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Abstract 18 

In this study a method for propagating the hydrological model uncertainty in discharge 19 

predictions of ungauged Mediterranean catchments using a model parameter regionalization 20 

approach is presented. The method is developed and tested for the Thau catchment located in 21 

southern France using the SWAT hydrological model. Regionalization of model parameters 22 

based on physical similarity measured between gauged and ungauged catchments attributes is 23 

a popular methodology for discharge prediction in ungauged basins, but it is often confronted 24 

with an arbitrary criterion for selecting the “behavioral” model parameters sets (Mps) at the 25 

gauged catchment. A more objective method is provided in this paper where the transferrable 26 

Mps are selected based on the similarity between the donor and the receptor catchments. In 27 

addition, the method allows propagating the modeling uncertainty while transferring the Mps 28 
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to the ungauged catchments. Results indicate that physically similar catchments located 1 

within the same geographic and climatic region may exhibit similar hydrological behavior and 2 

can also be affected by similar model prediction uncertainty. Furthermore, the results suggest 3 

that model prediction uncertainty at the ungauged catchment increases as the dissimilarity 4 

between the donor and the receptor catchments increases. The methodology presented in this 5 

paper can be replicated and used in regionalization of any hydrological model parameters for 6 

estimating streamflow at ungauged catchment. 7 

1 Introduction 8 

Hydrological models are generally calibrated against observation variable(s), typically 9 

streamflow, to estimate some parameters that cannot be measured directly and to achieve a 10 

reliable prediction of the watershed response. However, in many cases, observed streamflow 11 

data are not available or are insufficient. Therefore, the catchment is considered as ungauged 12 

(Sivapalan et al., 2003) which may undermine the planning and the management of the water 13 

resources in the ungauged catchment. To overcome this problem, various regionalization 14 

techniques have been developed to estimate streamflow in ungauged catchments including 15 

methods based on similarity approache (Vandewiele and Elias, 1995; Idrissi et al., 1999; Merz 16 

and Blöschl, 2004; McIntyre et al., 2005; Oudin et al., 2008) and/or statistical approache 17 

(Sivapalan et al., 2003; Yadav et al., 2007). The latter approach consists of deriving statistical 18 

relationships between catchment attributes (CAs), such as topography, soil, drainage area, 19 

etc., and the optimized model parameters (Mps). Once these relationships have been 20 

established, one can determine the parameters of an ungauged basin using its CAs. Although 21 

it can be considered as the most common regionalization approach for ungauged catchment 22 

(Wagener and Wheater, 2006), statistical approaches were deeply criticized due to the 23 

assumption that most statistical models consider linearity between CAs and optimized Mps 24 

(Merz and Blöschl, 2004 ; Parajka et al., 2005; McIntyre et al., 2005). On the other hand, 25 

regionalization based on similarity approach consists of transferring the information from 26 

donor catchment(s) to receptor catchment(s). It starts by identifying one or more donor 27 

catchments which are usually gauged catchments and that are most likely to be hydrologically 28 

similar to one or more receptor catchments. Then, transfer the relevant information (Mps or 29 

streamflow records) from donor to receptor catchments. Typically, Mps transfer from donor 30 

to receptor catchment(s) rely on physical similarity measures. In this case, the same CAs as 31 

used in the statistical technique can be adopted to identify similar catchments. Alternatively, 32 
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use can be made of spatial proximity measures (e.g. the distance between the centroids of the 1 

catchments). The similarity regionalization approach is lying on the assumption that similar 2 

catchments behave hydrologically similarly. So, the definition of the similarity measure, 3 

certainly subjective, will condition the success of the selected regionalization approach 4 

(Heuvelmans et al., 2006).  5 

Several studies have focused on the transfer of Mps based on similarity approach for 6 

predicting streamflow records at ungauged catchments (Merz and Blöschl, 2004; McIntyre et 7 

al., 2005; Parajka et al., 2005; Bàrdossy, 2007; Oudin, et al., 2008). For instance, McIntyre et 8 

al., (2005) found that Mps transfer outperformed as compared to the statistical regression 9 

approach using a five parameters version of the Probability Distribution Model (Moore, 1985) 10 

applied on 127 UK catchments. Similar conclusions were drawn by Oudin et al., (2008) using 11 

two conceptual rainfall-runoff models on 913 French catchments; the GR4J (modèle du Génie 12 

Rural à 4 paramètres Journalier) developed by Perrin et al. (2003) and the TOPMO model 13 

which is a six parameters version of the TOPMODEL (Beven, 1997). Parajka et al. (2005) 14 

have used 4 groups of regionalization approaches. The first group is based on spatial 15 

averaging of calibrated model parameters, the second is based on spatial proximity (spatial 16 

distance) between the catchments, the third uses multiple regression between catchments 17 

attributes and model parameters and the last group is based on similarity between catchment 18 

attributes. They have found that regionalization methods based on spatial proximity and 19 

catchment attributes similarity performed better than multiple regression and spatial averaging 20 

methods. However, other studies have reported that even nearby catchments can be 21 

hydrologically different (Ouarda et al., 2001; Shu and Burn (2003); McIntyre et al., 2005; 22 

Beven, 2000). 23 

The similarity approach for regionalization of Mps in ungauged catchments implies the 24 

“good” performance of the calibrated hydrological model at the donor catchment. Then, Mps 25 

that lead to “good” or “behavioral” model simulations are selected and transferred to the 26 

ungauged catchment. However, it is argued that hydrological model predictions, even in well 27 

gauged catchments are subject to inherent uncertainty that stems from different uncertainty 28 

sources (e.g. inputs, parameter uncertainty, model structure, and observed data). Because of 29 

all these uncertainty sources, it is expected and argued that model calibration will lead to non-30 

unique sets of parameters (Beven and Binley, 1992). Therefore, it becomes difficult to 31 

associate the calibrated parameters with the physical characteristics of the catchment.  32 
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While model parameters uncertainty at well gauged catchment has received considerable 1 

attention during the past two decades (Beven and Binley 1992, Duan et al., 1992; Abbaspour 2 

et al., 1997; Muleta and Nicklow, 2005; Vrugt et al., 2008; Yang et al., 2008; Zhang et al., 3 

2009, Shen et al., 2012), a little attention has been given to the uncertainty resulting from Mps 4 

regionalization at the ungauged sites (Wagener and Wheater, 2006). Furthermore, additional 5 

uncertainty related to the regionalization procedure that stems from the arbitrary choices of 6 

the CAs, the similarity measure, the selection of the candidate parameter sets to be transferred 7 

can have a significant effect on the model prediction uncertainty in the ungauged catchments. 8 

Addressing all these sources of uncertainty and understanding the way they can affect the 9 

model prediction in the ungauged catchment is a challenging task (Sivapalan et al., 2003 and 10 

Wagener et al., 2004). 11 

This paper aims to contribute to this challenge by addressing the following question: how can 12 

Mps uncertainty of donor catchments be propagated through regionalization schemes based 13 

on the similarity approach, and how does it affect the prediction uncertainty in ungauged 14 

catchment? Specific questions are: (1) Is the selected hydrological model suitable for 15 

reproducing the hydrology in the ungauged catchment? (2) How does parameter uncertainty 16 

affect model prediction uncertainty in the ungauged catchment through the regionalization 17 

scheme? 18 

In an attempt to answer to these research questions, the paper is organized in 3 main sections. 19 

In the first section the study site, the data available, the modeling approach and the 20 

regionalization procedure are described. The second section describes and discusses the 21 

results of the modeling and the regionalization approach. The final section reports the main 22 

outcomes of the paper as a summary and conclusions.  23 

2 Study site description and available data 24 

2.1 Study site description 25 

The Thau catchment is located on the French Mediterranean coast (Languedoc-Rousillon 26 

region) and drains an area of approximately 280 Km2. The catchment is drained by ten 27 

streams that flow directly into the lagoon (Fig.1). The basins size varies from 3.42 Km2 to 67 28 

Km2 with the biggest one corresponding to the Vène catchment. Other geomorphologic and 29 

topographic characteristics of these catchments are given in Table 2. Dominant land use types 30 
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are vineyards and non-agriculture vegetation (trees, Mediterranean sclerophyllous vegetation). 1 

The distribution of the main land use within each sub-catchment is given in Table 2. The 2 

eastern part of the Thau catchment area is composed of Jurassic limestone overlaid by 3 

Miocene marls in its central part, corresponding to 60% of the Vène watershed surface. These 4 

Jurassic limestone are characterized by the presence of a large karstic aquifer whose limits 5 

extend the topographic limit of the catchment and strongly influences the hydrological regime 6 

of the Vène catchment (Plus et al., 2006; Gallart et al., 2008; Perrin and Tournoud, 2009; 7 

Sellami et al., 2013). Soils in this part of the Thau catchment are mainly sandy-loam and silty-8 

loam soils with porosity ranging from 35 to 50 % at 1 m depth of the soil profile. The western 9 

part of the Thau catchment is composed of the Eocene marls overlaid mainly by the Miocene 10 

marls. This region covers the central part of the Pallas, Aygues_Vacques, Nègues_Vacques, 11 

Mayroual, Soupié and Fontanilles catchments with silty-clayey-loam and loam textured soils 12 

so that runoff generation process are expected to be different from the eastern part. 13 

2.2 Available data 14 

The climate is a typical Mediterranean regime characterized by a large seasonal variability of 15 

rainfall in time and space with an annual average value of 600 mm. Precipitation occurs as 16 

short intense storms mainly during autumn and spring (from September to January) and 17 

separated by a long dry period (from February to August). The hottest months are July and 18 

August where the maximum temperature can exceed 35°C and the coldest months are 19 

December and January where daily minimum temperature can reach -5°C. 20 

Data such as a Digital Elevation Model (50 m grid, provided by the French National 21 

Geographic Institute), a soil map (50 m resolution, provided by the INRA Montpellier) and 22 

land use maps (50 m resolution) for 1996 (La Jeunesse et al., 2002) and 2010 are available for 23 

each catchment. Daily precipitation data (from 1990 to 1999) are provided by five rain gauge 24 

stations located within the study area (Fig.1) but only the Sète rain gauge (French national 25 

meteorological station of Météo France) has daily precipitation data from 1990 to 2009. Daily 26 

temperatures are provided from the meteorological station of Sète. Wind speed, air relative 27 

humidity and solar radiation daily data are provided from the meteorological station of 28 

Fréjorgues airport located 20 km in the northeastern of the Thau catchment. 29 

In the Thau basin about two years (1994-1996) streamflow records are available for the Vène 30 

and the Pallas catchments, while for the other rivers, streamflow records are either missing or 31 
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either have missing values and are not long enough to allow direct model calibration. The 1 

lengths of the available streamflow records, as well as their corresponding time periods, for 2 

each catchment are summarized in Table 1. Such a case of poorly gauged catchments is very 3 

common in semi-arid and Mediterranean area and, when coupled with discontinuities in flow 4 

regime of ephemeral rivers, makes the modeling of the discharge challenging.  5 

Although observed streamflow time series are available for some catchments but are at 6 

different time periods (1994-1996 and 2007-2009), climate characteristics (mean daily/annual 7 

precipitation, mean, maximum and minimum daily temperature, etc.) between these two time 8 

periods are relatively similar. However, land use and land cover (LULC) types between the 9 

time periods have undergone a slight change according to the LULC map of 1996 and 2010. 10 

Figure 2 shows the change of LULC occurred in the Pallas and in the Vène catchments 11 

between 1996 and 2010. It shows that vineyards surface have decreased by an average of 13% 12 

whereas non-agriculture vegetation has increased by an average of 7%. Despite that, it is well 13 

argued that LULC is one of the major drivers of the hydrological processes and catchment 14 

runoff response (Nathan and McMahon, 1990; Wagener et al., 2007). The study of the effect 15 

of land use change on model parameters regionalization approach results is, however, not 16 

within the objectives of this paper.  17 

As the Pallas and the Vène catchments have been subject to many previous studies (Aquilina 18 

et al., 2002; La Jeunesse et al., 2002; Plus et al., 2006; Chahinian et al., 2011, Sellami et al., 19 

2013) more detailed data are available for these subcatchments. Therefore, the Vène and the 20 

Pallas catchments are considered as gauged catchments, while all the other small catchments 21 

are considered ungauged. 22 

3 Description of the hydrological model 23 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is a continuous-time and 24 

physically based hydrological model. SWAT is developed to predict the impact of land 25 

management practices on water, sediment and agricultural chemical yields in large complex 26 

catchments with different soil, land use and management conditions over long periods of time 27 

(Eckhardt et al., 2005). The hydrological model operates by dividing the watershed into 28 

subbasins. Each subbasin is further discretized into a series of hydrologic response units 29 

(HRUs), which are unique soil-land use combinations. Soil water content, surface runoff, 30 

nutrient cycles, sediment yield, crop growth and management practices are simulated for each 31 
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HRU and then aggregated for the subbasin by a weighted average. The hydrological balance 1 

is calculated based on the following equation: 2 

gwseepasurfday QWEQP
t

SW 
                                                                              (1) 3 

where SW is the soil water content (mm), dayP  is precipitation rate (mm/day), Qsurf  is the 4 

surface runoff rate (mm/day), aE  is evapotranspiration rate (mm/day), seepW  is the water 5 

percolation rate from the soil profile (mm/day), and Qgw is the groundwater flow rate 6 

(mm/day). 7 

The water in each HRU in SWAT is stored in four storage volumes: snow, soil profile, 8 

shallow aquifer, and deep aquifer. Surface runoff from daily rainfall is estimated using a 9 

modified SCS curve number method, which estimates the amount of runoff based on local 10 

land use, soil type, and antecedent moisture condition. Calculated flow, sediment yield, and 11 

nutrient loading obtained for each subbasin are then routed through the river channel using the 12 

variable storage or Muskingum method. The watershed concentration time is estimated using 13 

Manning’s Kinematic Equation, considering both overland and channel flow.  14 

The soil profile is subdivided into multiple layers that support soil water processes including 15 

infiltration, evaporation, plant uptake, lateral flow, and percolation to lower layers. The soil 16 

percolation component of SWAT uses a water storage capacity technique to predict flow 17 

through each soil layer in the root zone. Downward flow occurs when field capacity of a soil 18 

layer is exceeded and the layer below is not saturated. Percolation from the bottom of the soil 19 

profile recharges the shallow aquifer. The amount of water entering the shallow aquifer is a 20 

function of the total water volume exiting the soil profile and an exponential decay function to 21 

account for the recharge time delay. The latter is depending on the overlying geologic 22 

formations. If the depth of the shallow aquifer increases above the user defined threshold 23 

value, it is assumed that groundwater discharge is occurring and contributing to the reach. 24 

Upward flow movement to the overlaying unsaturated soil layers is simulated by routing 25 

water in the shallow aquifer storage component to the soil by capillary pressure or by direct 26 

absorption by the plant roots. This remove water process is termed “revap”. 27 

The model computes evaporation from soils and plants separately. Potential 28 

evapotranspiration can be modelled with three options available in SWAT, that is, Penman-29 

Monteith, Priestley–Taylor and Hargreaves methods (Neitsch et al., 2005), depending on data 30 
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availability. Potential soil water evaporation is estimated as a function of potential ET and 1 

leaf area index. Actual soil evaporation is estimated by using exponential functions of soil 2 

depth and water content. Plant water evaporation is simulated as a linear function of potential 3 

ET, leaf area index, and root depth, and can be limited by soil water content. More detailed 4 

descriptions of the SWAT model can be found in Neitsch et al., (2005). 5 

The SWAT simulations are conducted on the gauged catchments from 1990 to 1996 on a 6 

daily time step. However, due to the complex nature of the flow processes and the presence of 7 

the karstic system in the catchment, a model warm-up period of 4 years (1990-1993) is 8 

considered to be sufficient to minimize the effects of the initial state of the SWAT variables 9 

on the river flow prediction (Sellami et al., 2013). The modified SCS curve number method is 10 

chosen for surface runoff volume computing. The variable storage coefficient method is 11 

selected for the flow routing through the channel and potential evapotranspiration is estimated 12 

by the Penman-Monteith method. The daily stream flow data from 02/08/1994 to 01/07/1996 13 

and from 25/11/1995 to 14/06/1996 for the Vène and the Pallas catchments, respectively, are 14 

used to assess the model prediction performances. 15 

4 Modeling approach 16 

4.1 Sensitivity analysis (SA) 17 

A way to deal with high-dimensional hydrological models, such as SWAT, is to conduct SA 18 

to select only the sensitive model parameters that are assumed to represent the real system 19 

behavior. In the current study case, a SA is conducted using the built-in SWAT SA tool that 20 

uses the Latin Hypercube One-factor-AT-a Time (LH-OAT) (van Griensven et al., 2006) 21 

method. In the LH-OAT technique only one input parameter is modified between two 22 

successive model runs. Therefore, the change in model output can then be attributed to such 23 

parameter modification. In this study, parameter that induces the highest model output change 24 

is ranked first and the less sensitive parameter is given a rank equals to zero. A complete 25 

detailed explanation of this SA technique can be found in van Griensven et al., (2006). 26 

SA is performed on 17 SWAT model parameters that may have a potential to influence the 27 

flow river (Table 3). Snow parameters are not included in the SA since the study site belongs 28 

to a semi-arid climate and the flow is not affected by the snow melt process. The ranges of 29 

parameters variation are based on the SWAT manual (Neitsch et al., 2005) and are sampled 30 
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by considering a uniform distribution (Yang et al., 2008; Chahinian et al., 2011) in their 1 

physical range. Ten sensitive SWAT parameters are identified for each of the Pallas and the 2 

Vène catchment (Table 3). The identified sensitive parameters are the same for both cases but 3 

they differ in their ranking. The first two ranked parameters are groundwater related 4 

parameters: ALPHA_BF (a parameter that expresses the recession or the rate at which the 5 

groundwater is returned to the flow) and GWQMN (a threshold depth of water in the shallow 6 

aquifer required to return flow). The third ranked parameter for the Vène river is 7 

GW_DELAY, which is defined as the required time for water leaving the bottom of the root 8 

zone to reach the shallow aquifer where it can contribute to lateral groundwater flow. This 9 

groundwater parameter is ranked 7th for the Pallas river. The third ranked parameter for the 10 

Pallas river is CN2, which is the initial SCS runoff curve number for moisture condition and 11 

that determines the volume of surface runoff contributing to the total stream flow. This latter 12 

parameter is a surface runoff parameter that depends on several factors including soil types, 13 

soil textures, soil permeability, land use properties, etc. The remaining sensitive parameters 14 

for the Vène and the Pallas catchments are direct or indirect surface runoff related parameters: 15 

CH_K, which is the hydraulic conductivity of the channel; CH_N, which is the manning’s 16 

value of the tributary channel; ESCO, which is the soil evaporation compensation factor 17 

which directly influences the evapotranspiration losses from the watershed; EPCO, which is 18 

the plant uptake compensation factor and expresses the amount of water needed to meet the 19 

plant uptake demand; GW_REVAP, which is dimensionless coefficient controlling the rate of 20 

water movement between the root zone and the shallow aquifer; and SURLAG, which 21 

controls the fraction of the total water that is allowed to enter the stream on any specific day. 22 

It is argued that in order to provide better identified models and to ensure high regionalization 23 

potential, the structure of the selected hydrological model should be reduced to only 24 

components that describe the key process of the system. Therefore, it is suggested that the 25 

number of required model parameter should not be more than half a dozen (Wagener et al., 26 

2001). However, the approach to retain only the necessary model structure components 27 

(parsimonious model) do not necessary guarantees that all the hydrological processes of the 28 

watershed are identified and represented, especially in complex hydrological systems. 29 

However, from the results of the SA and the physical meaning of the selected sensitive 30 

parameters it is obviously difficult to select less than 10 parameters in the current study. In 31 

addition, it is well known that the hydrological processes are complex in the study area due to 32 

the presence of the karstic aquifer in the Vène watershed (Plus et al. 2006, Gallart et al. 2008, 33 
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Perrin and Tournoud 2009, Chahinian et al. 2011). Hence, selecting the 10 sensitive 1 

parameters described above ensures that the model does not omit one or more hydrological 2 

processes important for this particular case study. Furthermore, other studies dealing with the 3 

SWAT model have identified more or less 10 sensitive parameters that are assumed to 4 

describe appropriately the hydrological process of the real system. For example, Heuvelmans 5 

et al., (2004) have identified 7 sensitive SWAT model parameters related to flow generation 6 

to be regionalized in Northern Belgium. Gitau and Chaubey (2010) have selected 16 SWAT 7 

parameters for flow prediction in ungauged catchments. Chahinian et al., (2011) have 8 

calibrated 14 SWAT model parameters for modeling flow and nutrient emission processes. 9 

They found that 12 sensitive parameters are directly and indirectly related to flow simulation. 10 

4.2 Uncertainty analysis (UA) 11 

The Generalized Likelihood Uncertainty Estimation, GLUE, (Beven and Binley 1992) is 12 

selected for assessing the model parameter uncertainty. The reasons behind selecting this 13 

technique are its simple concept, its relative ease of implementation and use without major 14 

modifications to the method itself. GLUE is a Monte Carlo based method for modelling 15 

uncertainty analysis (Beven and Binley, 1992; Freer et al., 1996 for details). The approach is 16 

based on a large number of model runs with different combinations of the parameter values 17 

chosen randomly and independently from the prior distribution of the parameter space. By 18 

comparing predicted and observed responses, each set of parameter values is assigned a 19 

likelihood value which is a function that quantifies how well that particular parameter 20 

combination simulates the observed system. Based on a cutoff threshold, the total sample of 21 

simulations is then split into “behavioral” and “non-behavioral” parameter combinations. 22 

Then, from the cumulative distribution of the model predictions the desired quantiles are 23 

computed to represent the uncertainty bands. Therefore, the selection of these quantiles has an 24 

impact on the parameter uncertainty analysis (Blasone et al., 2008; Xiong and O’Connor, 25 

2008; Jin et al., 2010; Gong et al., 2011). However, it is very common that the 95% 26 

confidence interval is used to represent the prediction uncertainty interval which is also used 27 

in this study. Others subjective choices are considered within the implementation of the 28 

GLUE framework in this study. The prior distributions of the selected parameters are assumed 29 

to follow a uniform distribution over their respective range (Table 3). This initial distribution 30 

is chosen since the real distribution of the parameter is unknown. The ranges of the 31 

parameters are chosen based on the SWAT manual (Neitsch et al., 2005) and previous 32 
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applications of the technique with the SWAT model (Yang et al., 2008; Shen et al., 2012). To 1 

sample the prior parameter distribution, a simple random sampling is implemented. The 2 

number of sampling sets is set to 10,000. Such number of simulations was identified as 3 

sufficient for assessing uncertainty of about 10 sensitive SWAT model parameters (Yang et 4 

al., 2008, Gong et al., 2011). Moreover, it was mentioned by Yang et al. (2008) that no 5 

significant change was observed in the GLUE results between 10,000 and 20,000 model runs. 6 

So, the selected number of 10,000 simulations is considered reasonably sufficient for this 7 

study. The likelihood function selected is the Nash and Sutcliffe (1970) efficiency coefficient 8 

(NS) since it is widely used as a likelihood measure within GLUE in the literature (Beven and 9 

Freer, 2001; Arabi et al., 2007; Shen et al., 2012).  10 

 
 









n

i
i

n

i
ii
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OP
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1

2

1

2

1                                                                                                      (2) 11 

with Oi is the observed value, O  mean observed values and Pi is the predicted value. The 12 

range of NS lies between 1 (perfect fit) and −∞.  13 

The cutoff threshold selected to separate “behavioral” from “non-behavioral” parameter sets 14 

is another subjective choice within the GLUE method. Frequently, when the likelihood value 15 

is greater than zero the corresponding simulations are considered “behavioral” (Freni et al., 16 

2010; Gong et al., 2011). In this study, model simulations with negative NS values are 17 

considered unacceptable and, therefore, the corresponding parameter sets are discarded from 18 

further analysis. The selection of the threshold value is an entirely arbitrary choice that affects 19 

the prediction uncertainty (Montanari, 2005; Mantovan and Todini, 2006) and probably is the 20 

most important concern for the GLUE method. A small cutoff threshold will lead to larger 21 

“behavioral” simulations and larger uncertainty bands, while larger threshold value will 22 

decrease the numbers of “behavioral” models and will reduce the uncertainly interval width 23 

(Xiong and O’Connor, 2008; Blasone et al., 2008; Viola et al., 2009). As the GLUE method is 24 

dependent on all these subjective decisions that influence the final uncertainty prediction, it 25 

has been deeply criticized and its several drawbacks have been well pointed out and discussed 26 

in the literature (Montanari, 2005; Mantovan and Todini, 2006). 27 
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4.3 The regionalization schemes 1 

The adopted regionalization method for this study is the transfer of Mps from donor to 2 

receptor catchment based on the similarity between their physical attributes (topography, 3 

geology, soils, drainage area, etc.). The physical similarity approach is based on the 4 

assumption that catchment physiographic characteristics predetermine the hydrological 5 

behavior. Therefore, the selection of relevant CAs is crucial for the success of the 6 

regionalization procedure. The catchments attributes (CAs) selected and used to define 7 

similarity are related to topography, land cover, drainage area, soil and geology features 8 

(Table 2). They are derived from the available data such as land use maps, soil maps, digital 9 

elevation model and geology maps. These CAs are generally considered as the main drivers 10 

of the hydrological process in the literature (Merz and Blöschl, 2004; Heuvelmans et al., 11 

2006; Wagener et al., 2007; Bastola et al., 2008) and are the most common ones used to 12 

define similarity between catchments in model parameter regionalization schemes. For 13 

instance, Heuvelmans et al. (2006) have considered catchment area, average slope, dominant 14 

land use and soil texture classes as the most appropriate catchment descriptors in model 15 

parameters regionalization in Flemish part of the Scheldt river basin (Belgium). Besides these 16 

CAs, others authors have used flow indices or characteristics using flow duration curve (FDC) 17 

such as (Masih et al., 2010), indices of hydrological responses (Yadav et al., 2007) or hydro-18 

meteorological long term data (Bastola et al., 2008) as relevant catchment descriptors. 19 

However, the selection of the appropriate CAs depends also on the physical meaning of the 20 

selected model parameters, on the objective of the regionalization procedure and on the 21 

knowledge about the key hydrological processes occurring within the catchment. For 22 

example, when the objective of the regionalization procedure is to estimate the flow in 23 

ungauged catchments, as in our case, the use of flow characteristics or indices as input is 24 

useless. Model parameters, especially those of physically based model such as SWAT, are 25 

assumed to be closely related to CAs and, thus, representing the functional behavior of the 26 

catchment response. For instance, in the SWAT model the curve number parameter (CN2) 27 

depends on the soil and land use characteristics of the catchment which are considered among 28 

the relevant catchment descriptors. Knowledge about the key processes in the system can also 29 

assist the selection of the relevant CAs. As an example, the geology is considered as relevant 30 

catchment descriptor in our study case since it is known that the Jurassic limestone aquifer in 31 

the eastern part of the Thau catchment strongly influences the hydrological regime of the 32 

Vène catchment (Sellami et al., 2013).  33 
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Within each catchment, the dominant soil physical texture based on the relative proportion of 1 

sand, silt and clay is considered to identify the CAs related to soil type. The main geological 2 

features considered is the surface catchment percentage covered by the Jurassic limestone 3 

estimated using the GIS tools based on a simplified geological map of the Thau catchment. 4 

Other geomorphologic and topographic descriptors (mean elevation, mean slope, drainage 5 

area) are also calculated using GIS tools and are reported in Table 2. Besides the CAs, it is 6 

very common that climatic characteristics such as long-term precipitation characteristics, the 7 

annual precipitation, annual potential evapotranspiration index, solar radiation, etc. (see, 8 

Wagener et al., 2007), are used for the similarity measure between the catchments. However, 9 

in our case study such climatic descriptors are omitted since we are dealing with small and 10 

geographically close catchments located within a relatively small area under the same climate 11 

regime. 12 

Unfortunately, there does not exist a universally accepted metric or combination of metrics to 13 

quantify catchments similarity in the catchment attributes dimension. Some authors have used 14 

the inverse of the Euclidean distance (Heuvelmans et al., 2004) or the normalized sum of the 15 

absolute difference (Parajka et al., 2005). Others authors (Masih et al., 2010) have used the 16 

weighted normalized sum of the absolute difference where equal or more weights are assigned 17 

to individual catchment attributes in order to consider their varying assumed importance. To 18 

identify similar catchments groups, each catchment is assigned to its own cluster and the 19 

similarity matrix between clusters, in the catchment attributes dimension, is calculated. Then, 20 

clusters with the largest similarity measure are linked together into binary clusters based on 21 

the average linkage method where the distance between two clusters is defined as the average 22 

distance between all objects belonging to these clusters. These steps are repeated and the 23 

similarity matrix between clusters is updated until all clusters are linked together in a 24 

hierarchical tree. The Pearson’s correlation coefficient, denoted hereafter as R2, is used as a 25 

similarity metric between catchments attributes; the higher the R2 between the target and the 26 

donor catchments, the more similar they are. Once the clusters are established, information 27 

can be transposed from donor(s) to receptor(s) catchment(s). In complex hydrological models 28 

this transfer of information is a difficult task due to the parameter uncertainty, to their 29 

interdependency, to the non-unique solution and to other various sources of uncertainty 30 

(Bárdossy, 2007). Some authors (Heuvelmans et al., 2004; McIntyre et al., 2005; Bárdossy 31 

2007; Oudin et al., 2008; He et al., 2011) suggest to transfer the entire parameter sets to the 32 

ungauged catchment(s) justifying that transferring the entire parameter sets does not interfere 33 
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with the integrity of the model parameters as a set and that the entire hydrological processes 1 

are considered at once.  2 

The traditional way of transferring the Mps from donor(s) to receptor(s) catchment(s) can also 3 

be based on the selection of the “behavioral” Mps obtained from simulations with likelihood 4 

values (e.g. NS index) above certain user defined threshold value at the donor(s) 5 

catchment(s). However, doing this way all the receptor(s) catchment(s) will receive equal 6 

number of Mps despite that they are not equally similar to the donor(s) catchment(s). This 7 

may overestimate the prediction uncertainty at the closest receptor(s) catchment(s) and may 8 

underestimate it at catchments that are further from the donor(s) catchment(s). Furthermore, 9 

the selection of the “behavioral” Mps is often based on an arbitrary and entirely subjective 10 

choice of a threshold value which may add to the uncertainty of the final regionalization 11 

results. 12 

In this section we propose a more objective method for selecting the appropriate Mps to be 13 

transferred from the gauged to the ungauged catchment. First, the similarity measure (R2
(d,r)) 14 

between gauged and ungauged catchment in their CAs dimension is calculated (data not 15 

shown) and clusters with similar catchments are constructed. The SWAT model is 16 

implemented and parameterized at each catchment based on the SWAT pre-processing 17 

procedure with the available data while model parameter calibration and uncertainty analysis 18 

are conducted only at the gauged catchments (donor catchments) using the GLUE approach. 19 

At this stage, only Mps sets that lead to positive NS values between observation and model 20 

simulation at the gauged catchment are retained. Based on the similarity measure and the 21 

maximum NS value, a new threshold value, denoted hereafter Thresh, is calculated and 22 

updated using Eq.(3) that serves as a cutoff value to identify the candidates Mps to be 23 

transferred from the donor to the receptor catchment.  24 

    drdrd NSRThresh max2
,,                                                                                                     (3) 25 

where R2
(d,r) is the similarity measure between the donor catchment (d) and the receptor 26 

catchment (r) and scaled between 0 and 1, and NSd is the highest likelihood value reached in 27 

the model simulations at the donor catchment (d). To compute the threshold value 28 

(Thresh(d,r)), the similarity matrix between all catchments attributes is calculated (data not 29 

shown). By applying Eq. (3) the number of the candidate Mps will increase linearly as the 30 

dissimilarity between the donor(s) and the receptor(s) catchment(s) increases. Furthermore, 31 

besides parameter uncertainty, additional uncertainty related to the regionalization schemes is 32 
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explicitly accounted in the final model prediction at the ungauged catchment(s) by 1 

introducing the similarity measure in Eq.(3). As the dissimilarity between the donor(s) and the 2 

target catchment(s) increases, model prediction uncertainty in the target catchment(s) 3 

intuitively increases and vice versa. Another advantage of using Eq.(3) is that the selection of 4 

the threshold value to define the number of the candidate Mps is based on the similarity 5 

metric rather than on a subjective choice of the modeler which may reduce this additional 6 

uncertainty component in the final regionalization procedure. Once the threshold value 7 

(Thresh) is calculated the entire selected Mps are transferred from the donor catchment(s) to 8 

the receptor(s) catchment(s).  9 

Because updating manually the parameter values in the text SWAT file is a time consuming 10 

and tedious task, a sampling and rewriting program in the MATLAB® computing language 11 

was developed that provides the Mps from the donor catchment to the receptor catchment in 12 

the SWAT model format. 13 

4.4 Modeling evaluation criteria 14 

Besides the NS statistical criteria the correlation coefficient R2 is used to assess the goodness 15 

of fit between observation and the SWAT model simulations. The Model prediction 16 

uncertainty is quantified by the p-factor which is the percentage of measured data bracketed 17 

by the 95% prediction uncertainty (95PPU) and by a measure of the Average Relative Interval 18 

Length ARIL proposed by Jin et al., (2010). However, for more efficient comparison between 19 

the ungauged catchments without observations data, the ARIL was modified by standardizing 20 

the upper and lower boundary values of the simulated point by its mean value. The modified 21 

ARIL is called, hereafter, the Average Standardized Relative Interval Length (ASRIL). 22 

100_ 
n

NQ
factorp in                                                                                                           (4)   23 
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where NQin is the number of observed discharge falling in the 95PPU , M
tQ

%5.97,
and M

tQ
%5.2,

 25 

represent the upper and lower simulated boundary, respectively, at time t of the 95PPU, n is 26 

the number of observation data points, m is the length of simulation , the subscript M refers to 27 

simulated, t refers to the simulation time step. The goodness of calibration and prediction 28 
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uncertainty is judged on the basis of the closeness of the p-factor to 100% (i.e., all 1 

observations are bracketed by the 95PPU) and the ASRIL to 0 (if there is no uncertainty, the 2 

value of ASRIL is zero). A smaller value of ASRIL and higher value of p-factor represent 3 

better performance. 4 

To assess the relative performances of the regionalization procedure for flow estimation in 5 

ungauged catchments, usually the simulated flow is compared to the observed one and/or 6 

sometimes gauged catchments are considered in turn as if they are ungauged (Oudin et al., 7 

2008). In the current work, catchments have very scarce streamflow records. Therefore any 8 

available observation data, field knowledge and/or previous work conducted in the area of 9 

interest can be precious and helpful to check the performance of the adopted regionalization 10 

method. Performance assessment of the regionalization procedure is based on three evaluation 11 

criteria. The first one namely fit to observation (van Griensven et al., 2012) and consists of 12 

the quantitative assessment of model accuracy simulations compared to measurements using 13 

some statistical criteria. In this regard, the simulated FDCs flow percentiles are compared to 14 

the observed ones by using the NS coefficient and the model prediction uncertainty is 15 

assessed through the p-factor (percentage of observed data bracketed in the 95% uncertainty 16 

interval) wherever observation data are available. The second one is called fit to reality (van 17 

Griensven et al., 2012) and consists of the evaluation of the model capability in reproducing 18 

the real hydrological process and in reflecting the reality of the field. For instance, the 19 

predicted mass balance can be calculated and used to assess the performance of the 20 

regionalization procedure in representing the main hydrological processes that govern the 21 

hydrology of the study system. The third evaluation criterion is called fit to geography and it 22 

consists of mapping the predicted variable in order to check the soundness of its spatial 23 

distribution with some observed data (e.g. soil moisture maps) or with some field knowledge 24 

(e.g. geology, karstic system, etc.). 25 

5 Results and discussions 26 

5.1 Model performances and prediction uncertainty at the gauged catchments 27 

The NS values range from 0 to 0.71 with an average value of 0.47 for the Vène catchment 28 

while they range from 0 to 0.76 with an average value of 0.60 for the Pallas catchment. The 29 

correlation coefficient (R2) is higher than 0.80 in both catchments indicating that SWAT is 30 

able to satisfactorily reproduce the general behavior of the observed hydrograph of both 31 
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watersheds. The GLUE parameter sets are more robust and consistent in providing 1 

simulations that match better the observations of the Pallas catchment than these of the Vène 2 

catchment.  3 

The 95% GLUE prediction interval (95PPU) is considered for uncertainty analysis. The 4 

average width of the 95PPU is evaluated using the ASRIL and the percentage of data 5 

bracketed by this interval is estimated using the p-factor. The 95% GLUE uncertainty interval 6 

for the Vène and the Pallas catchments is plotted in Fig. 3. The ASRIL and the p-factor are 7 

2.48 and 70% for the Pallas catchment, while the same statistics are 2.75 and 63% for the 8 

Vène catchment, respectively. The statistics are far from their suggested values (ASRIL ≈ 0 9 

and p-factor ≈100%) indicating wide prediction uncertainty for both catchments. The reasons 10 

can be attributed to the several uncertainty sources (e.g. input data, parameter uncertainty, 11 

model structure uncertainty, error in the measured data, etc.) and to the subjectivity in the 12 

GLUE method (e.g. threshold value, the likelihood function, the initial parameter distribution) 13 

involved at each modelling step (Xiong and O’Connor, 2008; Shrestha et al., 2009). 14 

Furthermore, the karstic nature of the study site (especially the Vène catchment) makes the 15 

discharge modelling using the SWAT model more challenging and more uncertain (Sellami et 16 

al., 2013). 17 

Besides the model prediction uncertainty, the parameters correlation and posterior distribution 18 

are investigated (results not shown). It is noted that different GLUE parameter combinations 19 

lead to similar model results in both case study. This is known as the equifinality concept 20 

(Beven and Binley, 1992) which is behind the GLUE method philosophy. Equifinality 21 

originates from the imperfect knowledge of the system under consideration and from different 22 

error sources (errors in input and boundaries conditions, errors in using an approximate model 23 

structure of the real system and error in the observation variable being modelled) that can 24 

interact in a non-linear way (Beven, 2006). In addition, some parameters depicted as very 25 

sensitive by the SA method turned out to be less sensitive or less important by the GLUE 26 

method, such as ALPHA_BF and GWQMN. In fact, given the equifinality behind the GLUE 27 

concept and the possible correlations and interactions between parameters, a single parameter 28 

may lose in importance in the context of a combination of parameters values. As a corollary, 29 

GLUE cannot reveal the sensitivity of a single parameter. 30 

The posterior parameters distribution (PDs) derived from the Monte Carlo runs are large and 31 

rather uniformly distributed over their range. This is because GLUE tends to flatten the 32 
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response surface of the parameter by given equally weight to “behavioral” model runs. These 1 

results are consistent with previous studies (e.g. Yang et al., 2008 and Dotto et al., 2012). 2 

However, the PDs shape and the uncertainty range of the parameters are dependent on the 3 

selected threshold value (Fig.4). By selecting a threshold NS ≥ 0, all parameters are rather 4 

uniformly distributed which lead to non-identifiable parameters indicating wide parameter 5 

uncertainty. While increasing the threshold value to NS = 0.60, some parameter PDs become 6 

narrower and peakier and well identified. This is illustrated in Fig.4 for the example of the 7 

CN2 and GW_DELAY for the Vène catchment, and CN2 and SURLAG parameters for the 8 

Pallas catchment. In addition to the shape of the parameter PDs, increasing the threshold 9 

value results in a decline of the numbers of “behavioral” Mps retained and causes the 10 

depletion of the coverage of the observation by the uncertainty interval. For instance, by 11 

selecting a threshold value NS≥ 0.60, the p-factor decreased from 70% to 46% and from 63% 12 

to 53% for the Pallas and the Vène catchments, respectively. The ASRIL also decreased to 13 

2.23 and to 1.92 in the Vène and in the Pallas catchments, respectively, following the increase 14 

of the threshold value. These results are in accordance with the findings of Blasone et al., 15 

(2008) and Gong et al., (2011) and suggest that interpretation of parameter uncertainty 16 

derived by GLUE is always conditioned to the choices of threshold value and the prediction 17 

uncertainty level. 18 

Investigations of the parameters correlation matrices (data not shown) show very low 19 

correlation between the parameters. It seems that GLUE does not explicitly account for 20 

parameters interaction. Many authors (Blasone et al., 2008; Yang et al., 2008; Jin et al., 2010) 21 

have reported the weak correlation between parameters within the GLUE method. One 22 

explanation can be that the selected sampling strategy cannot account for parameters 23 

interaction since each parameter is individually randomly sampled from its distribution.  24 

5.2 Results of the regionalization approach 25 

5.2.1 Catchments clustering 26 

The similarity metric based on the multidimensional space of CAs resulted into 4 ungauged 27 

catchments similar to the Vène catchment (Lauze, Aiguilles, Joncas and Mayroual) and 4 28 

ungauged catchments similar to the Pallas catchment (Fontanilles, Aiguilles, 29 

Nègues_Vacques and Soupié). Catchments within the same group are assumed to have similar 30 

hydrological behavior. The catchments clusters and the numbers of the candidate Mps 31 
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transferred from the donor to the receptor catchments, calculated using the similarity measure, 1 

are given in Table 4. The Vène and the Pallas catchment are identified as the donor 2 

catchments while all the others ungauged watersheds are considered as receptor catchments. 3 

The highest threshold value (Thresh) calculated using Eq. (3) is Thresh = 0.50 and 0.66 for 4 

the Vène and the Pallas catchment, respectively. These Thresh values are frequently used in 5 

literature to identify “behavioral” Mps (Gassman et al., 2007, Shen et al., 2012). The lowest 6 

Thresh values range between 0.25 and 0.38 corresponding to a transfer of 89.18% and of 7 

96.52% of the total Mps sets of the Vène and the Pallas catchments, respectively (Table 4). 8 

These Thresh values correspond to poor model performances at the gauged catchments and 9 

can be seen as low compared to what has been usually used in literature. However, as it was 10 

reported by Oudin et al., (2008), it is not straightforward to state whether or not poorly 11 

modeled gauged catchment(s) parameters should be transferred to ungauged catchment(s). 12 

From one side, it is expected that Mps associated with poorly modeled hydrographs in gauged 13 

catchment(s) will yield poor model performances at the ungauged catchment(s). On the other 14 

side, transfer of Mps of poorly modeled gauged catchment(s) may add a diversity which can 15 

be beneficial for modeling the ungauged catchment (Oudin et al., 2008). 16 

5.2.2 Predicted Flow Duration Curves (FDCs) at the ungauged catchments 17 

The FDC provides the percentage of time (duration) a daily or monthly (or some other time 18 

interval) streamflow is exceeded over a period for a particular river basin (Castellarin et al., 19 

2004). FDC may also be viewed as the complement of the cumulative distribution function of 20 

the considered streamflow and is probably one of the most informative methods of displaying 21 

the complete range of river discharges, from low flows to flood events. Empirical FDCs can 22 

be easily constructed from streamflow observations using standardized non-parametric 23 

procedures (see Vogel and Fennessey, 1994, 1995; Smakhtin, 2001; Castellarin et al., 2004). 24 

The FDC concerns only the flow magnitude whereas the streamflow time series concerns both 25 

magnitude and time sequence. The flow percentiles conceptually represent different segments 26 

of the FDC: high flow (≤ Q10), median flows (Q10- Q50) and low flows (Q50-Q100). The 27 

simulated FDCs resulting from the transfer of the GLUE Mps sets of the Pallas and the Vène 28 

catchment to the ungauged catchments, within their corresponding group, are plotted in Fig.5. 29 

The slope of the simulated FDCs within the high flow percentiles (≤ Q10) is relatively steep 30 

for the two catchments groups, indicating that flood discharges are not sustained for a long 31 

period of time. The slope of the end tail of the simulated FDCs, corresponding to low flow (≥ 32 
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Q50), is steeper in the Pallas catchment group, while it is flattened out considerably in the 1 

Vène catchments group. This reflects the difference in the low flow regime between the two 2 

catchments groups. Catchments of the Pallas group cease flowing at 20% to 40% of the 3 

simulation time period, while catchments of the Vène group have more sustained baseflow 4 

contribution. Figure 6 shows the coefficient of variation (CV= Standard deviation/Mean) and 5 

the mean magnitude of the simulated FDCs flow percentiles for all the catchments and 6 

quantify their inter and intra-catchments groups variability. It is clearly seen from Fig.6 that 7 

the CV of the mean for all the FDCs flow percentiles within the Pallas catchments group is 8 

higher at low flows than at higher flows while, for the Vène catchments group, the CV is 9 

more or less steady across the flow percentiles, except for the Mayroual catchment. The intra-10 

catchments variability of the CV of the flow percentiles within each catchment group shows 11 

that catchments within each group converge to a similar low flow CV value, except for the 12 

FDCs of the Fontanilles within the Pallas group and the Mayroual within the Vène group. It is 13 

worth noting here, that these catchments exhibit the largest dissimilarity in their physical 14 

attributes form their corresponding donor catchments. It is also clear in Fig.6 that the 15 

simulated mean flow magnitude of the different flow percentiles is very low in both 16 

catchments group. The mean values of the high flow percentiles in both catchments group do 17 

not exceed 0.015m3.s-1. However, the variation in the mean values of the simulated FDCs is 18 

more important in high flow percentiles than in low flow percentiles in both catchment 19 

groups. In the Pallas catchment group, the mean flow magnitude decreases rapidly from Q10 20 

to Q20, then progressively from Q20 to Q50 leading to progressive increase in the CV within 21 

these flow percentiles and tends to be steady for flow percentile higher than Q50, which 22 

results in higher CV values. In addition, at low flow percentiles (> Q50), all the simulated 23 

FDCs of the Pallas catchment group tend to have similar mean flow values which resulted in 24 

less variability of the CV at the low flow percentiles. Also, catchments within the Vène group 25 

have much more variability in their simulated flow percentiles mean values than these of the 26 

Pallas group. The flow percentiles of the simulated FDCs of the Aiguilles catchment have the 27 

highest mean values while the Mayroual and Lauze FDCs flow percentiles are very similar 28 

and these of the Joncas catchment are the lowest values. It is worth noting here to add that the 29 

CV of low flow percentiles is also compared to the catchments drainage area and to the soil 30 

characteristics within each ungauged catchment, but no clear relationships is found. 31 
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5.2.3 Uncertainty in the predicted FDCs at the ungauged catchments 1 

The uncertain simulated FDCs are represented in Fig.5 in such a way that dissimilarity 2 

between the donor and the receptor catchment, within each catchments group, increases from 3 

the left to the right and from top to down. It is clearly seen form Fig.5 that the FDCs 4 

uncertainty interval in both catchments groups is wider as the receptor catchment is further 5 

from the donor catchment. This is also confirmed by the relationship that exists between the 6 

number of Mps transferred from the donor to the receptor catchments and the ASRIL factor 7 

plotted in Fig.7. The ASRIL factor increases as the percentage of the transferred Mps 8 

increases. While the average FDCs uncertainty width (ASRIL) in both catchments groups 9 

tends to increase as the dissimilarity between the donor and the receptor catchments increases, 10 

catchments of the Pallas group show wider uncertainty interval than these of the Vène group. 11 

Another observation that can be made from Figs. 5 and 7 is that catchments that are very 12 

similar to each other have similar uncertain FDCs shape and very close ASRIL factor values 13 

(see also Table 5). This is the case for the Joncas and Lauze catchments in the Vène group and 14 

for the Nègues_Vacques and Aygues_Vacques catchments in the Pallas group. This suggests 15 

that high similarity between CAs may lead to similar hydrological responses and model 16 

prediction uncertainties of catchments that are under the same climatic and geographic region. 17 

However, this assumption is far to be validated in this work and needs to be further 18 

investigated and checked in future work with larger number of similar catchments or by 19 

simply gauging the catchments. 20 

In order to check the consistency of the developed methodology in this work, attempts are 21 

conducted to investigate if relationships between parameter uncertainty of the donor 22 

catchment and the predicted uncertainty of the FDCs in the receptor catchments exist. This 23 

has been done through the calculation of the coefficient of variation (CV) of the transferred 24 

Mps within each ungauged catchment. The CV, as it was described previously, can be used as 25 

a dimensionless measure of parameter uncertainty (Bastola et al., 2008). The variability of the 26 

CV of Mps transferred to the ungauged catchments within each catchment group is given in 27 

Fig.8. Results show that the CV of Mps varies between the catchments depending on the 28 

parameter itself and on the similarity distance between the receptor and the donor catchments.  29 

In the Pallas catchment group, the CN2 and the SURLAG parameters show a clear variability 30 

in their corresponding CV values across the catchments. It is obvious that uncertainty in CN2 31 

and SURLAG parameters increases from the closest (Nègues-Vacques) to the furthest 32 
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ungauged catchment (Fontanilles) from their respective donor catchment (Fig.8a). Moreover, 1 

the variability trend of the CV of the CN2 parameter follows closely the trend of the ASRIL 2 

factor across the catchments, with a correlation coefficient of R2= 0.66 while the CV of the 3 

SURLAG parameter is less correlated to the ASRIL factor (R2= 0.40). In the Vène catchment 4 

group, 3 out of 10 transferred parameters show variable CV values across the catchments. 5 

These parameters are CN2, GW_DELAY and ALPHA_BF (Fig.8b). While all the other 6 

remaining parameters show a constant CV at its maximum value across all the catchments, 7 

uncertainty in CN2, GW_DELAY and ALPHA_BF parameters increases progressively from 8 

the closest similar ungauged catchment (Joncas) to the furthest one, but in different trends. 9 

The variability of the CV of CN2 is well correlated to the ASRIL factor (R2= 0.83) while these 10 

of the GW_DELAY and ALPHA_BF parameters are less correlated to ASRIL (R2= 0.545 and 11 

0. 540 for GW_DELAY and ALPHA_BF, respectively). These results suggest that 12 

relationships exist between the transferred parameter uncertainty and the predicted uncertainty 13 

width of the FDCs and between the CAs similarity distance and the predicted uncertainty in 14 

the ungauged catchment. The results are consistent with the proposed methodology in this 15 

work which is based on the principle that model prediction uncertainty intuitively increases as 16 

the dissimilarity in CAs between the donor and the receptor catchments increases. However, 17 

these results need to be interpreted with care and precaution. Indeed, the CV is calculated for 18 

each model parameter individually without taking simultaneously into account the uncertainty 19 

and the interactions between the other parameters while it is the whole parameters set that was 20 

transferred in the regionalization schemes. By relating the parameter CV to the model 21 

prediction uncertainty in ungauged catchment, it is assumed that linear relationship exists 22 

between parameter uncertainty and model prediction uncertainty at the ungauged catchments. 23 

However, this linearity is difficult to check and to establish because of the possible 24 

interdependency of the parameters, non-linearity and non-monotonicity of the hydrological 25 

model and other various sources of uncertainty (uncertainty in input and model structure). 26 

Moreover, model parameters that have steady CV across the ungauged catchments may 27 

contribute to model prediction uncertainty when they are transferred in a set of parameters. 28 

Therefore, the CV of individual parameter may not reflect its real uncertainty. In addition to 29 

Mps, input and model structure uncertainty, regionalization procedures are known to have 30 

additional uncertainty on model prediction in ungauged catchments (Wagener et al., 2004; 31 

Heuvelmans et al., 2006; Bastola et al., 2008). In the proposed methodology it is assumed that 32 

uncertainty that stems from the regionalization schemes is propagated to model prediction in 33 
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the ungauged catchment through the integration of the similarity measure in defining the Mps 1 

sets to be transferred from the donor to the receptor catchments. However, partitioning each 2 

uncertainty source and telling to which extent it can affect the model prediction is a very 3 

difficult task to perform. 4 

5.3 Performances evaluation of the regionalization approach 5 

5.3.1 Fit to observation 6 

The 95% uncertainty interval and the median of each flow percentiles values of the observed 7 

and the simulated FDCs for the ungauged catchments, where observed data are available, are 8 

constructed and plotted in Fig.9. Only 4 ungauged catchments have some observed data that 9 

can be used to compare the results of the regionalization approach. According to the observed 10 

FDCs, ungauged catchments cease flowing at 50 to 60 % of the time while the predicted 11 

FDCs indicate that ungauged catchments flow for longer period between 60 and 100% of the 12 

simulation time period reflecting the ephemeral hydrological behaviour of the catchments 13 

(Fig.9). The calculated NS coefficient between the observed and the simulated median flow 14 

percentiles and the average p-factor values, corresponding to the average percentage of the 15 

observed flow percentile values bracketed in the predicted uncertainty flow percentile 16 

interval, are summarized in Table 6. Given the observation data available, the NS coefficient 17 

values are negative for the Soupié and Fontanilles catchments (NS = -0.131 and -0.144, 18 

respectively), indicating that the observed median values of the different flow percentiles are 19 

poorly reproduced by the model in these ungauged catchments. On the other hand, positive 20 

NS values of 0.169 and 0.518 are obtained in the Aygues_Vacques and in the Joncas 21 

catchments, respectively, showing better model prediction of the flow percentiles median 22 

values. While the simulated flow percentiles uncertainty intervals are able to bracket most of 23 

the observation data (Fig.9 and Table 6), there is a clear tendency of the p-factor increase with 24 

the decrease of the distance between the donor and the receptor catchment. As it was 25 

demonstrated previously, the average relative width of the uncertainty interval (ASRIL) 26 

increases as the dissimilarity between the donor and the receptor catchments increases. 27 

Therefore, more observation data are bracketed in the flow percentile uncertainty interval of 28 

the ungauged catchments that are located far from the donor catchment. 29 
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5.3.2 Fit to reality 1 

The annual mass balance is calculated based on the average annual values of the different 2 

hydrological components that are computed by the SWAT model according to Eq. (6). 3 

WYLD = Surf_Q + Lat_Q + GW_Q – T Losses                                                                     (6) 4 

Where WYLD is the net water yield to reach (mm), Surf_Q is the surface runoff (mm), Lat_Q 5 

is the lateral flow contribution to reach (mm), GW_Q is the groundwater discharge into the 6 

reach (mm) and T Losses is the amount of water removed from the tributary channel by 7 

transmission (mm). The WYLD decomposes the contribution of the different flow types to the 8 

total water budget and is actually equals to precipitation diminished by evapotranspiration. 9 

The average annual water budget, its components and their corresponding uncertainty 10 

(calculated as the standard deviation) for each ungauged catchment are plotted in Fig.10. The 11 

results of the regionalization approach suggest that surface runoff is the major component of 12 

the water budget (65% in average) followed by the lateral flow (22.7% in average) and by the 13 

groundwater flow (12.3% in average). However, all the hydrological balance components are 14 

estimated with large uncertainty. For instance, about 65% of the WYLD uncertainty is 15 

attributed to the uncertainty of the estimated surface runoff (Surf_Q). In the SWAT model, 16 

Surf_Q is estimated using the modified Soil Conservation Service (SCS) curve number (CN) 17 

method which depends on the soil moisture and land use cover. Therefore, any uncertainty in 18 

the soil and land use cover is translated to the associated curve number and affects the 19 

predicted Surf_Q. Moreover, in SWAT the runoff coefficient is calculated as the ratio of 20 

runoff volume to rainfall. Therefore, uncertainty of the latter can affect the predicted peak 21 

flow which in turn affects the predicted Surf_Q. 22 

The groundwater component (GW_Q) has more important average contribution rate to the 23 

total water budget in the Vène catchments group (Joncas, Lauze, Aiguilles and Mayroual) 24 

with an average of 11.71%, than in the Pallas catchments group (Nègues_Vacques, 25 

Aygues_Vacques, Soupié and Fontanilles), with an average of 6.47%. In addition, GW_Q 26 

within the Pallas catchments group occurs intermittently, while it seems more sustained but 27 

also more uncertain within the Vène catchments group (Fig.10). Because of the different 28 

sources of uncertainty (e.g. precipitation, evapotranspiration, uncertainty in groundwater 29 

parameters) and the rainfall seasonal variability, the groundwater volume and its level of 30 

fluctuation are estimated with uncertainty that is translated into an uncertain GW_Q. These 31 
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results suggest that streamflow in the Vène catchments group (corresponding more or less to 1 

the eastern part of the Thau catchment, see Fig. 1) is more influenced by the groundwater 2 

flow contribution than in the Pallas catchments group (corresponding to the central and 3 

western part of the Thau catchment). However, the validation of this result is not 4 

straightforward since no information or data on groundwater are available in the study area 5 

and more hydrogeological measurements are required to check the results and to reduce the 6 

groundwater discharge uncertainty. 7 

About 2.5% of the total water budget is lost via leaching through the stream bed (T Losses). 8 

This type of losses is more important in the Pallas catchments group (5.3%), than in the Vène 9 

catchment group (1.37%) (Fig.10). Transmission losses become more important when GW_Q 10 

decreases and vice versa. Because the SWAT model creates more sustained shallow aquifer 11 

with larger water storage in the eastern part than in the western part of the Thau catchment, 12 

the Vène catchments group are gaining much more water through baseflow (GW_Q + Lat_Q) 13 

leading to smaller loss of water through channel transmission. However, besides the depth of 14 

water stored in the shallow aquifer, other geomorphologic parameters (e.g. the width and 15 

length of the channel bed, etc.) and hydraulic parameters (e.g. effective hydraulic conductivity 16 

of the river bed (Ch_K), geologic nature of the channel material) can affect the transmission 17 

losses amount. For example, for catchments where the groundwater level is beyond the river 18 

bed, the CH_K value should be equal to zero (van Griensven et al., 2012) and should not be 19 

too high in humid catchments. Uncertainty in the estimated transmission losses can stem from 20 

the uncertainty of the physical features of the catchments introduced through the GIS data and 21 

used by SWAT to derive the channel geomorphological characteristics and from the 22 

uncertainty of the CH_K parameter. 23 

5.3.3 Fit to geography 24 

This criterion is used here to assess the performances of the regionalization procedure in 25 

reproducing the actual spatial distribution of the soil moisture in the Thau catchment. 26 

Baghdadi et al. (2012) proposed a method to estimate the volumetric soil moisture from 27 

RADARSAT-2 image (space Synthetic Aperture Radar «SAR» sensor) for bare agricultural 28 

fields or fields with thin vegetation cover over the Thau basin for ten dates between 29 

November 2010 and March 2011. Their estimated soil moisture values showed a good 30 

agreement with the measured in situ soil moisture with a RMSE = 0.065 cm3/cm3 (see 31 

Baghdadi et al., 2012 for details). These estimated soil moisture maps, referred hereafter as 32 
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“observed” soil moisture, are compared to the soil moisture derived from the regionalization 1 

results which are referred hereafter as predicted soil moisture. Since the “observed” soil 2 

moisture maps are available only for three different dates (November 18, December 4 and 12, 3 

2010) within the model simulation period, the comparison between the “observed” and the 4 

predicted soil moistures is restricted to these 3 dates. Figure 11 shows the spatial distribution 5 

of the predicted and the observed soil moisture for three different dates at the Thau catchment. 6 

The predicted soil moisture is spatially correlated to the “observed” one but with different 7 

degree of satisfaction. The latter can be broadly and arbitrary set to good, satisfactory and 8 

poor based on the graphical investigation of Fig.11. Good spatial correlation between the 9 

distribution of the predicted and the “observed” soil moisture is obtained at the Vène, 10 

Aiguilles and Fontanilles catchments, while it can be considered as satisfactory for the Joncas, 11 

Lauze, Pallas and Soupié and poor for the Aygues_Vacques, Mayroual and Nègues_Vacques 12 

catchments. Overall, the predicted soil moisture has an acceptable spatial distribution with the 13 

“observed” one which is more clear in the eastern part (corresponding to the Vène catchments 14 

group) than in the western part (corresponding to the Pallas catchments group) of the Thau 15 

catchment. 16 

The predicted soil moisture values on the three different dates at the Thau catchment are also 17 

compared to the “observed” ones. Table 7 presents some statistical characteristics of the 95% 18 

“observed” and predicted soil moisture values on the three selected dates. The predicted soil 19 

moisture values ranges are slightly larger than the “observed” ones. The variability of the 20 

predicted soil moisture on a given day is larger as this day is preceded by wet days (Table 7). 21 

Nevertheless, the median and the mean of the “observed” and predicted soil moisture values 22 

are in a good agreement. However, the comparison of the “observed” and predicted soil 23 

moisture values is not straightforward since the model is predicting the soil moisture at the 24 

HRU scale for soils with different vegetation type cover, while the “observed” soil moisture 25 

values are made up for bare soils or soils with thin vegetation cover. In addition, “observed” 26 

soil moisture values are made up for the top 5 to 10 cm of the soil profile whereas the 27 

predicted ones might be estimating by SWAT for the entire soil layer that can be much more 28 

than 10 cm depth. 29 

6 Summary and conclusions 30 

This study examined the possibility of the Soil and Water Assessment Tool (SWAT) model to 31 

accurately predict the daily discharge at gauged and ungauged catchments within an 32 

in : Hydrology and Earth System Sciences, n° 18, 2014



 27 

uncertainty framework. The model was implemented on a Mediterranean catchment, called 1 

the Thau catchment located in southern France. Model calibration and parameters uncertainty 2 

were conducted simultaneously using the GLUE method (Beven and Binley, 1992) on two 3 

gauged subcatchments of the Thau watershed, referred to as the Vène and the Pallas 4 

catchment. 5 

We first questioned whether the selected hydrological model is suitable for reproducing the 6 

hydrology of the study area. The model showed good performances in reproducing the daily 7 

observed discharge of the Vène and the Pallas catchments with NS coefficient higher than 8 

0.70. The model was able to cover more than 60% of the observation discharge data of each 9 

catchment in its 95% prediction uncertainty interval. However, the model prediction 10 

uncertainty was large in both study sites especially in the Vène catchment.  11 

We subsequently questioned whether the selected hydrological model is able to predict the 12 

discharge at ungauged catchments. We analyzed this question through the transfer of the 13 

SWAT model parameter sets from the gauged catchments (Vène and Pallas) to the other 14 

ungauged catchments of the Thau watershed. A regionalization approach based on similarity 15 

measure between catchments attributes was adopted to identify similar catchments clusters. 16 

Within each cluster, the degree of similarity between the donor and the receptor catchment 17 

was used as a threshold to select the appropriate transferrable model parameter sets.  18 

Results showed that within the same catchments cluster, ungauged catchments can exhibit 19 

similar hydrologic behavior if they exhibit high degree of similarity in their physical attributes 20 

and have received similar model parameter sets. Similar ungauged catchments showed higher 21 

similarity at the predicted FDCs high flow percentiles than at low flow percentiles. The high 22 

variability of the predicted low flow values was attributed to the predicted low mean values of 23 

the flow percentiles rather than to the geology or to the catchment drainage area.  24 

The performance of the regionalization method at the ungauged catchments was assessed 25 

through statistical and field reality criteria. The predicted median flow percentiles, given the 26 

available observed data, were poorly to acceptable reproduced by the model. The predicted 27 

water balance revealed the prevailing of the surface runoff component in the hydrology of the 28 

ungauged catchments. The predicted soil moisture was satisfactory spatially correlated to the 29 

“observed” one for some given dates. The findings suggest that the SWAT model parameters 30 

can be regionalized to predict discharge at ungauged catchments and the results can fit the 31 

reality of the study case. However, thorough evaluation and criticism of its performances is 32 
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constrained by the availability of the observation data at the ungauged catchments. Therefore, 1 

other evaluation criteria such as fit to reality and fit to geography can be used to describe the 2 

model performances in these ungauged catchments.  3 

We also showed in this work how parameter uncertainty can affect model prediction 4 

uncertainty at ungauged catchment through the regionalization of the model parameters. The 5 

assumptions behind the developed methodology were that physically similar catchments are 6 

hydrologically similar and model prediction uncertainty increases as the dissimilarity between 7 

the donor and the receptor catchment increases. The developed methodology allows 8 

propagating model parameter uncertainty proportionally to the similarity measure. 9 

Furthermore, it makes the selection of the donor catchment parameter sets more objective 10 

than the traditional approach which is based on modeler subjective choice. It was shown that 11 

model prediction uncertainty was influenced by the similarity distance between the donor and 12 

the receptor catchment. Wider prediction uncertainty is obtained as the dissimilarity between 13 

the donor and the receptor catchment increases. It was also shown that within the same 14 

climatic and geographic region, catchments that are very similar to each other and have 15 

received similar model parameter sets exhibit similar degree of prediction uncertainty. In 16 

addition, the findings showed that the selected threshold values and, hence, the number and 17 

the uncertainty of the parameters transferred can affect the prediction uncertainty at the 18 

ungauged catchment. If a higher degree of similarity exists between the donor and the 19 

receptor catchments then a higher threshold value is selected. Consequently, a lower 20 

parameters uncertainty is propagated to the ungauged catchment leading to lower prediction 21 

uncertainty in the ungauged catchment. Otherwise, a lower threshold value is selected and a 22 

wider uncertain parameter sets are transferred which will yield a larger uncertain model 23 

prediction at the target catchment. However, it is not pretended with these results that 24 

uncertainty in the transferred parameter sets is the only one source for model prediction 25 

uncertainty at the ungauged catchment. As it was demonstrated by the results, although the 26 

relationship between uncertainty in the parameters and in the prediction results at the 27 

ungauged catchments exists, this relationship is far to be linear. This is due to other sources of 28 

uncertainty (e.g. model structure, inputs uncertainty), parameters correlation and equifinality. 29 

Therefore, all sources of uncertainty should be considered in an integrated framework for 30 

more effective parameter regionalization. 31 
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To our knowledge, a hydrological study of the entire Thau catchment was never done before. 1 

Therefore, building on the regionalization approach, this work can be considered as a starting 2 

point for further research study of hydrological issues in this catchment.  3 

We think that the developed methodology in this work provides more objectivity in the 4 

selection of the transferrable model parameters sets for estimating the discharge at the 5 

ungauged catchments. This can reduce a part of the additional uncertainty that can be 6 

introduced by the user through his subjective selection of the transferrable model parameters. 7 

However, some subjective choices are inevitable such as the choice of the similarity measure 8 

and the selection of the catchment attributes which can have an additional source of 9 

uncertainty. We think also that the speculation behinds the developed methodology such as 10 

model prediction uncertainty at the ungauged catchments increases as the dissimilarity 11 

between the donor and the receptor catchment increases is appealing and reasonable. The 12 

method is easy and can be replicated with any model parameters transfer approach for 13 

estimating flow at ungauged catchments within an uncertainty propagation framework.  14 
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Table 1 Discharge and precipitation data available for each catchment 

Catchment 
 name 

Discharge time 
period 

Observations 
length (days) 

Precipitation  
time period 

Vène 1994-1996 667 1990-2010 
Pallas 1994-1996 208 1990-2010 
Lauze NA  NA 1990-1999 
Aiguilles             NA  NA 1990-1999 
Joncas 2007-2009 81 1990-1999 
Aygues_Vacques 2007-2009 85 1990-1999 
Nègues_Vacques              NA   NA 1990-1999 
Mayroual              NA   NA 1990-1999 
Soupié 2007-2009 536 1990-1999 
Fontanilles 2007-2009 540 1990-1999 
Note: NA means not available. 
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Table 2 Description of the catchments attributes 
Catchment  
name 

Drainage 
area (Km2) 

Mean 
elevation (m) 

Average 
slope (%) 

Vineyards 
(%) 

Non-agr. 
vegetation (%) 

Dominant 
Soil texture 

Geology 
(surface %) 

Vène 67 94.29 8.47 12.3 64 SA-L JL-MM 
 Pallas 54 71.33 7 20.35 45.48 S-L JL-MM 
 Lauze 9.25 64.22 8.16 8.027 64 S-L JL-MM 
 Aiguilles 3.42 60 5.87 0.34 83.27 S-C-L JL-MM 
 Joncas 4.14 74.45 6.56 2.5 84.22 S-C-L JL-MM 
 Aygues_Vacques 12.34 29.52 3.56 14.4 37.33 S-L      MM 
 Nègues_Vacques 28.5 53.52 4 29.18 41.32 L MM 
 Mayroual 5.1 20.45 2.55 48.63 25.15 L MM 
 Soupié 15.82 43.38 3.79 35.88 45 L MM 
 Fontanilles 7.4 21.21 2.38 31.39 27.11 L MM 
 Note: Soil code: SA-L: sandy loam, S-L: silty loam, S-C-L: silty clayey loam and L: loam. 

Geology code: JL, Jurassic Limestone; MM, Miocene Marls. 
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Table 3 Initial range, sensitivity analysis results and description of the selected SWAT model parameters 

Parameter Initial distribution Parameter description [Unit] 
ALPHA_BF U [0.1 – 1] Base-flow alpha factor [days] 
GW_DELAY U [0 – 500] Groundwater delay [days] 
GW_REVAP U [0.02 – 0.2] Groundwater "revap" coefficient [none] 
GWQMN U [0 – 5000] Threshold water depth in the shallow aquifer for flow [mm] 
CN2* U [0.1 – 0.9] Initial SCS CN II value [none] 
ESCO U [0.1 – 1] Soil evaporation compensation factor [none] 
EPCO U [0 -1] Plant uptake compensation factor [none] 
SURLAG U [1 – 24] Surface runoff lag time [days] 
CH_N2 U [0.1 – 0.3] Manning's n value for main channel [none] 
CH_K2 U [1 – 150] Channel effective hydraulic conductivity [mm/hr] 
SOL_AWC U [0 – 1] Available water capacity [mm/mm soil] 
SOL_K U [0–2000] Soil hydraulic conductivity [mm/hr] 
SOL_Z U [0 – 3500] Soil depth [mm] 
SOL_ALB U [0 – 1] Moist soil albedo [none] 
SLOPE* U [0 – 0.5] Average slope steepness [m/m] 
SLSUBBSN U [10 – 150] Average slope length [m] 
REVAPMN U [0 – 500] Threshold depth of water in the shallow aquifer for ‘‘revap’’ to occur [mm] 
Note: U means uniform distribution. * Means fraction of variation by which the initial value of the parameter is changed. The rank zero is 
attributed to parameter that is not considered as sensitive. 
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Table 4 Results of catchments clustering and number of Mps transferred from the donor to 1 
the receptor catchment based on the similarity measure. 2 

 Donor 
catchment 

Receptor 
catchment 

Similarity Threshold 
(Thresh) 

% of 
Mps 

Catchments cluster      
 Vène Joncas 0.71 0.50 44.10 
  Lauze 0.70 0.49 46.95 
  Aiguilles 0.66 0.46 54.62 
  Mayroual 0.36 0.25 89.18 
 Pallas Nègues_Vacques 0.88 0.66 16.60 
  Aygues_Vacques 0.71 0.54 85.16 
  Soupié 0.70 0.53 86.47 
  Fontanilles 0.50 0.38 96.52 

Note: the %Mps corresponds to the percentage of the transferred Mps out of 10,000. 3 
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Table 5 Measure of the ASRIL factor of the predicted FDCs uncertainty intervals in the 1 

ungauged catchments 2 

Ungauged catchment          Donor catchment 

 Vène Pallas 

Lauze 0.018 ----- 

Aiguilles 0.031 ----- 

Joncas          0.019        ----- 

Mayroual 0.207 ----- 

Fontanilles ----- 0.196 

Aygues_Vacques ----- 0.117 

Nègues_Vacques ----- 0.113 

Soupié ----- 0.169 
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Table 6 Statistical criteria of the regionalization approach results 1 

Catchment Aygues_Vacques Soupié Fontanilles Joncas 
NS 0.169 -0.131 -0.144 0.518 
P_factor (%) 18 65 73 87 
 2 
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Table 7 Statistical criteria of the 95% confidence “observed” and predicted soil moisture 1 
values on the three dates at the Thau catchment 2 

 “Observed” soil moisture (cm3/cm3) Predicted soil moisture (cm3/cm3) 

Date 11/18/2010 12/04/2010 12/12/2010 11/18/2010 12/04/2010 12/12/2010 

Prec.* 

Min-Max 

2.2 

0.08-0.27 

0.6 

0.10-0.26 

0 

0.03-0.19 

2.2 

0.08-0.33 

0.6 

0.04-0.30 

0 

0.01-0.28 

Median 0.167 0.162 0.07 0.142 0.102 0.07 

Mean 0.169 0.166 0.08 0.167 0.127 0.09 

Note: *Prec. is the cumulative precipitation in (mm) from the 3 previous days to the selected 3 
date. 4 
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 1 

Fig. 1. Location, topography, rain gauge stations and subcatchment boundaries of the Thau 2 
basin 3 
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 1 

Fig. 2. Land use distribution in the Vène and in the Pallas watersheds for 1996 and 2010  2 
 3 
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 1 

Fig. 3. GLUE prediction uncertainty bounds for the Vène and the Pallas catchment. The grey 2 
shaded area is the 95% prediction uncertainty interval and the black dotted line corresponds to 3 
the observed discharge 4 
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 1 

 2 

 3 

Fig. 4. Example of the effect of the threshold value on the posterior parameter distribution 4 
derived by GLUE. 5 
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 1 

(a) Uncertain simulated FDCs for the Pallas catchments group 2 

 3 

(b) Uncertain simulated FDCs for the Vène catchments group 4 
 5 

Fig. 5. Simulated uncertain FDCs for the ungauged catchments based on model parameters 6 
regionalization 7 
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 1 

Fig. 6. Mean and coefficient of variation of the predicted FDCs percentiles based on the 2 
physical similarity approach for the Pallas catchments group (Pallas) and for the Vène 3 
catchments group (Vène). 4 
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 3 

Fig. 7. Relationship between the number of transferred model parameter sets and the ASRIL 4 
factor at the ungauged catchments. 5 
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 1 

(a)  Pallas catchments group 2 
 3 

 4 

                                                        (b) Vène catchments group 5 
 6 

Fig. 8. Relationship between the CV variability of the transferred model parameter from 7 
gauged to the ungauged catchments and the ASRIL factor within each catchments group. 8 
 9 
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 1 

Fig. 9. 95% uncertainty interval of the simulated FDCs flow percentiles versus 95% of the 2 
observed FDCs flow percentiles resulting from the model parameters regionalization 3 
approach. Results correspond to the transfer of the Pallas model parameter sets to the 4 
Aygues_Vacques, Soupié and Fontanilles catchments and transfer of the Vène model 5 
parameters sets to the Joncas catchments. The blue color is for simulation and the red color is 6 
for observation. The bar corresponds to the 95% flow percentile value while the square 7 
corresponds to the flow percentile median value. 8 
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 1 

 2 

Fig. 10. Average annual water balance simulated at the ungauged catchments based on the 3 
regionalization approach. The error bars represent the standard deviation calculated based on 4 
all model simulations. 5 
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 1 

 2 

Fig. 11. Distribution of the soil moisture within the Thau catchment for 3 different dates;  (a) is the “observed” soil moisture (Baghdadi et al., 3 
2012) and (b) is the predicted soil moisture based on the regionalization results. 4 
 5 

(a) 
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