed the algorithm to work well numerous cases where this assumption was not satisfied (this is the case in the example).

In the following we consider the function dec(.) defined by

dec(y) = arg min z ∈ C QAM { z -y 2 } (1) 
dec(y) corresponds to the nearest symbol in C QAM from y.

EQUALIZATION ALGORITHM

Principle

Under assumptions listed in section 2 and in the case where the noise sequence can be neglected (n k = 0), it is stated in [START_REF] Benveniste | Robust identification of a nonminimum phase system: blind adjustement of a linear equalizer in data communications[END_REF] that if we estimate a deconvolution filter F , defined by a coefficient vector θ with the same dimension as θ o and such that the output s k belongs to C QAM , then there exists n ∈ N such that θ = e jn π 2 θ o where θ o is the equalizer coefficient vector of F o defined in assumption [A.5].

In the case where the noise can't be neglected, the output 

L ∑ i=0 f i x k-i of
quence {n k } satisfies | L ∑ i=0 f i n k-i | < 1 (with F o defined in assumption [A.5]) then we have dec ( L ∑ i=0 f i x k-i ) = s k (2)
and dec

( L ∑ i=0 f i x k-i ) = L ∑ i=0 f i x k-i + v k (3) 
where

|v k | ≤ δ v with δ v = L ∑ i=0 |f i |δ n < 1 (4) 

Proof 1

We have 2) is a consequence of the fact that s k is drawn from a QAM constellation and

x k = ∑ i h i s k-i + n k and F o such that L ∑ i=0 f i (x k-i -n k-i ) = s k , it follows s k = L ∑ i=0 f i x k-i - L ∑ i=0 f i n k-i . (
| L ∑ i=0 f i n k-i | < 1. (3) follows with v k = - L ∑ i=0 f i n k-i such that |v k | < 1.
This trivial property is important because this means that at each time the output

L ∑ i=0 f i x k-i of F o is close to a point
which belongs to the constellation and this point corresponds to s k . This is illustrated on Fig. 2 for a 4-QAM modulation.

The proposed algorithm draws on (3) and ( 4): its aim is the estimation of a deconvolution filter F such that the output s k belongs to a neighborhood of the QAM constellation. This corresponds to the estimation of a coefficient vector θ in such a way that at each time

s k = ϕ T k θ satisfies dec( s k ) = s k + ϵ k that's to say dec ( ϕ T k θ ) = ϕ T k θ + ϵ k (5) 
where

|ϵ k | ≤ δ with δ v ≤ δ < 1.
In the case where the noise can be neglected (δ v = δ = 0) this corresponds to the principle stated in [START_REF] Benveniste | Robust identification of a nonminimum phase system: blind adjustement of a linear equalizer in data communications[END_REF]. 5) is similar to an identification problem in presence of bounded disturbances. In this paper we shall investigate an OBE type algorithm ( [START_REF] Canudas-De-Wit | A modified EW-RLS algorithm for systems with bounded noise[END_REF], [START_REF] Tan | Identification for systems with bounded noise[END_REF], [START_REF] Pouliquen | Output error identification for multi-input multi-output systems with bounded disturbances[END_REF]), the reason is that its computational complexity is low and it is adapted to an identification problem in presence of bounded disturbances. The algorithm is given in the next subsection.

✻ δv ∑ L i=0 fix k-i ✲ ✻ ❄ ✻ ✲ dec ( ∑ L i=0 fix k-i ) j 1 1 j Fig. 2. s k = L ∑ i=0 f i x k-i in a neighborhood of dec( s k ) for a 4-QAM modulation Problem (

Algorithm

θk represents an estimation of the coefficient vector θ. Let us define the a priori and a posteriori predictors as

   ŝk/k-1 = ϕ T k θk-1 ŝk/k = ϕ T k θk (6) 
and their corresponding errors

   ϵ k/k-1 = dec(ŝ k/k-1 ) -ŝk/k-1 ϵ k/k = dec(ŝ k/k ) -ŝk/k (7) 
The equalization algorithm corresponds to an improved weighted recursive least square algorithm. Its update equation for θk is as follows

θk = θk-1 + Γ k ϵ k/k-1 (8) with      Γ k = P k-1 ϕ k σ k λ+ϕ T k P k-1 ϕ k σ k P -1 k = λP -1 k-1 + ϕ k σ k ϕ T k (9) 
and ϵ k/k-1 defined from ( 6) and [START_REF] Diamantaras | An efficient subspace method for the blind identification of multichannel FIR systems[END_REF].

The two weighting terms are λ and σ k . 0 < λ ≤ 1 is the forgetting factor fixed by the user to weight the past information.

σ k is a switching flag designed in the following manner:

σ k =            λ ϕ T k P k-1 ϕ k ( ϵ k/k-1 δ -1 ) if ( ϵ k/k-1 > δ ) and ( ϕ T k P k-1 ϕ k > 0 ) 0 if ( ϵ k/k-1 ≤ δ ) or ( ϕ T k P k-1 ϕ k = 0 ) (10) 
The difference with algorithms proposed in [START_REF] Canudas-De-Wit | A modified EW-RLS algorithm for systems with bounded noise[END_REF], [START_REF] Tan | Identification for systems with bounded noise[END_REF] and [START_REF] Pouliquen | Output error identification for multi-input multi-output systems with bounded disturbances[END_REF] lies in the fact that, here, there is no reference signal. The proposed equalization algorithm is a decision directed equalization algorithm: the value of dec(ŝ k/k-1 ) monitors the algorithm behavior.

Analysis

The algorithm derived in subsection 3.2 is discussed in the present subsection.

δ is a user defined scalar whose role is described below. From [START_REF] Dasgupta | Asymptotically convergent modified recursive least square with datadependent updating and forgetting factor for systems with bounded noise[END_REF], σ k stops the updating of θk if the arrival data are meaningless (i.e. ϕ T k P k-1 ϕ k = 0). In the following consider the case where ϕ T k P k-1 ϕ k > 0.

From the above expressions the prediction ŝk/k can be written as

ŝk/k = ŝk/k-1 + ϕ T k Γ k ϵ k/k-1 This gives the following error dec ( ŝk/k-1 ) -ŝk/k = (1 -ϕ T k Γ k )ϵ k/k-1
Making use of the expression for Γ k , it follows

dec ( ŝk/k-1 ) -ŝk/k = λ λ + ϕ T k P k-1 ϕ k σ k ϵ k/k-1
Two possible cases arise.

• If ϵ k/k-1 > δ, then using the value of σ k yields dec ( ŝk/k-1 ) -ŝk/k = ϵ k/k-1 ϵ k/k-1 δ
This gives

dec ( ŝk/k-1 ) -ŝk/k = δ We have δ < 1 consequently dec ( ŝk/k ) = dec ( ŝk/k-1 )
and then we get

dec ( ŝk/k ) -ŝk/k = δ • If ϵ k/k-1 ≤ δ then σ k = 0 thus the adaptation is frozen: θk = θk-1 It follows that ŝk/k = ŝk/k-1 and dec ( ŝk/k ) = dec ( ŝk/k-1 )
then we get

dec ( ŝk/k ) -ŝk/k ≤ δ
This clearly shows that, via the weighting term σ k , the proposed algorithm ensures the following property:

∀k such that ϕ T k P k-1 ϕ k > 0 ; |ϵ k/k | ≤ δ (11) 
Consequently δ is a chosen bound on the a posteriori error ϵ k/k . This means that, for δ < 1, the output of the deconvolution filter belongs to a neighborhood of the QAM constellation. This neighborhood is defined by the bound δ.

The choice of the threshold δ determines the ability to reach a deconvolution filter F such that the transmitted sequence {s k } can be reconstructed reliably. From (4) this threshold depends on F o and on δ n :

δ v ≤ δ < 1 (12) 
with

δ v = L ∑ i=0 |f i |δ n .
An underestimation of the bound δ is in contradiction with condition [START_REF] Tan | Identification for systems with bounded noise[END_REF] while with an overestimation the convergence may be slower. In section 4, simulation experiments are performed with δ = 0.99. 

SIMULATION RESULTS

In this section, different simulations are reported to illustrate performance of the proposed method. We consider the 4- In each experiment the order of the equalizer filter is L = 15.

The forgetting factor λ has been chosen equal to 0.99 in order to reduce the impact of bad initial conditions and the threshold δ has been chosen equal to 0.99. {n k } is a white noise uniformly distributed with |n k | ≤ δ n where δ n is adjusted to have a desired Signal to Noise Ratio (SNR). The proposed blind equalization algorithm has been tested on the basis of Monte Carlo simulations of 100 experiments.

In a first simulation, we have investigated the influence of the data-set size N in the equalization accuracy. Here SNR= 20dB and N varied from 200 to 4000. The Symbol Error Ratio (SER) is depicted in Fig. 3 as a function of N . It appears an important improvement of performance as N grows until N = 3000.

Fig. 4 shows the constellation of ŝk/k for N = 2000. Each point is in a neighborhood of the 4-QAM constellation. In the beginning, points are on boundaries, then after several iterations they converge inside constellation circles.

In a second simulation, the number of available data was N = 2000 and SNR varied from 5dB to 30dB. We compared the proposed method against two methods: • the Constant Modulus Algorithm (CMA) proposed in [START_REF] Godard | Self-recovering equalization and carrier tracking in twodimensional data communication systems[END_REF];

• the Stochastic gradient algorithm (SQD) proposed in [START_REF] Lazaro | Stochastic blind equalization based on pdf fitting using parzen estimator[END_REF]. Fig. 5 shows SER curves as a function of SNR. We observe that the proposed algorithm enhances performance of CMA and SQD for high and low SNR. Let us remark that the computational time of the proposed method is less than 1s which demonstrates the low computational burden of the proposed method.

CONCLUSION

In this paper we have investigated the blind channel equalization problem. It is shown that this problem can be written as an identification problem in presence of bounded disturbances. The proposed algorithm is based on a particular type of ellipsoidal algorithms: OBE type algorithms. One important contribution of this paper is the fact that few parameters have to be chosen (the forgetting factor λ and the bound δ) and systematic rules for their selection are provided. Simulation results have demonstrated that the algorithm performs better than some algorithms proposed in literature. In terms of future research, we believe that the proposed algorithm can be extended to other equalizer structures (such as infinite impulse response representation) or to MIMO channel.
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  the filter F o doesn't belong to C QAM . A useful elementary property on the output of the deconvolution filter F o in a noisy context is provided below.

	Property 1
	Consider assumptions stated in section 2. If the noise se-